io.py 49.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
import os
T
bug fix  
tangwei12 已提交
18
import errno
D
dzhwinter 已提交
19
import warnings
20
import six
21
import logging
22
from functools import reduce
23

24
from paddle.fluid import layers
X
Xin Pan 已提交
25
from paddle.fluid.executor import Executor
26
from paddle.fluid.evaluator import Evaluator
27
from paddle.fluid.framework import Program, Parameter, default_main_program, default_startup_program, Variable, program_guard
S
sneaxiy 已提交
28 29
from . import reader
from .reader import *
K
fix bug  
Kexin Zhao 已提交
30
from . import core
31
from .. import compat as cpt
32 33

__all__ = [
T
tangwei12 已提交
34
    'save_vars', 'save_params', 'save_persistables', 'load_vars', 'load_params',
35
    'load_persistables', 'save_inference_model', 'load_inference_model'
S
sneaxiy 已提交
36
] + reader.__all__
37

38 39 40 41
logging.basicConfig(format='%(asctime)s-%(levelname)s: %(message)s')
_logger = logging.getLogger(__name__)
_logger.setLevel(logging.INFO)

42 43

def is_parameter(var):
F
fengjiayi 已提交
44 45
    """
    Check whether the given variable is an instance of Parameter.
46 47

    Args:
F
fengjiayi 已提交
48
        var(Variable): The variable to be checked.
49 50

    Returns:
F
fengjiayi 已提交
51 52 53 54 55 56 57 58
        bool: True if the given `var` is an instance of Parameter,
        False if not.

    Examples:
        .. code-block:: python

            param = fluid.default_main_program().global_block().var('fc.w')
            res = fluid.io.is_parameter(param)
59
    """
60 61 62 63
    return isinstance(var, Parameter)


def is_persistable(var):
F
fengjiayi 已提交
64 65 66 67 68 69 70 71 72 73 74 75 76
    """
    Check whether the given variable is persistable.

    Args:
        var(Variable): The variable to be checked.

    Returns:
        bool: True if the given `var` is persistable
        False if not.

    Examples:
        .. code-block:: python

77
            param = fluid.default_main_program().global_block().var('fc.b')
F
fengjiayi 已提交
78 79
            res = fluid.io.is_persistable(param)
    """
80
    if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
Y
yuyang18 已提交
81 82
            var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
            var.desc.type() == core.VarDesc.VarType.READER:
83
        return False
84 85 86 87 88 89 90 91
    return var.persistable


def _clone_var_in_block_(block, var):
    assert isinstance(var, Variable)
    return block.create_var(
        name=var.name,
        shape=var.shape,
F
fengjiayi 已提交
92
        dtype=var.dtype,
93 94 95 96 97
        type=var.type,
        lod_level=var.lod_level,
        persistable=True)


98 99 100 101 102
def save_vars(executor,
              dirname,
              main_program=None,
              vars=None,
              predicate=None,
103
              filename=None):
104
    """
F
fengjiayi 已提交
105 106
    Save variables to the given directory by executor.

107 108 109 110
    There are two ways to specify variables to be saved: The first way, list
    variables in a list and assign it to the `vars`. The second way, assign the
    `main_program` with an existing program, then all variables in the program
    will be saved. The first way has a higher priority. In other words, if `vars`
F
fengjiayi 已提交
111
    are assigned, the `main_program` and the `predicate` will be ignored.
112

113 114 115
    The `dirname` are used to specify the folder where to save variables.
    If you prefer to save variables in separate files in the folder `dirname`,
    set `filename` None; if you prefer to save all variables in a single file,
F
fengjiayi 已提交
116
    use `filename` to specify it.
117

F
fengjiayi 已提交
118 119 120
    Args:
        executor(Executor): The executor to run for saving variables.
        dirname(str): The directory path.
121 122
        main_program(Program|None): The program whose variables will be saved.
                                    If it is None, the default main program will
F
fengjiayi 已提交
123 124
                                    be used automatically.
                                    Default: None
125
        vars(list[Variable]|None): The list that contains all variables to save.
F
fengjiayi 已提交
126 127
                                   It has a higher priority than the `main_program`.
                                   Default: None
128 129 130 131
        predicate(function|None): If it is not None, only variables in the
                                  `main_program` that makes predicate(variable)==True
                                  will be saved. It only works when we are using the
                                  `main_program` to specify variables (In other words
F
fengjiayi 已提交
132 133
                                  `vars` is None).
                                  Default: None
134
        filename(str|None): The file which to save all variables. If you prefer to save
F
fengjiayi 已提交
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
                            variables separately, set it to None.
                            Default: None

    Returns:
        None

    Raises:
        TypeError: If `main_program` is not an instance of Program nor None.

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"

            # The first usage: using `main_program` to specify variables
            def name_has_fc(var):
                res = "fc" in var.name
                return res

            prog = fluid.default_main_program()
            fluid.io.save_vars(executor=exe, dirname=path, main_program=prog,
C
chengduo 已提交
157
                               vars=None, predicate = name_has_fc)
F
fengjiayi 已提交
158 159 160 161 162 163
            # All variables in `main_program` whose name includes "fc" will be saved.
            # And variables are going to be saved separately.


