io.py 48.8 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
import os
T
bug fix  
tangwei12 已提交
18
import errno
D
dzhwinter 已提交
19
import warnings
T
tangwei12 已提交
20 21
import time
import shutil
22
import six
23
import logging
24
from functools import reduce
25

26
from paddle.fluid import layers
X
Xin Pan 已提交
27
from paddle.fluid.executor import Executor
28
from paddle.fluid.evaluator import Evaluator
29
from paddle.fluid.framework import Program, Parameter, default_main_program, default_startup_program, Variable, program_guard
S
sneaxiy 已提交
30 31
from . import reader
from .reader import *
K
fix bug  
Kexin Zhao 已提交
32
from . import core
33
from .. import compat as cpt
34 35

__all__ = [
T
tangwei12 已提交
36
    'save_vars', 'save_params', 'save_persistables', 'load_vars', 'load_params',
37
    'load_persistables', 'save_inference_model', 'load_inference_model'
S
sneaxiy 已提交
38
] + reader.__all__
39

40 41 42 43
logging.basicConfig(format='%(asctime)s-%(levelname)s: %(message)s')
_logger = logging.getLogger(__name__)
_logger.setLevel(logging.INFO)

44 45

def is_parameter(var):
F
fengjiayi 已提交
46 47
    """
    Check whether the given variable is an instance of Parameter.
48 49

    Args:
F
fengjiayi 已提交
50
        var(Variable): The variable to be checked.
51 52

    Returns:
F
fengjiayi 已提交
53 54 55 56 57 58 59 60
        bool: True if the given `var` is an instance of Parameter,
        False if not.

    Examples:
        .. code-block:: python

            param = fluid.default_main_program().global_block().var('fc.w')
            res = fluid.io.is_parameter(param)
61
    """
62 63 64 65
    return isinstance(var, Parameter)


def is_persistable(var):
F
fengjiayi 已提交
66 67 68 69 70 71 72 73 74 75 76 77 78
    """
    Check whether the given variable is persistable.

    Args:
        var(Variable): The variable to be checked.

    Returns:
        bool: True if the given `var` is persistable
        False if not.

    Examples:
        .. code-block:: python

79
            param = fluid.default_main_program().global_block().var('fc.b')
F
fengjiayi 已提交
80 81
            res = fluid.io.is_persistable(param)
    """
82
    if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
Y
yuyang18 已提交
83 84
            var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
            var.desc.type() == core.VarDesc.VarType.READER:
85
        return False
86 87 88 89 90 91 92 93
    return var.persistable


def _clone_var_in_block_(block, var):
    assert isinstance(var, Variable)
    return block.create_var(
        name=var.name,
        shape=var.shape,
F
fengjiayi 已提交
94
        dtype=var.dtype,
95 96 97 98 99
        type=var.type,
        lod_level=var.lod_level,
        persistable=True)


100 101 102 103 104
def save_vars(executor,
              dirname,
              main_program=None,
              vars=None,
              predicate=None,
105
              filename=None):
106
    """
F
fengjiayi 已提交
107 108
    Save variables to the given directory by executor.

109 110 111 112
    There are two ways to specify variables to be saved: The first way, list
    variables in a list and assign it to the `vars`. The second way, assign the
    `main_program` with an existing program, then all variables in the program
    will be saved. The first way has a higher priority. In other words, if `vars`
F
fengjiayi 已提交
113
    are assigned, the `main_program` and the `predicate` will be ignored.
114

115 116 117
    The `dirname` are used to specify the folder where to save variables.
    If you prefer to save variables in separate files in the folder `dirname`,
    set `filename` None; if you prefer to save all variables in a single file,
F
fengjiayi 已提交
118
    use `filename` to specify it.
119

F
fengjiayi 已提交
120 121 122
    Args:
        executor(Executor): The executor to run for saving variables.
        dirname(str): The directory path.
123 124
        main_program(Program|None): The program whose variables will be saved.
                                    If it is None, the default main program will
F
fengjiayi 已提交
125 126
                                    be used automatically.
                                    Default: None
127
        vars(list[Variable]|None): The list that contains all variables to save.
F
fengjiayi 已提交
128 129
                                   It has a higher priority than the `main_program`.
                                   Default: None
130 131 132 133
        predicate(function|None): If it is not None, only variables in the
                                  `main_program` that makes predicate(variable)==True
                                  will be saved. It only works when we are using the
                                  `main_program` to specify variables (In other words
F
fengjiayi 已提交
134 135
                                  `vars` is None).
                                  Default: None
136
        filename(str|None): The file which to save all variables. If you prefer to save
F
fengjiayi 已提交
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
                            variables separately, set it to None.
                            Default: None

    Returns:
        None

    Raises:
        TypeError: If `main_program` is not an instance of Program nor None.

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"

            # The first usage: using `main_program` to specify variables
            def name_has_fc(var):
                res = "fc" in var.name
                return res

            prog = fluid.default_main_program()
            fluid.io.save_vars(executor=exe, dirname=path, main_program=prog,
C
chengduo 已提交
159
                               vars=None, predicate = name_has_fc)
F
fengjiayi 已提交
160 161 162 163 164 165
            # All variables in `main_program` whose name includes "fc" will be saved.
            # And variables are going to be saved separately.


