You need to sign in or sign up before continuing.
io.py 33.2 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import os
T
bug fix  
tangwei12 已提交
16
import errno
T
tangwei12 已提交
17 18
import time
import shutil
19

20
from paddle.fluid.evaluator import Evaluator
21
from paddle.fluid.framework import Program, Parameter, default_main_program, default_startup_program, Variable
K
fix bug  
Kexin Zhao 已提交
22
from . import core
23 24

__all__ = [
T
tangwei12 已提交
25 26
    'save_vars', 'save_params', 'save_persistables', 'load_vars', 'load_params',
    'load_persistables', 'save_inference_model', 'load_inference_model',
T
tangwei12 已提交
27
    'get_inference_program'
28 29 30 31
]


def is_parameter(var):
F
fengjiayi 已提交
32 33
    """
    Check whether the given variable is an instance of Parameter.
34 35

    Args:
F
fengjiayi 已提交
36
        var(Variable): The variable to be checked.
37 38

    Returns:
F
fengjiayi 已提交
39 40 41 42 43 44 45 46
        bool: True if the given `var` is an instance of Parameter,
        False if not.

    Examples:
        .. code-block:: python

            param = fluid.default_main_program().global_block().var('fc.w')
            res = fluid.io.is_parameter(param)
47
    """
48 49 50 51
    return isinstance(var, Parameter)


def is_persistable(var):
F
fengjiayi 已提交
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
    """
    Check whether the given variable is persistable.

    Args:
        var(Variable): The variable to be checked.

    Returns:
        bool: True if the given `var` is persistable
        False if not.

    Examples:
        .. code-block:: python

            param = fluid.default_main_program().global_block().var('fc.w')
            res = fluid.io.is_persistable(param)
    """
68
    if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
Y
Refine  
Yu Yang 已提交
69
            var.desc.type() == core.VarDesc.VarType.FETCH_LIST:
70
        return False
71 72 73 74 75 76 77 78
    return var.persistable


def _clone_var_in_block_(block, var):
    assert isinstance(var, Variable)
    return block.create_var(
        name=var.name,
        shape=var.shape,
F
fengjiayi 已提交
79
        dtype=var.dtype,
80 81 82 83 84
        type=var.type,
        lod_level=var.lod_level,
        persistable=True)


85 86 87 88 89
def save_vars(executor,
              dirname,
              main_program=None,
              vars=None,
              predicate=None,
90
              filename=None):
91
    """
F
fengjiayi 已提交
92 93 94 95 96 97 98
    Save variables to the given directory by executor.

    There are two ways to specify variables to be saved: The first way, list 
    variables in a list and assign it to the `vars`. The second way, assign the 
    `main_program` with an existing program, then all variables in the program 
    will be saved. The first way has a higher priority. In other words, if `vars` 
    are assigned, the `main_program` and the `predicate` will be ignored.
99

F
fengjiayi 已提交
100 101 102 103
    The `dirname` are used to specify the folder where to save variables. 
    If you prefer to save variables in separate files in the folder `dirname`, 
    set `filename` None; if you prefer to save all variables in a single file, 
    use `filename` to specify it.
104

F
fengjiayi 已提交
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
    Args:
        executor(Executor): The executor to run for saving variables.
        dirname(str): The directory path.
        main_program(Program|None): The program whose variables will be saved. 
                                    If it is None, the default main program will 
                                    be used automatically.
                                    Default: None
        vars(list[Variable]|None): The list that contains all variables to save. 
                                   It has a higher priority than the `main_program`.
                                   Default: None
        predicate(function|None): If it is not None, only variables in the 
                                  `main_program` that makes predicate(variable)==True 
                                  will be saved. It only works when we are using the 
                                  `main_program` to specify variables (In other words 
                                  `vars` is None).
                                  Default: None
        filename(str|None): The file which to save all variables. If you prefer to save 
                            variables separately, set it to None.
                            Default: None

    Returns:
        None

    Raises:
        TypeError: If `main_program` is not an instance of Program nor None.

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"

            # The first usage: using `main_program` to specify variables
            def name_has_fc(var):
                res = "fc" in var.name
                return res

            prog = fluid.default_main_program()
            fluid.io.save_vars(executor=exe, dirname=path, main_program=prog,
                               vars=None)
            # All variables in `main_program` whose name includes "fc" will be saved.
            # And variables are going to be saved separately.