            # The second usage: using `vars` to specify variables
            var_list = [var_a, var_b, var_c]
164
            fluid.io.save_vars(executor=exe, dirname=path, vars=var_list,
F
fengjiayi 已提交
165 166 167
                               filename="vars_file")
            # var_a, var_b and var_c will be saved. And they are going to be
            # saved in the same file named 'var_file' in the path "./my_paddle_model".
168
    """
L
lujun 已提交
169
    save_dirname = os.path.normpath(dirname)
170
    if vars is None:
171
        if main_program is None:
Y
Yu Yang 已提交
172
            main_program = default_main_program()
173
        if not isinstance(main_program, Program):
174 175 176 177
            raise TypeError("program should be as Program type or None")

        save_vars(
            executor,
178
            main_program=main_program,
L
lujun 已提交
179
            dirname=save_dirname,
180
            vars=list(filter(predicate, main_program.list_vars())),
181
            filename=filename)
182 183 184
    else:
        save_program = Program()
        save_block = save_program.global_block()
185

186 187 188 189 190
        if main_program is None:
            main_program = default_main_program()
        if not isinstance(main_program, Program):
            raise TypeError("program should be as Program type or None")

191
        save_var_map = {}
192
        for each_var in vars:
193 194 195
            # NOTE: don't save the variable which type is RAW
            if each_var.type == core.VarDesc.VarType.RAW:
                continue
196
            new_var = _clone_var_in_block_(save_block, each_var)
197
            if filename is None:
198 199 200 201
                save_block.append_op(
                    type='save',
                    inputs={'X': [new_var]},
                    outputs={},
L
lujun 已提交
202 203 204
                    attrs={
                        'file_path': os.path.join(save_dirname, new_var.name)
                    })
205 206 207
            else:
                save_var_map[new_var.name] = new_var

208
        if filename is not None:
209 210 211 212
            save_var_list = []
            for name in sorted(save_var_map.keys()):
                save_var_list.append(save_var_map[name])

213
            save_block.append_op(
214 215
                type='save_combine',
                inputs={'X': save_var_list},
216
                outputs={},
L
lujun 已提交
217
                attrs={'file_path': os.path.join(save_dirname, filename)})
218

219 220 221
        executor.run(save_program)


222
def save_params(executor, dirname, main_program=None, filename=None):
223
    """
F
fengjiayi 已提交
224 225 226
    This function filters out all parameters from the give `main_program`
    and then save them to the folder `dirname` or the file `filename`.

227 228 229
    Use the `dirname` to specify the saving folder. If you would like to
    save parameters in separate files, set `filename` None; if you would
    like to save all parameters in a single file, use `filename` to specify
F
fengjiayi 已提交
230 231
    the file name.

232 233 234
    NOTICE: Some variables are not Parameter while they are necessary for
    training. So you can NOT save and continue your training just by
    `save_params()` and `load_params()`. Please use `save_persistables()`
F
fengjiayi 已提交
235 236 237 238 239 240 241 242 243
    and `load_persistables()` instead.

    Args:
        executor(Executor): The executor to run for saving parameters.
        dirname(str): The saving directory path.
        main_program(Program|None): The program whose parameters will be
                                    saved. If it is None, the default
                                    main program will be used automatically.
                                    Default: None
244 245
        filename(str|None): The file to save all parameters. If you prefer
                            to save parameters in differnet files, set it
F
fengjiayi 已提交
246 247 248 249 250 251 252 253 254 255 256 257
                            to None.
                            Default: None

    Returns:
        None

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
258
            fluid.io.save_params(executor=exe, dirname=param_path,
F
fengjiayi 已提交
259
                                 main_program=None)
260 261 262 263
    """
    save_vars(
        executor,
        dirname=dirname,
264
        main_program=main_program,
265
        vars=None,
266
        predicate=is_parameter,
267
        filename=filename)
268 269


270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
def _save_distributed_persistables(executor, dirname, main_program):
    """
    save_persistables for distributed training.
    the method will do things listed below:
    1.save part of persistable variables on trainer.
    2.receive "remote prefetch variables" from parameter servers and merge them.
    3.save "distributed lookup table" on parameter servers.
    4.receive "optimizer variables" from parameter servers and merge them.

    Args:
        executor(Executor): The executor to run for saving parameters.
        dirname(str): The saving directory path.
        main_program(Program): The program whose parameters will be
                            saved. the main_program must be the trainer_program
                            get after transpiler.

    Returns:
        None

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            t = distribute_transpiler.DistributeTranspiler()
            t.transpile(...)
            train_program = t.get_trainer_program()
            _save_distributed_persistables(executor=exe, dirname=param_path, main_program=train_program)
    """

    def __save_remote_params(executor, dirname, remote_params_map):
        """
        recive params on pserver through rpc.
        if the params are be sliced, will concat them to one, then save it.
        """
        if not remote_params_map:
            return

        prog = Program()
        block = prog.global_block()

        # recv optimize vars from pserver
        for name, remote_params in remote_params_map.items():
            origin_var = None
            is_slice = False
            slice_vars = [0] * len(remote_params)
            slice_var_names = [""] * len(remote_params)
            endpoints = [""] * len(remote_params)

            for idx, optimizer in enumerate(remote_params):
                origin = optimizer.origin
                slice = optimizer.slice
                is_slice = optimizer.is_slice
                block_id = optimizer.block_id
                endpoint = optimizer.endpoint

                if idx == 0:
                    origin_var = block.create_var(
                        name=origin.name,
                        type=origin.type,
                        shape=origin.shape,
                        dtype=origin.dtype,
                        persistable=True)

                slice_var = block.create_var(
                    name="{}.slice.{}".format(slice.name, idx),
                    type=slice.type,
                    shape=slice.shape,
                    dtype=slice.dtype,
                    persistable=True)

                index = block_id if is_slice else idx
                slice_vars[index] = slice_var
                slice_var_names[index] = slice.name
                endpoints[index] = endpoint

            if is_slice:
                block.append_op(
                    type='recv',
                    inputs={"X": []},
                    outputs={"Out": slice_vars},
                    attrs={
                        "epmap": endpoints,
                        "with_barrier": False,
                        "varnames": slice_var_names,
                        "sync_mode": True
                    })
                block.append_op(
                    type='concat',
                    inputs={'X': slice_vars},
                    outputs={'Out': origin_var},
                    attrs={})
            else:
                block.append_op(
                    type='recv',
                    inputs={"X": []},
                    outputs={"Out": [origin_var]},
                    attrs={
                        "epmap": endpoints[:1],
                        "with_barrier": False,
                        "varnames": slice_var_names,
                        "sync_mode": True
                    })
            block.append_op(
                type='save',
                inputs={'X': [origin_var]},
                outputs={},
                attrs={'file_path': os.path.join(dirname, origin_var.name)})
            block.append_op(type='delete_var', inputs={'X': slice_vars})
        executor.run(prog)

    def __save_distributed_lookup_tables(executor, dirname,
                                         distributed_lookup_table, endpoints):
        """
        because the distributed lookup table may too huge to merge and save at one place,
        it will be saved at parameter server independent respectively.

        the save directory is dirname/"__lookup_table__".