            # The second usage: using `vars` to specify variables
            var_list = [var_a, var_b, var_c]
166
            fluid.io.save_vars(executor=exe, dirname=path, vars=var_list,
F
fengjiayi 已提交
167 168 169
                               filename="vars_file")
            # var_a, var_b and var_c will be saved. And they are going to be
            # saved in the same file named 'var_file' in the path "./my_paddle_model".
170 171
    """
    if vars is None:
172
        if main_program is None:
Y
Yu Yang 已提交
173
            main_program = default_main_program()
174
        if not isinstance(main_program, Program):
175 176 177 178
            raise TypeError("program should be as Program type or None")

        save_vars(
            executor,
179
            main_program=main_program,
180
            dirname=dirname,
181
            vars=list(filter(predicate, main_program.list_vars())),
182
            filename=filename)
183 184 185
    else:
        save_program = Program()
        save_block = save_program.global_block()
186

187 188 189 190 191
        if main_program is None:
            main_program = default_main_program()
        if not isinstance(main_program, Program):
            raise TypeError("program should be as Program type or None")

192
        save_var_map = {}
193
        for each_var in vars:
194 195 196
            # NOTE: don't save the variable which type is RAW
            if each_var.type == core.VarDesc.VarType.RAW:
                continue
197
            new_var = _clone_var_in_block_(save_block, each_var)
198
            if filename is None:
199 200 201 202 203 204 205 206
                save_block.append_op(
                    type='save',
                    inputs={'X': [new_var]},
                    outputs={},
                    attrs={'file_path': os.path.join(dirname, new_var.name)})
            else:
                save_var_map[new_var.name] = new_var

207
        if filename is not None:
208 209 210 211
            save_var_list = []
            for name in sorted(save_var_map.keys()):
                save_var_list.append(save_var_map[name])

212
            save_block.append_op(
213 214
                type='save_combine',
                inputs={'X': save_var_list},
215
                outputs={},
216
                attrs={'file_path': os.path.join(dirname, filename)})
217

218 219 220
        executor.run(save_program)


221
def save_params(executor, dirname, main_program=None, filename=None):
222
    """
F
fengjiayi 已提交
223 224 225
    This function filters out all parameters from the give `main_program`
    and then save them to the folder `dirname` or the file `filename`.

226 227 228
    Use the `dirname` to specify the saving folder. If you would like to
    save parameters in separate files, set `filename` None; if you would
    like to save all parameters in a single file, use `filename` to specify
F
fengjiayi 已提交
229 230
    the file name.

231 232 233
    NOTICE: Some variables are not Parameter while they are necessary for
    training. So you can NOT save and continue your training just by
    `save_params()` and `load_params()`. Please use `save_persistables()`
F
fengjiayi 已提交
234 235 236 237 238 239 240 241 242
    and `load_persistables()` instead.

    Args:
        executor(Executor): The executor to run for saving parameters.
        dirname(str): The saving directory path.
        main_program(Program|None): The program whose parameters will be
                                    saved. If it is None, the default
                                    main program will be used automatically.
                                    Default: None
243 244
        filename(str|None): The file to save all parameters. If you prefer
                            to save parameters in differnet files, set it
F
fengjiayi 已提交
245 246 247 248 249 250 251 252 253 254 255 256
                            to None.
                            Default: None

    Returns:
        None

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
257
            fluid.io.save_params(executor=exe, dirname=param_path,
F
fengjiayi 已提交
258
                                 main_program=None)
259 260 261 262
    """
    save_vars(
        executor,
        dirname=dirname,
263
        main_program=main_program,
264
        vars=None,
265
        predicate=is_parameter,
266
        filename=filename)
267 268


269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
def _save_distributed_persistables(executor, dirname, main_program):
    """
    save_persistables for distributed training.
    the method will do things listed below:
    1.save part of persistable variables on trainer.
    2.receive "remote prefetch variables" from parameter servers and merge them.
    3.save "distributed lookup table" on parameter servers.
    4.receive "optimizer variables" from parameter servers and merge them.

    Args:
        executor(Executor): The executor to run for saving parameters.
        dirname(str): The saving directory path.
        main_program(Program): The program whose parameters will be
                            saved. the main_program must be the trainer_program
                            get after transpiler.

    Returns:
        None

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            t = distribute_transpiler.DistributeTranspiler()
            t.transpile(...)
            train_program = t.get_trainer_program()
            _save_distributed_persistables(executor=exe, dirname=param_path, main_program=train_program)
    """

    def __save_remote_params(executor, dirname, remote_params_map):
        """
        recive params on pserver through rpc.
        if the params are be sliced, will concat them to one, then save it.
        """
        if not remote_params_map:
            return

        prog = Program()
        block = prog.global_block()

        # recv optimize vars from pserver
        for name, remote_params in remote_params_map.items():
            origin_var = None
            is_slice = False
            slice_vars = [0] * len(remote_params)
            slice_var_names = [""] * len(remote_params)
            endpoints = [""] * len(remote_params)

            for idx, optimizer in enumerate(remote_params):
                origin = optimizer.origin
                slice = optimizer.slice
                is_slice = optimizer.is_slice
                block_id = optimizer.block_id
                endpoint = optimizer.endpoint

                if idx == 0:
                    origin_var = block.create_var(
                        name=origin.name,
                        type=origin.type,
                        shape=origin.shape,
                        dtype=origin.dtype,
                        persistable=True)

                slice_var = block.create_var(
                    name="{}.slice.{}".format(slice.name, idx),
                    type=slice.type,
                    shape=slice.shape,
                    dtype=slice.dtype,
                    persistable=True)

                index = block_id if is_slice else idx
                slice_vars[index] = slice_var
                slice_var_names[index] = slice.name
                endpoints[index] = endpoint

            if is_slice:
                block.append_op(
                    type='recv',
                    inputs={"X": []},
                    outputs={"Out": slice_vars},
                    attrs={
                        "epmap": endpoints,
                        "with_barrier": False,
                        "varnames": slice_var_names,
                        "sync_mode": True
                    })
                block.append_op(
                    type='concat',
                    inputs={'X': slice_vars},
                    outputs={'Out': origin_var},
                    attrs={})
            else:
                block.append_op(
                    type='recv',
                    inputs={"X": []},
                    outputs={"Out": [origin_var]},
                    attrs={
                        "epmap": endpoints[:1],
                        "with_barrier": False,
                        "varnames": slice_var_names,
                        "sync_mode": True
                    })
            block.append_op(
                type='save',
                inputs={'X': [origin_var]},
                outputs={},
                attrs={'file_path': os.path.join(dirname, origin_var.name)})
            block.append_op(type='delete_var', inputs={'X': slice_vars})
        executor.run(prog)

    def __save_distributed_lookup_tables(executor, dirname,
                                         distributed_lookup_table, endpoints):
        """
        because the distributed lookup table may too huge to merge and save at one place,
        it will be saved at parameter server independent respectively.

        the save directory is dirname/"__lookup_table__".