            # The second usage: using `vars` to specify variables
            var_list = [var_a, var_b, var_c]
            fluid.io.save_vars(executor=exe, dirname=path, vars=var_list, 
                               filename="vars_file")
            # var_a, var_b and var_c will be saved. And they are going to be
            # saved in the same file named 'var_file' in the path "./my_paddle_model".
155 156
    """
    if vars is None:
157
        if main_program is None:
Y
Yu Yang 已提交
158
            main_program = default_main_program()
159
        if not isinstance(main_program, Program):
160 161 162 163 164
            raise TypeError("program should be as Program type or None")

        save_vars(
            executor,
            dirname=dirname,
165
            vars=filter(predicate, main_program.list_vars()),
166
            filename=filename)
167 168 169
    else:
        save_program = Program()
        save_block = save_program.global_block()
170 171

        save_var_map = {}
172
        for each_var in vars:
173 174 175
            # NOTE: don't save the variable which type is RAW
            if each_var.type == core.VarDesc.VarType.RAW:
                continue
176
            new_var = _clone_var_in_block_(save_block, each_var)
177
            if filename is None:
178 179 180 181 182 183 184 185
                save_block.append_op(
                    type='save',
                    inputs={'X': [new_var]},
                    outputs={},
                    attrs={'file_path': os.path.join(dirname, new_var.name)})
            else:
                save_var_map[new_var.name] = new_var

186
        if filename is not None:
187 188 189 190
            save_var_list = []
            for name in sorted(save_var_map.keys()):
                save_var_list.append(save_var_map[name])

191
            save_block.append_op(
192 193
                type='save_combine',
                inputs={'X': save_var_list},
194
                outputs={},
195
                attrs={'file_path': os.path.join(dirname, filename)})
196

197 198 199
        executor.run(save_program)


200
def save_params(executor, dirname, main_program=None, filename=None):
201
    """
F
fengjiayi 已提交
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
    This function filters out all parameters from the give `main_program`
    and then save them to the folder `dirname` or the file `filename`.

    Use the `dirname` to specify the saving folder. If you would like to 
    save parameters in separate files, set `filename` None; if you would 
    like to save all parameters in a single file, use `filename` to specify 
    the file name.

    NOTICE: Some variables are not Parameter while they are necessary for 
    training. So you can NOT save and continue your training just by 
    `save_params()` and `load_params()`. Please use `save_persistables()` 
    and `load_persistables()` instead.

    Args:
        executor(Executor): The executor to run for saving parameters.
        dirname(str): The saving directory path.
        main_program(Program|None): The program whose parameters will be
                                    saved. If it is None, the default
                                    main program will be used automatically.
                                    Default: None
        filename(str|None): The file to save all parameters. If you prefer 
                            to save parameters in differnet files, set it 
                            to None.
                            Default: None

    Returns:
        None

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
            fluid.io.save_params(executor=exe, dirname=param_path, 
                                 main_program=None)
238 239 240 241
    """
    save_vars(
        executor,
        dirname=dirname,
242
        main_program=main_program,
243
        vars=None,
244
        predicate=is_parameter,
245
        filename=filename)
246 247


248
def save_persistables(executor, dirname, main_program=None, filename=None):
249
    """
F
fengjiayi 已提交
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
    This function filters out all variables with `persistable==True` from the 
    give `main_program` and then saves these variables to the folder `dirname` 
    or file `filename`.

    The `dirname` is used to specify the folder where persistable variables 
    are going to be saved. If you would like to save variables in separate 
    files, set `filename` None; if you would like to save all variables in a 
    single file, use `filename` to specify the file name.

    Args:
        executor(Executor): The executor to run for saving persistable variables.
        dirname(str): The directory path.
        main_program(Program|None): The program whose persistbale variables will 
                                    be saved. If it is None, the default main 
                                    program will be used automatically.
                                    Default: None
        filename(str|None): The file to saved all variables. If you prefer to 
                            save variables in differnet files, set it to None.
                            Default: None

    Returns:
        None

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
            fluid.io.save_persistables(executor=exe, dirname=param_path, 
                                       main_program=None)
281 282 283 284
    """
    save_vars(
        executor,
        dirname=dirname,
285
        main_program=main_program,
286
        vars=None,
287
        predicate=is_persistable,
288
        filename=filename)
289 290


291 292 293 294 295
def load_vars(executor,
              dirname,
              main_program=None,
              vars=None,
              predicate=None,
296
              filename=None):
297
    """
F
fengjiayi 已提交
298 299 300 301 302 303 304 305 306 307 308 309
    Load variables from the given directory by executor.