        """
        prog = Program()
        block = prog.global_block()

        # if there is lookup table, the trainer 0 will notify all pserver to save.
        lookup_table_filename = os.path.join(dirname, "__lookup_table__")
        attrs = {}
        attrs['epmap'] = endpoints
        attrs['dir'] = lookup_table_filename
        attrs['lookup_table'] = distributed_lookup_table
        block.append_op(
            type='checkpoint_notify', inputs={}, outputs={}, attrs=attrs)
        executor.run(prog)

    def __exclude_vars(exclude_var_names=[]):
        def is_valid(var):
            if var.name in exclude_var_names:
                return False
            if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
                        var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
                        var.desc.type() == core.VarDesc.VarType.READER:
                return False
            return var.persistable

        return is_valid

    if not isinstance(main_program, Program):
        raise ValueError("'main_program' should be an instance of Program.")

    if not main_program._is_distributed:
        raise ValueError(
            "'_save_distributed_persistables' just be designed for distributed training."
        )

    remote_params_map = main_program._parameters_on_pservers.get_distributed_vars_by_vtypes(
        ["Optimizer", "RemotePrefetch"], groupby=True)

    exclude_var_names = []
    if remote_params_map:
        exclude_var_names.extend(remote_params_map.keys())

    if main_program._distributed_lookup_table:
        if isinstance(main_program._distributed_lookup_table, list):
            exclude_var_names.extend(main_program._distributed_lookup_table)
        else:
            exclude_var_names.append(main_program._distributed_lookup_table)

    local_vars = list(
        filter(__exclude_vars(exclude_var_names), main_program.list_vars()))
    save_vars(
        executor, main_program=main_program, dirname=dirname, vars=local_vars)

    if main_program._is_chief:
        if remote_params_map:
            __save_remote_params(executor, dirname, remote_params_map)
        if main_program._distributed_lookup_table:
            __save_distributed_lookup_tables(
                executor, dirname, main_program._distributed_lookup_table,
                main_program._endpoints)


450
def save_persistables(executor, dirname, main_program=None, filename=None):
451
    """
452 453
    This function filters out all variables with `persistable==True` from the
    give `main_program` and then saves these variables to the folder `dirname`
F
fengjiayi 已提交
454 455
    or file `filename`.

456 457 458
    The `dirname` is used to specify the folder where persistable variables
    are going to be saved. If you would like to save variables in separate
    files, set `filename` None; if you would like to save all variables in a
F
fengjiayi 已提交
459 460 461 462 463
    single file, use `filename` to specify the file name.

    Args:
        executor(Executor): The executor to run for saving persistable variables.
        dirname(str): The directory path.
464 465
        main_program(Program|None): The program whose persistbale variables will
                                    be saved. If it is None, the default main
F
fengjiayi 已提交
466 467
                                    program will be used automatically.
                                    Default: None
468
        filename(str|None): The file to saved all variables. If you prefer to
F
fengjiayi 已提交
469 470 471 472 473 474 475 476 477 478 479
                            save variables in differnet files, set it to None.
                            Default: None

    Returns:
        None

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
480
            # `prog` can be a program defined by the user
F
fengjiayi 已提交
481
            prog = fluid.default_main_program()
482
            fluid.io.save_persistables(executor=exe, dirname=param_path,
483
                                       main_program=prog)
484
    """
485 486 487 488 489 490 491 492 493 494 495 496 497

    if main_program and main_program._is_distributed:
        _save_distributed_persistables(
            executor, dirname=dirname, main_program=main_program)

    else:
        save_vars(
            executor,
            dirname=dirname,
            main_program=main_program,
            vars=None,
            predicate=is_persistable,
            filename=filename)
498 499


500 501 502 503 504
def load_vars(executor,
              dirname,
              main_program=None,
              vars=None,
              predicate=None,
505
              filename=None):
506
    """
F
fengjiayi 已提交
507 508
    Load variables from the given directory by executor.

509 510 511 512
    There are two ways to specify variables to be loaded: The first way, list
    variables in a list and assign it to the `vars`. The second way, assign the
    `main_program` with an existing program, then all variables in the program
    will be loaded. The first way has a higher priority. In other words if `vars`
F
fengjiayi 已提交
513 514
    are assigned, the `main_program` and the `predicate` will be ignored.

515 516 517
    The `dirname` are used to specify the folder where to load variables.
    If variables were saved in separate files in the folder `dirname`,
    set `filename` None; if all variables were saved in a single file,
F
fengjiayi 已提交
518
    use `filename` to specify it.
519

F
fengjiayi 已提交
520 521 522
    Args:
        executor(Executor): The executor to run for loading variables.
        dirname(str): The directory path.
523 524
        main_program(Program|None): The program whose variables will be loaded.
                                    If it is None, the default main program will
F
fengjiayi 已提交
525 526
                                    be used automatically.
                                    Default: None
527
        vars(list[Variable]|None): The list that contains all variables to load.
F
fengjiayi 已提交
528 529
                                   It has a higher priority than the `main_program`.
                                   Default: None
530 531 532 533
        predicate(function|None): If it is not None, only variables in the
                                  `main_program` that makes predicate(variable)==True
                                  will be loaded. It only works when we are using the
                                  `main_program` to specify variables (In other words
F
fengjiayi 已提交
534 535
                                  `vars` is None).
                                  Default: None
536
        filename(str|None): The file which saved all required variables. If variables
F
fengjiayi 已提交
537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
                            were saved in differnet files, set it to None.
                            Default: None

    Returns:
        None

    Raises:
        TypeError: If `main_program` is not an instance of Program nor None.