        """
        prog = Program()
        block = prog.global_block()

        # if there is lookup table, the trainer 0 will notify all pserver to save.
        lookup_table_filename = os.path.join(dirname, "__lookup_table__")
        attrs = {}
        attrs['epmap'] = endpoints
        attrs['dir'] = lookup_table_filename
        attrs['lookup_table'] = distributed_lookup_table
        block.append_op(
            type='checkpoint_notify', inputs={}, outputs={}, attrs=attrs)
        executor.run(prog)

    def __exclude_vars(exclude_var_names=[]):
        def is_valid(var):
            if var.name in exclude_var_names:
                return False
            if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
                        var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
                        var.desc.type() == core.VarDesc.VarType.READER:
                return False
            return var.persistable

        return is_valid

    if not isinstance(main_program, Program):
        raise ValueError("'main_program' should be an instance of Program.")

    if not main_program._is_distributed:
        raise ValueError(
            "'_save_distributed_persistables' just be designed for distributed training."
        )

    remote_params_map = main_program._parameters_on_pservers.get_distributed_vars_by_vtypes(
        ["Optimizer", "RemotePrefetch"], groupby=True)

    exclude_var_names = []
    if remote_params_map:
        exclude_var_names.extend(remote_params_map.keys())

    if main_program._distributed_lookup_table:
        if isinstance(main_program._distributed_lookup_table, list):
            exclude_var_names.extend(main_program._distributed_lookup_table)
        else:
            exclude_var_names.append(main_program._distributed_lookup_table)

    local_vars = list(
        filter(__exclude_vars(exclude_var_names), main_program.list_vars()))
    save_vars(
        executor, main_program=main_program, dirname=dirname, vars=local_vars)

    if main_program._is_chief:
        if remote_params_map:
            __save_remote_params(executor, dirname, remote_params_map)
        if main_program._distributed_lookup_table:
            __save_distributed_lookup_tables(
                executor, dirname, main_program._distributed_lookup_table,
                main_program._endpoints)


449
def save_persistables(executor, dirname, main_program=None, filename=None):
450
    """
451 452
    This function filters out all variables with `persistable==True` from the
    give `main_program` and then saves these variables to the folder `dirname`
F
fengjiayi 已提交
453 454
    or file `filename`.

455 456 457
    The `dirname` is used to specify the folder where persistable variables
    are going to be saved. If you would like to save variables in separate
    files, set `filename` None; if you would like to save all variables in a
F
fengjiayi 已提交
458 459 460 461 462
    single file, use `filename` to specify the file name.

    Args:
        executor(Executor): The executor to run for saving persistable variables.
        dirname(str): The directory path.
463 464
        main_program(Program|None): The program whose persistbale variables will
                                    be saved. If it is None, the default main
F
fengjiayi 已提交
465 466
                                    program will be used automatically.
                                    Default: None
467
        filename(str|None): The file to saved all variables. If you prefer to
F
fengjiayi 已提交
468 469 470 471 472 473 474 475 476 477 478
                            save variables in differnet files, set it to None.
                            Default: None

    Returns:
        None

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
479
            # `prog` can be a program defined by the user
F
fengjiayi 已提交
480
            prog = fluid.default_main_program()
481
            fluid.io.save_persistables(executor=exe, dirname=param_path,
482
                                       main_program=prog)
483
    """
484 485 486 487 488 489 490 491 492 493 494 495 496

    if main_program and main_program._is_distributed:
        _save_distributed_persistables(
            executor, dirname=dirname, main_program=main_program)

    else:
        save_vars(
            executor,
            dirname=dirname,
            main_program=main_program,
            vars=None,
            predicate=is_persistable,
            filename=filename)
497 498


499 500 501 502 503
def load_vars(executor,
              dirname,
              main_program=None,
              vars=None,
              predicate=None,
504
              filename=None):
505
    """
F
fengjiayi 已提交
506 507
    Load variables from the given directory by executor.

508 509 510 511
    There are two ways to specify variables to be loaded: The first way, list
    variables in a list and assign it to the `vars`. The second way, assign the
    `main_program` with an existing program, then all variables in the program
    will be loaded. The first way has a higher priority. In other words if `vars`
F
fengjiayi 已提交
512 513
    are assigned, the `main_program` and the `predicate` will be ignored.

514 515 516
    The `dirname` are used to specify the folder where to load variables.
    If variables were saved in separate files in the folder `dirname`,
    set `filename` None; if all variables were saved in a single file,
F
fengjiayi 已提交
517
    use `filename` to specify it.
518

F
fengjiayi 已提交
519 520 521
    Args:
        executor(Executor): The executor to run for loading variables.
        dirname(str): The directory path.
522 523
        main_program(Program|None): The program whose variables will be loaded.
                                    If it is None, the default main program will
F
fengjiayi 已提交
524 525
                                    be used automatically.
                                    Default: None
526
        vars(list[Variable]|None): The list that contains all variables to load.
F
fengjiayi 已提交
527 528
                                   It has a higher priority than the `main_program`.
                                   Default: None
529 530 531 532
        predicate(function|None): If it is not None, only variables in the
                                  `main_program` that makes predicate(variable)==True
                                  will be loaded. It only works when we are using the
                                  `main_program` to specify variables (In other words
F
fengjiayi 已提交
533 534
                                  `vars` is None).
                                  Default: None
535
        filename(str|None): The file which saved all required variables. If variables
F
fengjiayi 已提交
536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
                            were saved in differnet files, set it to None.
                            Default: None

    Returns:
        None

    Raises:
        TypeError: If `main_program` is not an instance of Program nor None.