    There are two ways to specify variables to be loaded: The first way, list 
    variables in a list and assign it to the `vars`. The second way, assign the 
    `main_program` with an existing program, then all variables in the program 
    will be loaded. The first way has a higher priority. In other words if `vars` 
    are assigned, the `main_program` and the `predicate` will be ignored.

    The `dirname` are used to specify the folder where to load variables. 
    If variables were saved in separate files in the folder `dirname`, 
    set `filename` None; if all variables were saved in a single file, 
    use `filename` to specify it.
310

F
fengjiayi 已提交
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
    Args:
        executor(Executor): The executor to run for loading variables.
        dirname(str): The directory path.
        main_program(Program|None): The program whose variables will be loaded. 
                                    If it is None, the default main program will 
                                    be used automatically.
                                    Default: None
        vars(list[Variable]|None): The list that contains all variables to load. 
                                   It has a higher priority than the `main_program`.
                                   Default: None
        predicate(function|None): If it is not None, only variables in the 
                                  `main_program` that makes predicate(variable)==True 
                                  will be loaded. It only works when we are using the 
                                  `main_program` to specify variables (In other words 
                                  `vars` is None).
                                  Default: None
        filename(str|None): The file which saved all required variables. If variables 
                            were saved in differnet files, set it to None.
                            Default: None

    Returns:
        None

    Raises:
        TypeError: If `main_program` is not an instance of Program nor None.

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"

            # The first usage: using `main_program` to specify variables
            def name_has_fc(var):
                res = "fc" in var.name
                return res
347

F
fengjiayi 已提交
348 349 350 351 352 353 354 355 356 357 358 359 360
            prog = fluid.default_main_program()
            fluid.io.load_vars(executor=exe, dirname=path, main_program=prog,
                               vars=None)
            # All variables in `main_program` whose name includes "fc" will be loaded.
            # And all the variables are supposed to have been saved in differnet files.


            # The second usage: using `vars` to specify variables
            var_list = [var_a, var_b, var_c]
            fluid.io.load_vars(executor=exe, dirname=path, vars=var_list, 
                               filename="vars_file")
            # var_a, var_b and var_c will be loaded. And they are supposed to haven 
            # been saved in the same file named 'var_file' in the path "./my_paddle_model".
361 362
    """
    if vars is None:
363
        if main_program is None:
Y
Yu Yang 已提交
364
            main_program = default_main_program()
365
        if not isinstance(main_program, Program):
366 367 368 369 370
            raise TypeError("program's type should be Program")

        load_vars(
            executor,
            dirname=dirname,
371
            vars=filter(predicate, main_program.list_vars()),
372
            filename=filename)
373 374 375
    else:
        load_prog = Program()
        load_block = load_prog.global_block()
376 377

        load_var_map = {}
378 379
        for each_var in vars:
            assert isinstance(each_var, Variable)
T
tangwei12 已提交
380 381
            if each_var.type == core.VarDesc.VarType.RAW:
                continue
382
            new_var = _clone_var_in_block_(load_block, each_var)
383
            if filename is None:
384 385 386 387 388 389 390 391
                load_block.append_op(
                    type='load',
                    inputs={},
                    outputs={'Out': [new_var]},
                    attrs={'file_path': os.path.join(dirname, new_var.name)})
            else:
                load_var_map[new_var.name] = new_var

392
        if filename is not None:
393 394 395 396
            load_var_list = []
            for name in sorted(load_var_map.keys()):
                load_var_list.append(load_var_map[name])

397
            load_block.append_op(
398
                type='load_combine',
399
                inputs={},
400
                outputs={"Out": load_var_list},
401
                attrs={'file_path': os.path.join(dirname, filename)})
402

403 404 405
        executor.run(load_prog)


406
def load_params(executor, dirname, main_program=None, filename=None):
407
    """
F
fengjiayi 已提交
408
    This function filters out all parameters from the give `main_program`
F
fengjiayi 已提交
409
    and then trys to load these parameters from the folder `dirname` or
F
fengjiayi 已提交
410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
    the file `filename`.