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"

            # The first usage: using `main_program` to specify variables
            def name_has_fc(var):
                res = "fc" in var.name
                return res
556

F
fengjiayi 已提交
557 558
            prog = fluid.default_main_program()
            fluid.io.load_vars(executor=exe, dirname=path, main_program=prog,
C
chengduo 已提交
559
                               vars=None, predicate=name_has_fc)
F
fengjiayi 已提交
560 561 562 563 564 565
            # All variables in `main_program` whose name includes "fc" will be loaded.
            # And all the variables are supposed to have been saved in differnet files.


            # The second usage: using `vars` to specify variables
            var_list = [var_a, var_b, var_c]
566
            fluid.io.load_vars(executor=exe, dirname=path, vars=var_list,
F
fengjiayi 已提交
567
                               filename="vars_file")
568
            # var_a, var_b and var_c will be loaded. And they are supposed to haven
F
fengjiayi 已提交
569
            # been saved in the same file named 'var_file' in the path "./my_paddle_model".
570
    """
L
lujun 已提交
571
    load_dirname = os.path.normpath(dirname)
572
    if vars is None:
573
        if main_program is None:
Y
Yu Yang 已提交
574
            main_program = default_main_program()
575
        if not isinstance(main_program, Program):
576 577 578 579
            raise TypeError("program's type should be Program")

        load_vars(
            executor,
L
lujun 已提交
580
            dirname=load_dirname,
T
tangwei12 已提交
581
            main_program=main_program,
582
            vars=list(filter(predicate, main_program.list_vars())),
583
            filename=filename)
584 585 586
    else:
        load_prog = Program()
        load_block = load_prog.global_block()
587

588 589 590 591 592
        if main_program is None:
            main_program = default_main_program()
        if not isinstance(main_program, Program):
            raise TypeError("program should be as Program type or None")

593
        load_var_map = {}
594 595
        for each_var in vars:
            assert isinstance(each_var, Variable)
T
tangwei12 已提交
596 597
            if each_var.type == core.VarDesc.VarType.RAW:
                continue
598
            new_var = _clone_var_in_block_(load_block, each_var)
599
            if filename is None:
600 601 602 603
                load_block.append_op(
                    type='load',
                    inputs={},
                    outputs={'Out': [new_var]},
L
lujun 已提交
604 605 606
                    attrs={
                        'file_path': os.path.join(load_dirname, new_var.name)
                    })
607 608 609
            else:
                load_var_map[new_var.name] = new_var

610
        if filename is not None:
611 612 613 614
            load_var_list = []
            for name in sorted(load_var_map.keys()):
                load_var_list.append(load_var_map[name])

615
            load_block.append_op(
616
                type='load_combine',
617
                inputs={},
618
                outputs={"Out": load_var_list},
L
lujun 已提交
619
                attrs={'file_path': os.path.join(load_dirname, filename)})
620 621 622
        executor.run(load_prog)


623
def load_params(executor, dirname, main_program=None, filename=None):
624
    """
F
fengjiayi 已提交
625
    This function filters out all parameters from the give `main_program`
F
fengjiayi 已提交
626
    and then trys to load these parameters from the folder `dirname` or
F
fengjiayi 已提交
627 628
    the file `filename`.

629 630 631
    Use the `dirname` to specify the folder where parameters were saved. If
    parameters were saved in separate files in the folder `dirname`, set
    `filename` None; if all parameters were saved in a single file, use
F
fengjiayi 已提交
632 633
    `filename` to specify the file name.

634 635 636 637
    NOTICE: Some variables are not Parameter while they are necessary for
    training. So you can NOT save and continue your training just by
    `save_params()` and `load_params()`. Please use `save_persistables()`
    and `load_persistables()` instead.
F
fengjiayi 已提交
638 639 640 641 642 643 644 645

    Args:
        executor(Executor): The executor to run for loading parameters.
        dirname(str): The directory path.
        main_program(Program|None): The program whose parameters will be
                                    loaded. If it is None, the default
                                    main program will be used automatically.
                                    Default: None
646
        filename(str|None): The file which saved all parameters. If parameters
F
fengjiayi 已提交
647 648 649 650 651 652 653 654 655 656 657 658
                            were saved in differnet files, set it to None.
                            Default: None

    Returns:
        None

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
659
            fluid.io.load_params(executor=exe, dirname=param_path,
F
fengjiayi 已提交
660
                                main_program=None)
661 662
    """
    load_vars(
663 664 665
        executor,
        dirname=dirname,
        main_program=main_program,
666
        predicate=is_parameter,
667
        filename=filename)
668 669


670
def load_persistables(executor, dirname, main_program=None, filename=None):
671
    """
672 673
    This function filters out all variables with `persistable==True` from the
    give `main_program` and then trys to load these variables from the folder
F
fengjiayi 已提交
674 675
    `dirname` or the file `filename`.

676 677 678
    Use the `dirname` to specify the folder where persistable variables were
    saved. If variables were saved in separate files, set `filename` None;
    if all variables were saved in a single file, use `filename` to specify
F
fengjiayi 已提交
679 680 681 682 683
    the file name.