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"

            # The first usage: using `main_program` to specify variables
            def name_has_fc(var):
                res = "fc" in var.name
                return res
555

F
fengjiayi 已提交
556 557
            prog = fluid.default_main_program()
            fluid.io.load_vars(executor=exe, dirname=path, main_program=prog,
C
chengduo 已提交
558
                               vars=None, predicate=name_has_fc)
F
fengjiayi 已提交
559 560 561 562 563 564
            # All variables in `main_program` whose name includes "fc" will be loaded.
            # And all the variables are supposed to have been saved in differnet files.


            # The second usage: using `vars` to specify variables
            var_list = [var_a, var_b, var_c]
565
            fluid.io.load_vars(executor=exe, dirname=path, vars=var_list,
F
fengjiayi 已提交
566
                               filename="vars_file")
567
            # var_a, var_b and var_c will be loaded. And they are supposed to haven
F
fengjiayi 已提交
568
            # been saved in the same file named 'var_file' in the path "./my_paddle_model".
569 570
    """
    if vars is None:
571
        if main_program is None:
Y
Yu Yang 已提交
572
            main_program = default_main_program()
573
        if not isinstance(main_program, Program):
574 575 576 577 578
            raise TypeError("program's type should be Program")

        load_vars(
            executor,
            dirname=dirname,
T
tangwei12 已提交
579
            main_program=main_program,
580
            vars=list(filter(predicate, main_program.list_vars())),
581
            filename=filename)
582 583 584
    else:
        load_prog = Program()
        load_block = load_prog.global_block()
585

586 587 588 589 590
        if main_program is None:
            main_program = default_main_program()
        if not isinstance(main_program, Program):
            raise TypeError("program should be as Program type or None")

591
        load_var_map = {}
592 593
        for each_var in vars:
            assert isinstance(each_var, Variable)
T
tangwei12 已提交
594 595
            if each_var.type == core.VarDesc.VarType.RAW:
                continue
596
            new_var = _clone_var_in_block_(load_block, each_var)
597
            if filename is None:
598 599 600 601 602 603 604 605
                load_block.append_op(
                    type='load',
                    inputs={},
                    outputs={'Out': [new_var]},
                    attrs={'file_path': os.path.join(dirname, new_var.name)})
            else:
                load_var_map[new_var.name] = new_var

606
        if filename is not None:
607 608 609 610
            load_var_list = []
            for name in sorted(load_var_map.keys()):
                load_var_list.append(load_var_map[name])

611
            load_block.append_op(
612
                type='load_combine',
613
                inputs={},
614
                outputs={"Out": load_var_list},
615
                attrs={'file_path': os.path.join(dirname, filename)})
616 617 618
        executor.run(load_prog)


619
def load_params(executor, dirname, main_program=None, filename=None):
620
    """
F
fengjiayi 已提交
621
    This function filters out all parameters from the give `main_program`
F
fengjiayi 已提交
622
    and then trys to load these parameters from the folder `dirname` or
F
fengjiayi 已提交
623 624
    the file `filename`.

625 626 627
    Use the `dirname` to specify the folder where parameters were saved. If
    parameters were saved in separate files in the folder `dirname`, set
    `filename` None; if all parameters were saved in a single file, use
F
fengjiayi 已提交
628 629
    `filename` to specify the file name.

630 631 632 633
    NOTICE: Some variables are not Parameter while they are necessary for
    training. So you can NOT save and continue your training just by
    `save_params()` and `load_params()`. Please use `save_persistables()`
    and `load_persistables()` instead.
F
fengjiayi 已提交
634 635 636 637 638 639 640 641

    Args:
        executor(Executor): The executor to run for loading parameters.
        dirname(str): The directory path.
        main_program(Program|None): The program whose parameters will be
                                    loaded. If it is None, the default
                                    main program will be used automatically.
                                    Default: None
642
        filename(str|None): The file which saved all parameters. If parameters
F
fengjiayi 已提交
643 644 645 646 647 648 649 650 651 652 653 654
                            were saved in differnet files, set it to None.
                            Default: None

    Returns:
        None

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
655
            fluid.io.load_params(executor=exe, dirname=param_path,
F
fengjiayi 已提交
656
                                main_program=None)
657 658
    """
    load_vars(
659 660 661
        executor,
        dirname=dirname,
        main_program=main_program,
662
        predicate=is_parameter,
663
        filename=filename)
664 665


666
def load_persistables(executor, dirname, main_program=None, filename=None):
667
    """
668 669
    This function filters out all variables with `persistable==True` from the
    give `main_program` and then trys to load these variables from the folder
F
fengjiayi 已提交
670 671
    `dirname` or the file `filename`.

672 673 674
    Use the `dirname` to specify the folder where persistable variables were
    saved. If variables were saved in separate files, set `filename` None;
    if all variables were saved in a single file, use `filename` to specify
F
fengjiayi 已提交
675 676 677 678 679
    the file name.