    Use the `dirname` to specify the folder where parameters were saved. If 
    parameters were saved in separate files in the folder `dirname`, set 
    `filename` None; if all parameters were saved in a single file, use 
    `filename` to specify the file name.

    NOTICE: Some variables are not Parameter while they are necessary for 
    training. So you can NOT save and continue your training just by 
    `save_params()` and `load_params()`. Please use `save_persistables()` 
    and `load_persistables()` instead. 

    Args:
        executor(Executor): The executor to run for loading parameters.
        dirname(str): The directory path.
        main_program(Program|None): The program whose parameters will be
                                    loaded. If it is None, the default
                                    main program will be used automatically.
                                    Default: None
        filename(str|None): The file which saved all parameters. If parameters 
                            were saved in differnet files, set it to None.
                            Default: None

    Returns:
        None

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
            fluid.io.load_params(executor=exe, dirname=param_path, 
                                main_program=None)
444 445
    """
    load_vars(
446 447 448
        executor,
        dirname=dirname,
        main_program=main_program,
449
        predicate=is_parameter,
450
        filename=filename)
451 452


453
def load_persistables(executor, dirname, main_program=None, filename=None):
454
    """
F
fengjiayi 已提交
455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
    This function filters out all variables with `persistable==True` from the 
    give `main_program` and then trys to load these variables from the folder 
    `dirname` or the file `filename`.

    Use the `dirname` to specify the folder where persistable variables were 
    saved. If variables were saved in separate files, set `filename` None; 
    if all variables were saved in a single file, use `filename` to specify 
    the file name.

    Args:
        executor(Executor): The executor to run for loading persistable variables.
        dirname(str): The directory path.
        main_program(Program|None): The program whose persistbale variables will 
                                    be loaded. If it is None, the default main 
                                    program will be used automatically.
                                    Default: None
        filename(str|None): The file which saved all variables. If variables were 
                            saved in differnet files, set it to None.
                            Default: None

    Returns:
        None

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
            fluid.io.load_persistables(executor=exe, dirname=param_path, 
                                       main_program=None)
486 487
    """
    load_vars(
488 489 490
        executor,
        dirname=dirname,
        main_program=main_program,
491
        predicate=is_persistable,
492
        filename=filename)
493 494


495 496
def get_inference_program(target_vars, main_program=None):
    if main_program is None:
Y
Yu Yang 已提交
497
        main_program = default_main_program()
498 499
    if not isinstance(target_vars, list):
        target_vars = [target_vars]
W
wanghaoshuang 已提交
500 501 502
    vars = []
    for var in target_vars:
        if isinstance(var, Evaluator):
W
wanghaoshuang 已提交
503 504
            vars.extend(var.states)
            vars.extend(var.metrics)
W
wanghaoshuang 已提交
505 506 507
        else:
            vars.append(var)
    pruned_program = main_program.prune(targets=vars)
508 509 510 511
    inference_program = pruned_program.inference_optimize()
    return inference_program


512 513 514
def prepend_feed_ops(inference_program,
                     feed_target_names,
                     feed_holder_name='feed'):
Q
Qiao Longfei 已提交
515 516 517
    if len(feed_target_names) == 0:
        return

K
Kexin Zhao 已提交
518 519
    global_block = inference_program.global_block()
    feed_var = global_block.create_var(
520 521 522
        name=feed_holder_name,
        type=core.VarDesc.VarType.FEED_MINIBATCH,
        persistable=True)
K
Kexin Zhao 已提交
523

524
    for i, name in enumerate(feed_target_names):
K
fix bug  
Kexin Zhao 已提交
525
        out = global_block.var(name)
K
Kexin Zhao 已提交
526 527 528
        global_block.prepend_op(
            type='feed',
            inputs={'X': [feed_var]},
K
fix bug  
Kexin Zhao 已提交
529
            outputs={'Out': [out]},
K
Kexin Zhao 已提交
530 531 532
            attrs={'col': i})


533 534 535
def append_fetch_ops(inference_program,
                     fetch_target_names,
                     fetch_holder_name='fetch'):
K
Kexin Zhao 已提交
536 537
    global_block = inference_program.global_block()
    fetch_var = global_block.create_var(
538 539 540
        name=fetch_holder_name,
        type=core.VarDesc.VarType.FETCH_LIST,
        persistable=True)
K
Kexin Zhao 已提交
541

542
    for i, name in enumerate(fetch_target_names):
K
Kexin Zhao 已提交
543 544 545 546 547 548 549
        global_block.append_op(
            type='fetch',
            inputs={'X': [name]},
            outputs={'Out': [fetch_var]},
            attrs={'col': i})


550 551 552 553
def save_inference_model(dirname,
                         feeded_var_names,
                         target_vars,
                         executor,
554
                         main_program=None,
555 556
                         model_filename=None,
                         params_filename=None):
557
    """
F
fengjiayi 已提交
558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
    Prune the given `main_program` to build a new program especially for inference,
    and then save it and all related parameters to given `dirname` by the `executor`.