    Args:
        executor(Executor): The executor to run for loading persistable variables.
        dirname(str): The directory path.
684 685
        main_program(Program|None): The program whose persistbale variables will
                                    be loaded. If it is None, the default main
F
fengjiayi 已提交
686 687
                                    program will be used automatically.
                                    Default: None
688
        filename(str|None): The file which saved all variables. If variables were
F
fengjiayi 已提交
689 690 691 692 693 694 695 696 697 698 699 700
                            saved in differnet files, set it to None.
                            Default: None

    Returns:
        None

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
701
            fluid.io.load_persistables(executor=exe, dirname=param_path,
F
fengjiayi 已提交
702
                                       main_program=None)
703
    """
704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781

    if main_program and main_program._is_distributed:
        _load_distributed_persistables(
            executor, dirname=dirname, main_program=main_program)
    else:
        load_vars(
            executor,
            dirname=dirname,
            main_program=main_program,
            predicate=is_persistable,
            filename=filename)


def _load_distributed_persistables(executor, dirname, main_program=None):
    """
    customized load_persistables for distributed training.
    it should be used on parameter server,

    Args:
        executor(Executor): The executor to run for saving parameters.
        dirname(str): The load directory path.
        main_program(Program): The program whose parameters will be
                            loaded. the main_program must be the pserver_program
                            get after transpiler.

    Returns:
        None

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            t = distribute_transpiler.DistributeTranspiler()
            t.transpile(...)
            pserver_prog = t.get_pserver_program(...)
            _load_distributed_persistables(executor=exe, dirname=param_path, main_program=pserver_prog)
    """

    def __is_distributed_part_var(varname):
        trainer_idx = varname.find(".trainer_")
        block_idx = varname.find(".block")
        return trainer_idx or block_idx

    def __load_persistable_vars(executor, dirname, need_load_vars):
        load_prog = Program()
        load_block = load_prog.global_block()
        need_delete_vars = []

        for param in need_load_vars:
            origin_var = param.origin
            slice_var = param.slice
            is_slice = param.is_slice
            offset = param.offset

            if is_slice:
                origin = load_block.create_var(
                    name="{}.load".format(origin_var.name),
                    type=origin_var.type,
                    shape=origin_var.shape,
                    dtype=origin_var.dtype,
                    persistable=True)

                load_block.append_op(
                    type='load',
                    inputs={},
                    outputs={'Out': [origin]},
                    attrs={
                        'file_path': os.path.join(dirname, origin_var.name)
                    })

                slice = load_block.create_var(
                    name=slice_var.name,
                    type=slice_var.type,
                    shape=slice_var.shape,
                    dtype=slice_var.dtype,
                    persistable=True)

T
tangwei12 已提交
782 783 784 785
                dim1_flatten = 1
                if len(slice.shape) >= 2:
                    dim1_flatten = reduce(lambda x, y: x * y, slice.shape[1:])

786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834
                start = int(offset / dim1_flatten)
                end = int(offset / dim1_flatten + slice.shape[0])

                load_block.append_op(
                    type="slice",
                    inputs={'Input': origin},
                    outputs={'Out': slice},
                    attrs={'axes': [0],
                           'starts': [start],
                           'ends': [end]})

                need_delete_vars.append(origin)
            else:
                origin = load_block.create_var(
                    name="{}".format(origin_var.name),
                    type=origin_var.type,
                    shape=origin_var.shape,
                    dtype=origin_var.dtype,
                    persistable=True)
                load_block.append_op(
                    type='load',
                    inputs={},
                    outputs={'Out': [origin]},
                    attrs={
                        'file_path': os.path.join(dirname, origin_var.name)
                    })

        load_block.append_op(
            type='delete_var',
            inputs={'X': need_delete_vars}, )

        executor.run(load_prog)

    if not isinstance(main_program, Program):
        raise ValueError("'main_program' should be an instance of Program.")

    if not main_program._is_distributed:
        raise ValueError(
            "'_load_distributed_persistables' just be designed for distributed training."
        )

    if not main_program._ps_endpoint:
        raise ValueError(
            "'_load_distributed_persistables' need current_endpoint set in DistributeTranspiler.transpile"
        )

    need_load_vars = main_program._parameters_on_pservers.get_distributed_vars_by_ep(
        main_program._ps_endpoint)
    __load_persistable_vars(executor, dirname, need_load_vars)
835 836


837 838 839
def prepend_feed_ops(inference_program,
                     feed_target_names,
                     feed_holder_name='feed'):
Q
Qiao Longfei 已提交
840 841 842
    if len(feed_target_names) == 0:
        return

K
Kexin Zhao 已提交
843 844
    global_block = inference_program.global_block()
    feed_var = global_block.create_var(
845 846 847
        name=feed_holder_name,
        type=core.VarDesc.VarType.FEED_MINIBATCH,
        persistable=True)
K
Kexin Zhao 已提交
848

849
    for i, name in enumerate(feed_target_names):
K
fix bug  
Kexin Zhao 已提交
850
        out = global_block.var(name)
W
Wu Yi 已提交
851
        global_block._prepend_op(
K
Kexin Zhao 已提交
852 853
            type='feed',
            inputs={'X': [feed_var]},
K
fix bug  
Kexin Zhao 已提交
854
            outputs={'Out': [out]},
K
Kexin Zhao 已提交
855 856 857
            attrs={'col': i})


858 859 860
def append_fetch_ops(inference_program,
                     fetch_target_names,
                     fetch_holder_name='fetch'):
K
Kexin Zhao 已提交
861 862
    global_block = inference_program.global_block()
    fetch_var = global_block.create_var(
863 864 865
        name=fetch_holder_name,
        type=core.VarDesc.VarType.FETCH_LIST,
        persistable=True)
K
Kexin Zhao 已提交
866

867
    for i, name in enumerate(fetch_target_names):
K
Kexin Zhao 已提交
868 869 870 871 872 873 874
        global_block.append_op(
            type='fetch',
            inputs={'X': [name]},
            outputs={'Out': [fetch_var]},
            attrs={'col': i})


875 876 877 878
def save_inference_model(dirname,
                         feeded_var_names,
                         target_vars,
                         executor,
879
                         main_program=None,
880
                         model_filename=None,
881 882
                         params_filename=None,
                         export_for_deployment=True):
883
    """
F
fengjiayi 已提交
884 885 886 887 888
    Prune the given `main_program` to build a new program especially for inference,
    and then save it and all related parameters to given `dirname` by the `executor`.