    Args:
        executor(Executor): The executor to run for loading persistable variables.
        dirname(str): The directory path.
680 681
        main_program(Program|None): The program whose persistbale variables will
                                    be loaded. If it is None, the default main
F
fengjiayi 已提交
682 683
                                    program will be used automatically.
                                    Default: None
684
        filename(str|None): The file which saved all variables. If variables were
F
fengjiayi 已提交
685 686 687 688 689 690 691 692 693 694 695 696
                            saved in differnet files, set it to None.
                            Default: None

    Returns:
        None

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
697
            fluid.io.load_persistables(executor=exe, dirname=param_path,
F
fengjiayi 已提交
698
                                       main_program=None)
699
    """
700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777

    if main_program and main_program._is_distributed:
        _load_distributed_persistables(
            executor, dirname=dirname, main_program=main_program)
    else:
        load_vars(
            executor,
            dirname=dirname,
            main_program=main_program,
            predicate=is_persistable,
            filename=filename)


def _load_distributed_persistables(executor, dirname, main_program=None):
    """
    customized load_persistables for distributed training.
    it should be used on parameter server,

    Args:
        executor(Executor): The executor to run for saving parameters.
        dirname(str): The load directory path.
        main_program(Program): The program whose parameters will be
                            loaded. the main_program must be the pserver_program
                            get after transpiler.

    Returns:
        None

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            t = distribute_transpiler.DistributeTranspiler()
            t.transpile(...)
            pserver_prog = t.get_pserver_program(...)
            _load_distributed_persistables(executor=exe, dirname=param_path, main_program=pserver_prog)
    """

    def __is_distributed_part_var(varname):
        trainer_idx = varname.find(".trainer_")
        block_idx = varname.find(".block")
        return trainer_idx or block_idx

    def __load_persistable_vars(executor, dirname, need_load_vars):
        load_prog = Program()
        load_block = load_prog.global_block()
        need_delete_vars = []

        for param in need_load_vars:
            origin_var = param.origin
            slice_var = param.slice
            is_slice = param.is_slice
            offset = param.offset

            if is_slice:
                origin = load_block.create_var(
                    name="{}.load".format(origin_var.name),
                    type=origin_var.type,
                    shape=origin_var.shape,
                    dtype=origin_var.dtype,
                    persistable=True)

                load_block.append_op(
                    type='load',
                    inputs={},
                    outputs={'Out': [origin]},
                    attrs={
                        'file_path': os.path.join(dirname, origin_var.name)
                    })

                slice = load_block.create_var(
                    name=slice_var.name,
                    type=slice_var.type,
                    shape=slice_var.shape,
                    dtype=slice_var.dtype,
                    persistable=True)

T
tangwei12 已提交
778 779 780 781
                dim1_flatten = 1
                if len(slice.shape) >= 2:
                    dim1_flatten = reduce(lambda x, y: x * y, slice.shape[1:])

782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830
                start = int(offset / dim1_flatten)
                end = int(offset / dim1_flatten + slice.shape[0])

                load_block.append_op(
                    type="slice",
                    inputs={'Input': origin},
                    outputs={'Out': slice},
                    attrs={'axes': [0],
                           'starts': [start],
                           'ends': [end]})

                need_delete_vars.append(origin)
            else:
                origin = load_block.create_var(
                    name="{}".format(origin_var.name),
                    type=origin_var.type,
                    shape=origin_var.shape,
                    dtype=origin_var.dtype,
                    persistable=True)
                load_block.append_op(
                    type='load',
                    inputs={},
                    outputs={'Out': [origin]},
                    attrs={
                        'file_path': os.path.join(dirname, origin_var.name)
                    })

        load_block.append_op(
            type='delete_var',
            inputs={'X': need_delete_vars}, )

        executor.run(load_prog)

    if not isinstance(main_program, Program):
        raise ValueError("'main_program' should be an instance of Program.")

    if not main_program._is_distributed:
        raise ValueError(
            "'_load_distributed_persistables' just be designed for distributed training."
        )

    if not main_program._ps_endpoint:
        raise ValueError(
            "'_load_distributed_persistables' need current_endpoint set in DistributeTranspiler.transpile"
        )

    need_load_vars = main_program._parameters_on_pservers.get_distributed_vars_by_ep(
        main_program._ps_endpoint)
    __load_persistable_vars(executor, dirname, need_load_vars)
831 832


833 834 835
def prepend_feed_ops(inference_program,
                     feed_target_names,
                     feed_holder_name='feed'):
Q
Qiao Longfei 已提交
836 837 838
    if len(feed_target_names) == 0:
        return

K
Kexin Zhao 已提交
839 840
    global_block = inference_program.global_block()
    feed_var = global_block.create_var(
841 842 843
        name=feed_holder_name,
        type=core.VarDesc.VarType.FEED_MINIBATCH,
        persistable=True)
K
Kexin Zhao 已提交
844

845
    for i, name in enumerate(feed_target_names):
K
fix bug  
Kexin Zhao 已提交
846
        out = global_block.var(name)
W
Wu Yi 已提交
847
        global_block._prepend_op(
K
Kexin Zhao 已提交
848 849
            type='feed',
            inputs={'X': [feed_var]},
K
fix bug  
Kexin Zhao 已提交
850
            outputs={'Out': [out]},
K
Kexin Zhao 已提交
851 852 853
            attrs={'col': i})


854 855 856
def append_fetch_ops(inference_program,
                     fetch_target_names,
                     fetch_holder_name='fetch'):
K
Kexin Zhao 已提交
857 858
    global_block = inference_program.global_block()
    fetch_var = global_block.create_var(
859 860 861
        name=fetch_holder_name,
        type=core.VarDesc.VarType.FETCH_LIST,
        persistable=True)
K
Kexin Zhao 已提交
862

863
    for i, name in enumerate(fetch_target_names):
K
Kexin Zhao 已提交
864 865 866 867 868 869 870
        global_block.append_op(
            type='fetch',
            inputs={'X': [name]},
            outputs={'Out': [fetch_var]},
            attrs={'col': i})


871 872 873 874
def save_inference_model(dirname,
                         feeded_var_names,
                         target_vars,
                         executor,
875
                         main_program=None,
876
                         model_filename=None,
877 878
                         params_filename=None,
                         export_for_deployment=True):
879
    """
F
fengjiayi 已提交
880 881 882 883 884
    Prune the given `main_program` to build a new program especially for inference,
    and then save it and all related parameters to given `dirname` by the `executor`.