    Args:
        dirname(str): The directory path to save the inference model.
        feeded_var_names(list[str]): Names of variables that need to be feeded data 
                                     during inference.
        target_vars(list[Variable]): Variables from which we can get inference 
                                     results.
        executor(Executor): The executor that saves the inference model.
        main_program(Program|None): The original program, which will be pruned to 
                                    build the inference model. If is setted None, 
                                    the default main program will be used.
                                    Default: None.
        model_filename(str|None): The name of file to save the inference program 
                                  itself. If is setted None, a default filename 
                                  `__model__` will be used.
        params_filename(str|None): The name of file to save all related parameters. 
                                   If it is setted None, parameters will be saved 
                                   in separate files .
578

F
fengjiayi 已提交
579 580 581 582 583 584 585 586 587
    Returns:
        None

    Raises:
        ValueError: If `feed_var_names` is not a list of basestring.
        ValueError: If `target_vars` is not a list of Variable.

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
588

F
fengjiayi 已提交
589 590 591 592 593 594 595 596 597 598
            exe = fluid.Executor(fluid.CPUPlace())
            path = "./infer_model"
            fluid.io.save_inference_model(dirname=path, feeded_var_names=['img'],
                         target_vars=[predict_var], executor=exe)

            # In this exsample, the function will prune the default main program 
            # to make it suitable for infering the `predict_var`. The pruned 
            # inference program is going to be saved in the "./infer_model/__model__" 
            # and parameters are going to be saved in separate files under folder
            # "./infer_model". 
599 600

    """
F
fengjiayi 已提交
601 602 603
    if isinstance(feeded_var_names, basestring):
        feeded_var_names = [feeded_var_names]
    else:
Q
Qiao Longfei 已提交
604 605 606 607
        if len(feeded_var_names) > 0:
            if not (bool(feeded_var_names) and all(
                    isinstance(name, basestring) for name in feeded_var_names)):
                raise ValueError("'feed_var_names' should be a list of str.")
F
fengjiayi 已提交
608 609

    if isinstance(target_vars, Variable):
F
fengjiayi 已提交
610
        target_vars = [target_vars]
F
fengjiayi 已提交
611 612 613 614 615
    else:
        if not (bool(target_vars) and all(
                isinstance(var, Variable) for var in target_vars)):
            raise ValueError("'target_vars' should be a list of Variable.")

616
    if main_program is None:
Y
Yu Yang 已提交
617
        main_program = default_main_program()
618
    copy_program = main_program.clone()
619 620 621 622

    if not os.path.isdir(dirname):
        os.makedirs(dirname)

623
    # Clear the is_target information and remove the existed feed and fetch op
624
    global_block = copy_program.global_block()
625 626 627 628
    for i, op in enumerate(global_block.ops):
        op.desc.set_is_target(False)
        if op.type == "feed" or op.type == "fetch":
            global_block.remove_op(i)
629
    copy_program.desc.flush()
630

631
    pruned_program = copy_program.prune(targets=target_vars)
632
    inference_program = pruned_program.inference_optimize()
633 634
    fetch_var_names = [v.name for v in target_vars]

K
Kexin Zhao 已提交
635 636
    prepend_feed_ops(inference_program, feeded_var_names)
    append_fetch_ops(inference_program, fetch_var_names)
637

638 639
    if model_filename is not None:
        model_filename = os.path.basename(model_filename)
640
    else:
641 642
        model_filename = "__model__"
    model_filename = os.path.join(dirname, model_filename)
643

644 645 646 647
    if params_filename is not None:
        params_filename = os.path.basename(params_filename)

    with open(model_filename, "wb") as f:
648
        f.write(inference_program.desc.serialize_to_string())
649

650
    save_persistables(executor, dirname, inference_program, params_filename)
651 652