    Args:
        dirname(str): The directory path to save the inference model.
889
        feeded_var_names(list[str]): Names of variables that need to be feeded data
F
fengjiayi 已提交
890
                                     during inference.
891
        target_vars(list[Variable]): Variables from which we can get inference
F
fengjiayi 已提交
892 893
                                     results.
        executor(Executor): The executor that saves the inference model.
894 895
        main_program(Program|None): The original program, which will be pruned to
                                    build the inference model. If is setted None,
F
fengjiayi 已提交
896 897
                                    the default main program will be used.
                                    Default: None.
898 899
        model_filename(str|None): The name of file to save the inference program
                                  itself. If is setted None, a default filename
F
fengjiayi 已提交
900
                                  `__model__` will be used.
901 902
        params_filename(str|None): The name of file to save all related parameters.
                                   If it is setted None, parameters will be saved
F
fengjiayi 已提交
903
                                   in separate files .
X
Xin Pan 已提交
904 905 906 907 908
        export_for_deployment(bool): If True, programs are modified to only support
                                     direct inference deployment. Otherwise,
                                     more information will be stored for flexible
                                     optimization and re-training. Currently, only
                                     True is supported.
909

F
fengjiayi 已提交
910
    Returns:
F
flame 已提交
911
        target_var_name_list(list): The fetch variables' name list
F
fengjiayi 已提交
912 913 914 915 916 917 918

    Raises:
        ValueError: If `feed_var_names` is not a list of basestring.
        ValueError: If `target_vars` is not a list of Variable.

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
919

920 921
            import paddle.fluid as fluid

F
fengjiayi 已提交
922 923
            path = "./infer_model"

924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945
            # User defined network, here a softmax regresssion example
            image = fluid.layers.data(name='img', shape=[1, 28, 28], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            feeder = fluid.DataFeeder(feed_list=[image, label], place=fluid.CPUPlace())
            predict = fluid.layers.fc(input=image, size=10, act='softmax')

            loss = fluid.layers.cross_entropy(input=predict, label=label)
            avg_loss = fluid.layers.mean(loss)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            # Feed data and train process

            # Save inference model. Note we don't save label and loss in this example
            fluid.io.save_inference_model(dirname=path,
                                          feeded_var_names=['img'],
                                          target_vars=[predict],
                                          executor=exe)

            # In this example, the function will prune the default main program
            # to make it suitable for infering the `predict` var. The pruned
946
            # inference program is going to be saved in the "./infer_model/__model__"
F
fengjiayi 已提交
947
            # and parameters are going to be saved in separate files under folder
948
            # "./infer_model".
949 950

    """
M
minqiyang 已提交
951
    if isinstance(feeded_var_names, six.string_types):
F
fengjiayi 已提交
952
        feeded_var_names = [feeded_var_names]
X
Xin Pan 已提交
953
    elif export_for_deployment:
Q
Qiao Longfei 已提交
954
        if len(feeded_var_names) > 0:
955
            # TODO(paddle-dev): polish these code blocks
Q
Qiao Longfei 已提交
956
            if not (bool(feeded_var_names) and all(
M
minqiyang 已提交
957
                    isinstance(name, six.string_types)
958
                    for name in feeded_var_names)):
M
minqiyang 已提交
959
                raise ValueError("'feed_var_names' should be a list of str.")
F
fengjiayi 已提交
960 961

    if isinstance(target_vars, Variable):
F
fengjiayi 已提交
962
        target_vars = [target_vars]
X
Xin Pan 已提交
963
    elif export_for_deployment:
964 965
        if not (bool(target_vars) and
                all(isinstance(var, Variable) for var in target_vars)):
F
fengjiayi 已提交
966 967
            raise ValueError("'target_vars' should be a list of Variable.")

968
    if main_program is None:
Y
Yu Yang 已提交
969
        main_program = default_main_program()
D
dzhwinter 已提交
970
        if main_program._is_mem_optimized:
D
dzhwinter 已提交
971 972 973 974 975 976
            warnings.warn(
                "save_inference_model must put before you call memory_optimize. \
                                            the memory_optimize will modify the original program, \
                                            is not suitable for saving inference model \
                                            we save the original program as inference model.",
                RuntimeWarning)
X
Xin Pan 已提交
977

978 979 980 981 982
    # fix the bug that the activation op's output as target will be pruned.
    # will affect the inference performance.
    # TODO(Superjomn) add an IR pass to remove 1-scale op.
    with program_guard(main_program):
        uniq_target_vars = []
F
flame 已提交
983
        for i, var in enumerate(target_vars):
984
            if isinstance(var, Variable):
F
flame 已提交
985 986 987
                var = layers.scale(
                    var, 1., name="save_infer_model/scale_{}".format(i))
            uniq_target_vars.append(var)
988
        target_vars = uniq_target_vars
F
flame 已提交
989
    target_var_name_list = [var.name for var in target_vars]
990

991
    # when a pserver and a trainer running on the same machine, mkdir may conflict
L
lujun 已提交
992
    save_dirname = dirname
993
    try:
L
lujun 已提交
994 995
        save_dirname = os.path.normpath(dirname)
        os.makedirs(save_dirname)
996 997 998 999
    except OSError as e:
        if e.errno != errno.EEXIST:
            raise

X
Xin Pan 已提交
1000 1001 1002 1003
    if model_filename is not None:
        model_basename = os.path.basename(model_filename)
    else:
        model_basename = "__model__"
L
lujun 已提交
1004
    model_basename = os.path.join(save_dirname, model_basename)
1005

X
Xin Pan 已提交
1006 1007 1008 1009
    # When export_for_deployment is true, we modify the program online so that
    # it can only be loaded for inference directly. If it's false, the whole
    # original program and related meta are saved so that future usage can be
    # more flexible.
1010 1011 1012

    origin_program = main_program.clone()