    Args:
        dirname(str): The directory path to save the inference model.
885
        feeded_var_names(list[str]): Names of variables that need to be feeded data
F
fengjiayi 已提交
886
                                     during inference.
887
        target_vars(list[Variable]): Variables from which we can get inference
F
fengjiayi 已提交
888 889
                                     results.
        executor(Executor): The executor that saves the inference model.
890 891
        main_program(Program|None): The original program, which will be pruned to
                                    build the inference model. If is setted None,
F
fengjiayi 已提交
892 893
                                    the default main program will be used.
                                    Default: None.
894 895
        model_filename(str|None): The name of file to save the inference program
                                  itself. If is setted None, a default filename
F
fengjiayi 已提交
896
                                  `__model__` will be used.
897 898
        params_filename(str|None): The name of file to save all related parameters.
                                   If it is setted None, parameters will be saved
F
fengjiayi 已提交
899
                                   in separate files .
X
Xin Pan 已提交
900 901 902 903 904
        export_for_deployment(bool): If True, programs are modified to only support
                                     direct inference deployment. Otherwise,
                                     more information will be stored for flexible
                                     optimization and re-training. Currently, only
                                     True is supported.
905

F
fengjiayi 已提交
906
    Returns:
F
flame 已提交
907
        target_var_name_list(list): The fetch variables' name list
F
fengjiayi 已提交
908 909 910 911 912 913 914

    Raises:
        ValueError: If `feed_var_names` is not a list of basestring.
        ValueError: If `target_vars` is not a list of Variable.

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
915

916 917
            import paddle.fluid as fluid

F
fengjiayi 已提交
918 919
            path = "./infer_model"

920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941
            # User defined network, here a softmax regresssion example
            image = fluid.layers.data(name='img', shape=[1, 28, 28], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            feeder = fluid.DataFeeder(feed_list=[image, label], place=fluid.CPUPlace())
            predict = fluid.layers.fc(input=image, size=10, act='softmax')

            loss = fluid.layers.cross_entropy(input=predict, label=label)
            avg_loss = fluid.layers.mean(loss)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            # Feed data and train process

            # Save inference model. Note we don't save label and loss in this example
            fluid.io.save_inference_model(dirname=path,
                                          feeded_var_names=['img'],
                                          target_vars=[predict],
                                          executor=exe)

            # In this example, the function will prune the default main program
            # to make it suitable for infering the `predict` var. The pruned
942
            # inference program is going to be saved in the "./infer_model/__model__"
F
fengjiayi 已提交
943
            # and parameters are going to be saved in separate files under folder
944
            # "./infer_model".
945 946

    """
M
minqiyang 已提交
947
    if isinstance(feeded_var_names, six.string_types):
F
fengjiayi 已提交
948
        feeded_var_names = [feeded_var_names]
X
Xin Pan 已提交
949
    elif export_for_deployment:
Q
Qiao Longfei 已提交
950
        if len(feeded_var_names) > 0:
951
            # TODO(paddle-dev): polish these code blocks
Q
Qiao Longfei 已提交
952
            if not (bool(feeded_var_names) and all(
M
minqiyang 已提交
953
                    isinstance(name, six.string_types)
954
                    for name in feeded_var_names)):
M
minqiyang 已提交
955
                raise ValueError("'feed_var_names' should be a list of str.")
F
fengjiayi 已提交
956 957

    if isinstance(target_vars, Variable):
F
fengjiayi 已提交
958
        target_vars = [target_vars]
X
Xin Pan 已提交
959
    elif export_for_deployment:
960 961
        if not (bool(target_vars) and
                all(isinstance(var, Variable) for var in target_vars)):
F
fengjiayi 已提交
962 963
            raise ValueError("'target_vars' should be a list of Variable.")

964
    if main_program is None:
Y
Yu Yang 已提交
965
        main_program = default_main_program()
D
dzhwinter 已提交
966
        if main_program._is_mem_optimized:
D
dzhwinter 已提交
967 968 969 970 971 972
            warnings.warn(
                "save_inference_model must put before you call memory_optimize. \
                                            the memory_optimize will modify the original program, \
                                            is not suitable for saving inference model \
                                            we save the original program as inference model.",
                RuntimeWarning)
X
Xin Pan 已提交
973

974 975 976 977 978
    # fix the bug that the activation op's output as target will be pruned.
    # will affect the inference performance.
    # TODO(Superjomn) add an IR pass to remove 1-scale op.
    with program_guard(main_program):
        uniq_target_vars = []
F
flame 已提交
979
        for i, var in enumerate(target_vars):
980
            if isinstance(var, Variable):
F
flame 已提交
981 982 983
                var = layers.scale(
                    var, 1., name="save_infer_model/scale_{}".format(i))
            uniq_target_vars.append(var)
984
        target_vars = uniq_target_vars
F
flame 已提交
985
    target_var_name_list = [var.name for var in target_vars]
986

987 988
    # when a pserver and a trainer running on the same machine, mkdir may conflict
    try:
989
        os.makedirs(dirname)
990 991 992 993
    except OSError as e:
        if e.errno != errno.EEXIST:
            raise

X
Xin Pan 已提交
994 995 996 997 998
    if model_filename is not None:
        model_basename = os.path.basename(model_filename)
    else:
        model_basename = "__model__"
    model_basename = os.path.join(dirname, model_basename)
999

X
Xin Pan 已提交
1000 1001 1002 1003
    # When export_for_deployment is true, we modify the program online so that
    # it can only be loaded for inference directly. If it's false, the whole
    # original program and related meta are saved so that future usage can be
    # more flexible.
1004 1005 1006

    origin_program = main_program.clone()