653 654 655 656
def load_inference_model(dirname,
                         executor,
                         model_filename=None,
                         params_filename=None):
657 658 659
    """
    Load inference model from a directory

F
fengjiayi 已提交
660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
    Args:
        dirname(str): The directory path
        executor(Executor): The executor to run for loading inference model.
        model_filename(str|None): The name of file to load inference program.
                                  If it is None, the default filename 
                                  '__model__' will be used.
                                  Default: None
        params_filename(str|None): The name of file to load all parameters.
                                   It is only used for the case that all 
                                   parameters were saved in a single binary 
                                   file. If parameters were saved in separate 
                                   files, set it as 'None'.

    Returns:
        tuple: The return of this function is a tuple with three elements:
        (program, feed_target_names, fetch_targets). The `program` is a 
        Program, it's the program for inference. The `feed_target_names` is 
        a list of str, it contains Names of variables that need to feed 
        data in the inference program. The `fetch_targets` is a list of 
        Variable. It contains variables from which we can get inference 
        results.

    Raises:
        ValueError: If `dirname` is not a existing directory.

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            path = "./infer_model"
            [inference_program, feed_target_names, fetch_targets] = 
                fluid.io.load_inference_model(dirname=path, executor=exe)
            results = exe.run(inference_program,
                          feed={feed_target_names[0]: tensor_img},
                          fetch_list=fetch_targets)

F
fengjiayi 已提交
696
            # In this exsample, the inference program was saved in the 
F
fengjiayi 已提交
697 698 699 700 701
            # "./infer_model/__model__" and parameters were saved in 
            # separate files in ""./infer_model". 
            # After getting inference program, feed target names and 
            # fetch targets, we can use an Executor to run the inference 
            # program to get the inference result.
702

703 704 705 706
    """
    if not os.path.isdir(dirname):
        raise ValueError("There is no directory named '%s'", dirname)

707 708
    if model_filename is not None:
        model_filename = os.path.basename(model_filename)
709
    else:
710 711 712 713 714
        model_filename = "__model__"
    model_filename = os.path.join(dirname, model_filename)

    if params_filename is not None:
        params_filename = os.path.basename(params_filename)
715

716
    with open(model_filename, "rb") as f:
717 718
        program_desc_str = f.read()

719
    program = Program.parse_from_string(program_desc_str)
720
    load_persistables(executor, dirname, program, params_filename)
721

722 723
    feed_target_names = program.desc.get_feed_target_names()
    fetch_target_names = program.desc.get_fetch_target_names()
724 725 726 727 728
    fetch_targets = [
        program.global_block().var(name) for name in fetch_target_names
    ]

    return [program, feed_target_names, fetch_targets]
X
xuwei06 已提交
729 730 731 732


def get_parameter_value(para, executor):
    """
F
fengjiayi 已提交
733 734 735 736 737 738 739 740 741 742 743
    Get the LoDTensor value of the given parameter.

    Args:
        para(Parameter): The parameter to get value from.
        executor(Executor): The executor to run for retrieving the value.

    Returns:
        numpy.array: The given parameter's values.

    Raises:
        AssertionError: If the `para` is not an instance of Parameter.
X
xuwei06 已提交
744

F
fengjiayi 已提交
745 746
    Examples:
        .. code-block:: python
X
xuwei06 已提交
747

F
fengjiayi 已提交
748 749 750
            exe = fluid.Executor(fluid.CPUPlace())
            param = fluid.default_main_program().global_block().var('fc.w')
            p = fluid.io.get_parameter_value(param, exe)
751

X
xuwei06 已提交
752
    """
X
xuwei06 已提交
753 754
    assert is_parameter(para)

X
xuwei06 已提交
755 756 757 758 759 760 761 762
    get_program = Program()
    block = get_program.global_block()
    new_var = _clone_var_in_block_(block, para)
    return executor.run(get_program, feed={}, fetch_list=[new_var])[0]


def get_parameter_value_by_name(name, executor, program=None):
    """
F
fengjiayi 已提交
763
    Get the LoDTensor value of a certain parameter by its name.
X
xuwei06 已提交
764

F
fengjiayi 已提交
765 766 767 768 769 770 771
    Args:
        name(str): The parameter's name.
        executor(Executor): The executor to run for retrieving the value.
        program(Program | None): The program where to find the parameter.
                               If it's set to be None, the function will
                               try to find the parameter in the default
                               main program.
X
xuwei06 已提交
772