X
Xin Pan 已提交
1013
    if export_for_deployment:
X
Xin Pan 已提交
1014 1015
        main_program = main_program.clone()
        global_block = main_program.global_block()
1016
        need_to_remove_op_index = []
X
Xin Pan 已提交
1017 1018 1019
        for i, op in enumerate(global_block.ops):
            op.desc.set_is_target(False)
            if op.type == "feed" or op.type == "fetch":
1020 1021 1022 1023 1024
                need_to_remove_op_index.append(i)

        for index in need_to_remove_op_index[::-1]:
            global_block._remove_op(index)

X
Xin Pan 已提交
1025
        main_program.desc.flush()
X
Xin Pan 已提交
1026

X
Xin Pan 已提交
1027 1028
        main_program = main_program._prune(targets=target_vars)
        main_program = main_program._inference_optimize(prune_read_op=True)
X
Xin Pan 已提交
1029 1030
        fetch_var_names = [v.name for v in target_vars]

X
Xin Pan 已提交
1031 1032 1033 1034 1035
        prepend_feed_ops(main_program, feeded_var_names)
        append_fetch_ops(main_program, fetch_var_names)

        with open(model_basename, "wb") as f:
            f.write(main_program.desc.serialize_to_string())
X
Xin Pan 已提交
1036 1037 1038
    else:
        # TODO(panyx0718): Save more information so that it can also be used
        # for training and more flexible post-processing.
X
Xin Pan 已提交
1039 1040
        with open(model_basename + ".main_program", "wb") as f:
            f.write(main_program.desc.serialize_to_string())
T
tangwei12 已提交
1041

1042 1043
    main_program._copy_dist_param_info_from(origin_program)

X
fix  
Xin Pan 已提交
1044 1045
    if params_filename is not None:
        params_filename = os.path.basename(params_filename)
1046

L
lujun 已提交
1047
    save_persistables(executor, save_dirname, main_program, params_filename)
F
flame 已提交
1048
    return target_var_name_list
X
fix  
Xin Pan 已提交
1049

1050

1051 1052 1053
def load_inference_model(dirname,
                         executor,
                         model_filename=None,
T
tangwei12 已提交
1054 1055
                         params_filename=None,
                         pserver_endpoints=None):
1056 1057 1058
    """
    Load inference model from a directory

F
fengjiayi 已提交
1059 1060 1061 1062
    Args:
        dirname(str): The directory path
        executor(Executor): The executor to run for loading inference model.
        model_filename(str|None): The name of file to load inference program.
1063
                                  If it is None, the default filename
F
fengjiayi 已提交
1064 1065 1066
                                  '__model__' will be used.
                                  Default: None
        params_filename(str|None): The name of file to load all parameters.
1067 1068 1069
                                   It is only used for the case that all
                                   parameters were saved in a single binary
                                   file. If parameters were saved in separate
F
fengjiayi 已提交
1070
                                   files, set it as 'None'.
1071 1072 1073 1074
        pserver_endpoints(list|None): This only need by distributed inference.
                                    When use distributed look up table in training,
                                    We also need it in inference.The parameter is
                                    a list of pserver endpoints.
F
fengjiayi 已提交
1075 1076 1077

    Returns:
        tuple: The return of this function is a tuple with three elements:
1078 1079 1080 1081 1082
        (program, feed_target_names, fetch_targets). The `program` is a
        Program, it's the program for inference. The `feed_target_names` is
        a list of str, it contains Names of variables that need to feed
        data in the inference program. The `fetch_targets` is a list of
        Variable. It contains variables from which we can get inference
F
fengjiayi 已提交
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
        results.

    Raises:
        ValueError: If `dirname` is not a existing directory.

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            path = "./infer_model"
1093
            endpoints = ["127.0.0.1:2023","127.0.0.1:2024"]
1094
            [inference_program, feed_target_names, fetch_targets] =
F
fengjiayi 已提交
1095 1096 1097 1098 1099
                fluid.io.load_inference_model(dirname=path, executor=exe)
            results = exe.run(inference_program,
                          feed={feed_target_names[0]: tensor_img},
                          fetch_list=fetch_targets)

1100 1101 1102
            # if we need lookup table, we will use:
            fluid.io.load_inference_model(dirname=path, executor=exe, pserver_endpoints=endpoints)

1103
            # In this example, the inference program was saved in the
1104 1105 1106 1107
            # "./infer_model/__model__" and parameters were saved in
            # separate files in ""./infer_model".
            # After getting inference program, feed target names and
            # fetch targets, we can use an Executor to run the inference
F
fengjiayi 已提交
1108
            # program to get the inference result.
1109

1110
    """
L
lujun 已提交
1111 1112
    load_dirname = os.path.normpath(dirname)
    if not os.path.isdir(load_dirname):
1113 1114
        raise ValueError("There is no directory named '%s'", dirname)

1115 1116
    if model_filename is not None:
        model_filename = os.path.basename(model_filename)
1117
    else:
1118
        model_filename = "__model__"
L
lujun 已提交
1119
    model_filename = os.path.join(load_dirname, model_filename)
1120 1121 1122

    if params_filename is not None:
        params_filename = os.path.basename(params_filename)
1123

1124
    with open(model_filename, "rb") as f:
1125 1126
        program_desc_str = f.read()

1127
    program = Program.parse_from_string(program_desc_str)
X
Xin Pan 已提交
1128
    if not core._is_program_version_supported(program._version()):
X
version  
Xin Pan 已提交
1129 1130 1131
        raise ValueError("Unsupported program version: %d\n" %
                         program._version())
    # Binary data also need versioning.
L
lujun 已提交
1132
    load_persistables(executor, load_dirname, program, params_filename)
1133

T
tangwei12 已提交
1134
    if pserver_endpoints:
T
tangwei12 已提交
1135
        program = _endpoints_replacement(program, pserver_endpoints)
T
tangwei12 已提交
1136