X
Xin Pan 已提交
1007
    if export_for_deployment:
X
Xin Pan 已提交
1008 1009
        main_program = main_program.clone()
        global_block = main_program.global_block()
1010
        need_to_remove_op_index = []
X
Xin Pan 已提交
1011 1012 1013
        for i, op in enumerate(global_block.ops):
            op.desc.set_is_target(False)
            if op.type == "feed" or op.type == "fetch":
1014 1015 1016 1017 1018
                need_to_remove_op_index.append(i)

        for index in need_to_remove_op_index[::-1]:
            global_block._remove_op(index)

X
Xin Pan 已提交
1019
        main_program.desc.flush()
X
Xin Pan 已提交
1020

X
Xin Pan 已提交
1021 1022
        main_program = main_program._prune(targets=target_vars)
        main_program = main_program._inference_optimize(prune_read_op=True)
X
Xin Pan 已提交
1023 1024
        fetch_var_names = [v.name for v in target_vars]

X
Xin Pan 已提交
1025 1026 1027 1028 1029
        prepend_feed_ops(main_program, feeded_var_names)
        append_fetch_ops(main_program, fetch_var_names)

        with open(model_basename, "wb") as f:
            f.write(main_program.desc.serialize_to_string())
X
Xin Pan 已提交
1030 1031 1032
    else:
        # TODO(panyx0718): Save more information so that it can also be used
        # for training and more flexible post-processing.
X
Xin Pan 已提交
1033 1034
        with open(model_basename + ".main_program", "wb") as f:
            f.write(main_program.desc.serialize_to_string())
T
tangwei12 已提交
1035

1036 1037
    main_program._copy_dist_param_info_from(origin_program)

X
fix  
Xin Pan 已提交
1038 1039
    if params_filename is not None:
        params_filename = os.path.basename(params_filename)
1040

X
fix  
Xin Pan 已提交
1041
    save_persistables(executor, dirname, main_program, params_filename)
F
flame 已提交
1042
    return target_var_name_list
X
fix  
Xin Pan 已提交
1043

1044

1045 1046 1047
def load_inference_model(dirname,
                         executor,
                         model_filename=None,
T
tangwei12 已提交
1048 1049
                         params_filename=None,
                         pserver_endpoints=None):
1050 1051 1052
    """
    Load inference model from a directory

F
fengjiayi 已提交
1053 1054 1055 1056
    Args:
        dirname(str): The directory path
        executor(Executor): The executor to run for loading inference model.
        model_filename(str|None): The name of file to load inference program.
1057
                                  If it is None, the default filename
F
fengjiayi 已提交
1058 1059 1060
                                  '__model__' will be used.
                                  Default: None
        params_filename(str|None): The name of file to load all parameters.
1061 1062 1063
                                   It is only used for the case that all
                                   parameters were saved in a single binary
                                   file. If parameters were saved in separate
F
fengjiayi 已提交
1064
                                   files, set it as 'None'.
1065 1066 1067 1068
        pserver_endpoints(list|None): This only need by distributed inference.
                                    When use distributed look up table in training,
                                    We also need it in inference.The parameter is
                                    a list of pserver endpoints.
F
fengjiayi 已提交
1069 1070 1071

    Returns:
        tuple: The return of this function is a tuple with three elements:
1072 1073 1074 1075 1076
        (program, feed_target_names, fetch_targets). The `program` is a
        Program, it's the program for inference. The `feed_target_names` is
        a list of str, it contains Names of variables that need to feed
        data in the inference program. The `fetch_targets` is a list of
        Variable. It contains variables from which we can get inference
F
fengjiayi 已提交
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
        results.

    Raises:
        ValueError: If `dirname` is not a existing directory.

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            path = "./infer_model"
1087
            endpoints = ["127.0.0.1:2023","127.0.0.1:2024"]
1088
            [inference_program, feed_target_names, fetch_targets] =
F
fengjiayi 已提交
1089 1090 1091 1092 1093
                fluid.io.load_inference_model(dirname=path, executor=exe)
            results = exe.run(inference_program,
                          feed={feed_target_names[0]: tensor_img},
                          fetch_list=fetch_targets)

1094 1095 1096
            # if we need lookup table, we will use:
            fluid.io.load_inference_model(dirname=path, executor=exe, pserver_endpoints=endpoints)

1097
            # In this example, the inference program was saved in the
1098 1099 1100 1101
            # "./infer_model/__model__" and parameters were saved in
            # separate files in ""./infer_model".
            # After getting inference program, feed target names and
            # fetch targets, we can use an Executor to run the inference
F
fengjiayi 已提交
1102
            # program to get the inference result.
1103

1104 1105 1106 1107
    """
    if not os.path.isdir(dirname):
        raise ValueError("There is no directory named '%s'", dirname)

1108 1109
    if model_filename is not None:
        model_filename = os.path.basename(model_filename)
1110
    else:
1111 1112 1113 1114 1115
        model_filename = "__model__"
    model_filename = os.path.join(dirname, model_filename)

    if params_filename is not None:
        params_filename = os.path.basename(params_filename)
1116

1117
    with open(model_filename, "rb") as f:
1118 1119
        program_desc_str = f.read()

1120
    program = Program.parse_from_string(program_desc_str)
X
Xin Pan 已提交
1121
    if not core._is_program_version_supported(program._version()):
X
version  
Xin Pan 已提交
1122 1123 1124
        raise ValueError("Unsupported program version: %d\n" %
                         program._version())
    # Binary data also need versioning.
1125
    load_persistables(executor, dirname, program, params_filename)
1126

T
tangwei12 已提交
1127
    if pserver_endpoints:
T
tangwei12 已提交
1128
        program = _endpoints_replacement(program, pserver_endpoints)
T
tangwei12 已提交
1129