F
fengjiayi 已提交
773 774
    Returns:
        numpy.array: The parameter's values.
775

F
fengjiayi 已提交
776 777 778 779 780
    Raises:
        TypeError: If given `name` is not an instance of basestring.
        TypeError: If the parameter with the given name doesn't exist.
        AssertionError: If there is a varibale named `name` in the
                        given program but it is not a Parameter.
781

F
fengjiayi 已提交
782 783 784 785 786
    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            p = fluid.io.get_parameter_value('fc.w', exe)
X
xuwei06 已提交
787 788
    """
    if program is None:
Y
Yu Yang 已提交
789
        program = default_main_program()
X
xuwei06 已提交
790 791
    var = program.global_block().var(name)
    return get_parameter_value(var, executor)
T
tangwei12 已提交
792 793


794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
def get_test_program(filelist, program=None, startup_program=None):
    """
    Transpile current train program to a program to read test dataset
    if the program is using reader ops like "open_files_op".
    """

    def _copy_reader_var_(block, var, new_name=None):
        if new_name == None:
            new_name = var.name
        new_var = block.create_var(
            name=str(new_name), type=core.VarDesc.VarType.READER)
        new_var.desc.set_shapes(var.desc.shapes())
        new_var.desc.set_dtypes(var.desc.dtypes())
        new_var.persistable = True
        return new_var

F
fengjiayi 已提交
810
    def _get_test_reader_name(train_reader_name):
811 812
        return train_reader_name + "_test"

F
fengjiayi 已提交
813
    def _is_reader_op(op):
814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830
        block = op.block
        if "Out" in op.output_names:
            reader_out = block.vars[op.output("Out")[0]]
            if reader_out.type == core.VarDesc.VarType.READER:
                return True
        return False

    if program == None:
        program = default_main_program()
    if startup_program == None:
        startup_program = default_startup_program()
    startup_block = startup_program.global_block()

    # 1. find out the orignal reader var name
    startup_reader_op_list = []

    for op in startup_block.ops:
F
fengjiayi 已提交
831
        if _is_reader_op(op):
832 833 834 835 836 837 838 839 840 841 842 843 844 845 846
            startup_reader_op_list.append(op)

    if len(startup_reader_op_list) == 0:
        return program

    root_reader_op = startup_reader_op_list[0]
    train_test_reader_map = {}
    # 2. add operators to startup to read open and read test data files
    for op in startup_reader_op_list:
        assert (len(op.output("Out")) == 1)
        train_reader_name = op.output("Out")[0]
        train_reader = startup_block.vars[train_reader_name]
        test_reader = _copy_reader_var_(
            startup_block,
            train_reader,
F
fengjiayi 已提交
847
            new_name=_get_test_reader_name(train_reader_name))
848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877
        train_test_reader_map[train_reader.name] = test_reader

        test_op_inputs = {}
        for name in op.input_names:
            train_arg_names = op.input(name)
            test_arg_vars = []
            for arg_name in train_arg_names:
                arg_var = train_test_reader_map[
                    arg_name] if name == "UnderlyingReader" else startup_block.vars[
                        arg_name]
                test_arg_vars.append(arg_var)
            test_op_inputs[name] = test_arg_vars

        test_op = startup_block.append_op(
            type=op.type,
            inputs=test_op_inputs,
            outputs={'Out': [test_reader]},
            attrs=op.attrs)
        # root reader op's filelist attr for read test files
        if op.type == root_reader_op.type:
            test_op.set_attr("file_names", filelist)
        if op.type == "create_multi_pass_reader":
            test_op.set_attr("pass_num", 1)

    # 3. rename reader vars in inference program to different name
    #    to avoid read from train data.
    main_block = program.global_block()
    for var in main_block.vars.values():
        if var.type == core.VarDesc.VarType.READER:
            main_block.rename_var(
F
fengjiayi 已提交
878
                str(var.name), str(_get_test_reader_name(var.name)))
879 880 881 882 883 884 885 886 887 888 889

    for op in main_block.ops:
        if op.type == root_reader_op.type:
            test_op.set_attr("file_names", filelist)
        if op.type == "create_multi_pass_reader":
            test_op.set_attr("pass_num", 1)

    startup_program.sync_with_cpp()
    program.sync_with_cpp()

    return program