1137 1138
    feed_target_names = program.desc.get_feed_target_names()
    fetch_target_names = program.desc.get_fetch_target_names()
1139 1140 1141 1142 1143
    fetch_targets = [
        program.global_block().var(name) for name in fetch_target_names
    ]

    return [program, feed_target_names, fetch_targets]
X
xuwei06 已提交
1144 1145


T
tangwei12 已提交
1146 1147 1148
def _endpoints_replacement(program, endpoints):
    ENDPOINT_MAP = "epmap"
    for op in program.global_block().ops:
T
tangwei12 已提交
1149 1150
        if op.has_attr(ENDPOINT_MAP):
            op.set_attr(ENDPOINT_MAP, endpoints)
T
fix  
tangwei12 已提交
1151
    program._sync_with_cpp()
T
tangwei12 已提交
1152
    return program
T
tangwei12 已提交
1153 1154


X
xuwei06 已提交
1155 1156
def get_parameter_value(para, executor):
    """
F
fengjiayi 已提交
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
    Get the LoDTensor value of the given parameter.

    Args:
        para(Parameter): The parameter to get value from.
        executor(Executor): The executor to run for retrieving the value.

    Returns:
        numpy.array: The given parameter's values.

    Raises:
        AssertionError: If the `para` is not an instance of Parameter.
X
xuwei06 已提交
1168

F
fengjiayi 已提交
1169 1170
    Examples:
        .. code-block:: python
X
xuwei06 已提交
1171

F
fengjiayi 已提交
1172 1173 1174
            exe = fluid.Executor(fluid.CPUPlace())
            param = fluid.default_main_program().global_block().var('fc.w')
            p = fluid.io.get_parameter_value(param, exe)
1175

X
xuwei06 已提交
1176
    """
X
xuwei06 已提交
1177 1178
    assert is_parameter(para)

X
xuwei06 已提交
1179 1180 1181 1182 1183 1184 1185 1186
    get_program = Program()
    block = get_program.global_block()
    new_var = _clone_var_in_block_(block, para)
    return executor.run(get_program, feed={}, fetch_list=[new_var])[0]


def get_parameter_value_by_name(name, executor, program=None):
    """
F
fengjiayi 已提交
1187
    Get the LoDTensor value of a certain parameter by its name.
X
xuwei06 已提交
1188

F
fengjiayi 已提交
1189 1190 1191 1192 1193 1194 1195
    Args:
        name(str): The parameter's name.
        executor(Executor): The executor to run for retrieving the value.
        program(Program | None): The program where to find the parameter.
                               If it's set to be None, the function will
                               try to find the parameter in the default
                               main program.
X
xuwei06 已提交
1196

F
fengjiayi 已提交
1197 1198
    Returns:
        numpy.array: The parameter's values.
1199

F
fengjiayi 已提交
1200 1201 1202 1203 1204
    Raises:
        TypeError: If given `name` is not an instance of basestring.
        TypeError: If the parameter with the given name doesn't exist.
        AssertionError: If there is a varibale named `name` in the
                        given program but it is not a Parameter.
1205

F
fengjiayi 已提交
1206 1207 1208 1209 1210
    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            p = fluid.io.get_parameter_value('fc.w', exe)
X
xuwei06 已提交
1211 1212
    """
    if program is None:
Y
Yu Yang 已提交
1213
        program = default_main_program()
X
xuwei06 已提交
1214 1215
    var = program.global_block().var(name)
    return get_parameter_value(var, executor)
1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292


def _save_persistable_nodes(executor, dirname, graph):
    """
    Save persistable nodes to the given directory by the executor.

    Args:
        executor(Executor): The executor to run for saving node values.
        dirname(str): The directory path.
        graph(IrGraph): All the required persistable nodes in the graph will be saved.
    """
    persistable_node_names = set()
    persistable_nodes = []
    all_persistable_nodes = graph.all_persistable_nodes()
    for node in all_persistable_nodes:
        name = cpt.to_text(node.name())
        if name not in persistable_node_names:
            persistable_node_names.add(name)
            persistable_nodes.append(node)
    program = Program()
    var_list = []
    for node in persistable_nodes:
        var_desc = node.var()
        if var_desc.type() == core.VarDesc.VarType.RAW or \
                var_desc.type() == core.VarDesc.VarType.READER:
            continue
        var = program.global_block().create_var(
            name=var_desc.name(),
            shape=var_desc.shape(),
            dtype=var_desc.dtype(),
            type=var_desc.type(),
            lod_level=var_desc.lod_level(),
            persistable=var_desc.persistable())
        var_list.append(var)
    save_vars(executor=executor, dirname=dirname, vars=var_list)


def _load_persistable_nodes(executor, dirname, graph):
    """
    Load persistable node values from the given directory by the executor.

    Args:
        executor(Executor): The executor to run for loading node values.
        dirname(str): The directory path.
        graph(IrGraph): All the required persistable nodes in the graph will be loaded.
    """
    persistable_node_names = set()
    persistable_nodes = []
    all_persistable_nodes = graph.all_persistable_nodes()
    for node in all_persistable_nodes:
        name = cpt.to_text(node.name())
        if name not in persistable_node_names:
            persistable_node_names.add(name)
            persistable_nodes.append(node)
    program = Program()
    var_list = []

    def _exist(var):
        return os.path.exists(os.path.join(dirname, var.name))

    for node in persistable_nodes:
        var_desc = node.var()
        if var_desc.type() == core.VarDesc.VarType.RAW or \
                var_desc.type() == core.VarDesc.VarType.READER:
            continue
        var = program.global_block().create_var(
            name=var_desc.name(),
            shape=var_desc.shape(),
            dtype=var_desc.dtype(),
            type=var_desc.type(),
            lod_level=var_desc.lod_level(),
            persistable=var_desc.persistable())
        if _exist(var):
            var_list.append(var)
        else:
            _logger.warn("Cannot find the var %s!!!" % (node.name()))
    load_vars(executor=executor, dirname=dirname, vars=var_list)