1130 1131
    feed_target_names = program.desc.get_feed_target_names()
    fetch_target_names = program.desc.get_fetch_target_names()
1132 1133 1134 1135 1136
    fetch_targets = [
        program.global_block().var(name) for name in fetch_target_names
    ]

    return [program, feed_target_names, fetch_targets]
X
xuwei06 已提交
1137 1138


T
tangwei12 已提交
1139 1140 1141
def _endpoints_replacement(program, endpoints):
    ENDPOINT_MAP = "epmap"
    for op in program.global_block().ops:
T
tangwei12 已提交
1142 1143
        if op.has_attr(ENDPOINT_MAP):
            op.set_attr(ENDPOINT_MAP, endpoints)
T
fix  
tangwei12 已提交
1144
    program._sync_with_cpp()
T
tangwei12 已提交
1145
    return program
T
tangwei12 已提交
1146 1147


X
xuwei06 已提交
1148 1149
def get_parameter_value(para, executor):
    """
F
fengjiayi 已提交
1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
    Get the LoDTensor value of the given parameter.

    Args:
        para(Parameter): The parameter to get value from.
        executor(Executor): The executor to run for retrieving the value.

    Returns:
        numpy.array: The given parameter's values.

    Raises:
        AssertionError: If the `para` is not an instance of Parameter.
X
xuwei06 已提交
1161

F
fengjiayi 已提交
1162 1163
    Examples:
        .. code-block:: python
X
xuwei06 已提交
1164

F
fengjiayi 已提交
1165 1166 1167
            exe = fluid.Executor(fluid.CPUPlace())
            param = fluid.default_main_program().global_block().var('fc.w')
            p = fluid.io.get_parameter_value(param, exe)
1168

X
xuwei06 已提交
1169
    """
X
xuwei06 已提交
1170 1171
    assert is_parameter(para)

X
xuwei06 已提交
1172 1173 1174 1175 1176 1177 1178 1179
    get_program = Program()
    block = get_program.global_block()
    new_var = _clone_var_in_block_(block, para)
    return executor.run(get_program, feed={}, fetch_list=[new_var])[0]


def get_parameter_value_by_name(name, executor, program=None):
    """
F
fengjiayi 已提交
1180
    Get the LoDTensor value of a certain parameter by its name.
X
xuwei06 已提交
1181

F
fengjiayi 已提交
1182 1183 1184 1185 1186 1187 1188
    Args:
        name(str): The parameter's name.
        executor(Executor): The executor to run for retrieving the value.
        program(Program | None): The program where to find the parameter.
                               If it's set to be None, the function will
                               try to find the parameter in the default
                               main program.
X
xuwei06 已提交
1189

F
fengjiayi 已提交
1190 1191
    Returns:
        numpy.array: The parameter's values.
1192

F
fengjiayi 已提交
1193 1194 1195 1196 1197
    Raises:
        TypeError: If given `name` is not an instance of basestring.
        TypeError: If the parameter with the given name doesn't exist.
        AssertionError: If there is a varibale named `name` in the
                        given program but it is not a Parameter.
1198

F
fengjiayi 已提交
1199 1200 1201 1202 1203
    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            p = fluid.io.get_parameter_value('fc.w', exe)
X
xuwei06 已提交
1204 1205
    """
    if program is None:
Y
Yu Yang 已提交
1206
        program = default_main_program()
X
xuwei06 已提交
1207 1208
    var = program.global_block().var(name)
    return get_parameter_value(var, executor)
1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285


def _save_persistable_nodes(executor, dirname, graph):
    """
    Save persistable nodes to the given directory by the executor.

    Args:
        executor(Executor): The executor to run for saving node values.
        dirname(str): The directory path.
        graph(IrGraph): All the required persistable nodes in the graph will be saved.
    """
    persistable_node_names = set()
    persistable_nodes = []
    all_persistable_nodes = graph.all_persistable_nodes()
    for node in all_persistable_nodes:
        name = cpt.to_text(node.name())
        if name not in persistable_node_names:
            persistable_node_names.add(name)
            persistable_nodes.append(node)
    program = Program()
    var_list = []
    for node in persistable_nodes:
        var_desc = node.var()
        if var_desc.type() == core.VarDesc.VarType.RAW or \
                var_desc.type() == core.VarDesc.VarType.READER:
            continue
        var = program.global_block().create_var(
            name=var_desc.name(),
            shape=var_desc.shape(),
            dtype=var_desc.dtype(),
            type=var_desc.type(),
            lod_level=var_desc.lod_level(),
            persistable=var_desc.persistable())
        var_list.append(var)
    save_vars(executor=executor, dirname=dirname, vars=var_list)


def _load_persistable_nodes(executor, dirname, graph):
    """
    Load persistable node values from the given directory by the executor.

    Args:
        executor(Executor): The executor to run for loading node values.
        dirname(str): The directory path.
        graph(IrGraph): All the required persistable nodes in the graph will be loaded.
    """
    persistable_node_names = set()
    persistable_nodes = []
    all_persistable_nodes = graph.all_persistable_nodes()
    for node in all_persistable_nodes:
        name = cpt.to_text(node.name())
        if name not in persistable_node_names:
            persistable_node_names.add(name)
            persistable_nodes.append(node)
    program = Program()
    var_list = []

    def _exist(var):
        return os.path.exists(os.path.join(dirname, var.name))

    for node in persistable_nodes:
        var_desc = node.var()
        if var_desc.type() == core.VarDesc.VarType.RAW or \
                var_desc.type() == core.VarDesc.VarType.READER:
            continue
        var = program.global_block().create_var(
            name=var_desc.name(),
            shape=var_desc.shape(),
            dtype=var_desc.dtype(),
            type=var_desc.type(),
            lod_level=var_desc.lod_level(),
            persistable=var_desc.persistable())
        if _exist(var):
            var_list.append(var)
        else:
            _logger.warn("Cannot find the var %s!!!" % (node.name()))
    load_vars(executor=executor, dirname=dirname, vars=var_list)