dist_context.py 43.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License

import copy
from collections import defaultdict
from paddle.fluid import framework
18
from paddle.fluid.framework import set_flags
19
from paddle.fluid import core
20
from paddle.distributed.passes import PassContext
21 22 23
from .dist_tensor import DistributedTensor
from .dist_op import DistributedOperator
from .process_mesh import ProcessMesh
24
from .utils import is_loss_grad_op
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

# There always exists a default context for user. And user can set it to another one.
_g_default_distributed_context = None


def get_default_distributed_context():
    global _g_default_distributed_context
    if _g_default_distributed_context is None:
        dist_context = DistributedContext()
        set_default_distributed_context(dist_context)
    return _g_default_distributed_context


def set_default_distributed_context(dist_context):
    global _g_default_distributed_context
    _g_default_distributed_context = dist_context


43 44 45 46
def _node_id(node):
    return (node.node.graph_id(), node.node.id())


47 48 49 50 51 52
class DistributedContext:
    """
    DistributedContext is used to collect related distributed information for program and graph.
    One auto-parallel run should use its own DistributedContext to avoid interfering other run.
    """

53 54 55
    def __init__(self,
                 serial_main_prog=None,
                 serial_startup_prog=None,
56
                 serial_optimizer=None,
57
                 serial_loss=None,
58 59 60
                 feed_vars={},
                 fetch_vars={},
                 cluster=None,
61 62 63 64
                 strategy=None):
        # Data members related to original programs (unchanged)
        self._original_serial_main_program = serial_main_prog
        self._original_serial_startup_program = serial_startup_prog
65
        self._original_serial_optimizer = serial_optimizer
66
        self._original_serial_loss = serial_loss
67 68
        self._original_serial_feed_vars = feed_vars
        self._original_serial_fetch_vars = fetch_vars
69 70 71 72

        # Data members related to programs (changed)
        self._serial_main_program = None
        self._serial_startup_program = None
73 74 75 76
        self._serial_loss = None
        self._serial_optimizer = None
        self._serial_feed_vars = {}
        self._serial_fetch_vars = {}
77
        self._lr_optimizer = None  # record the optimzier holding lr_scheduler
78 79

        # Data members related to the program
80 81
        self._dist_tensors_for_program = {}
        self._dist_ops_for_program = {}
82 83

        # Data members related to the graph
84
        self._serial_graph = None
85 86
        self._dist_tensors_for_graph = {}
        self._dist_ops_for_graph = {}
87 88
        self._node_id_to_tensor_id = {}
        self._node_id_to_op_id = {}
89

90
        # Data members related to the distributed programs
91
        # Distributed programs
92 93
        self._dist_main_programs = {}
        self._dist_startup_programs = {}
94 95
        self._dist_op_context = DistributedOperatorContext()
        self._process_meshes = []
96

97
        self._cluster = cluster
98 99 100 101
        self._strategy = strategy

        # Pass Context
        self._pass_context = PassContext()
102
        self._block_state = BlockState()
103 104 105 106 107 108 109 110

        # Other data members
        self._serial_ordered_tensor_nodes = []
        self._serial_ordered_op_nodes = []
        self._serial_ordered_nodes = []
        # self._tensor_id_to_tensor_node_ids = {}

        self._is_initialized = False
111
        #TODO: need a better way to remove the following flag
112 113 114 115 116 117 118
        self._need_copy_dist_attr_to_graph = False
        self._backup_pass_context_stack = []
        self._backup_block_state_stack = []
        self._backup_dist_tensors_for_program_stack = []
        self._backup_dist_ops_for_program_stack = []
        self._backup_serial_main_program_stack = []
        self._backup_serial_startup_program_stack = []
119

120 121 122
        # flag whether scale gradient with dp size
        self._gradient_scale = True

123 124 125
        # A flag indicates whether the used parallelism is data parallel
        self._data_parallel = False

126
    @property
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
    def serial_main_program(self):
        return self._serial_main_program

    @property
    def serial_startup_program(self):
        return self._serial_startup_program

    @property
    def serial_loss(self):
        return self._serial_loss

    @property
    def serial_optimizer(self):
        return self._serial_optimizer

142 143 144 145 146 147 148
    @property
    def serial_feed_vars(self):
        return self._serial_feed_vars

    @property
    def serial_fetch_vars(self):
        return self._serial_fetch_vars
149

150 151 152 153 154 155 156 157 158 159 160 161
    @property
    def dist_main_programs(self):
        return self._dist_main_programs

    @property
    def dist_startup_programs(self):
        return self._dist_startup_programs

    @property
    def cluster(self):
        return self._cluster

162 163 164 165
    @property
    def strategy(self):
        return self._strategy

166 167 168 169
    @property
    def serial_graph(self):
        return self._serial_graph

170 171 172 173
    @property
    def serial_ordered_nodes(self):
        return self._serial_ordered_nodes

174 175 176 177
    @property
    def process_meshes(self):
        return self._process_meshes

178 179 180 181
    @property
    def pass_context(self):
        return self._pass_context

182 183 184 185
    @property
    def dist_op_context(self):
        return self._dist_op_context

186 187 188 189
    @property
    def block_state(self):
        return self._block_state

190
    @property
191
    def has_annotation(self):
192 193 194
        return len(self._dist_tensors_for_program) or len(
            self._dist_ops_for_program)

195 196 197 198 199 200 201 202
    @property
    def gradient_scale(self):
        return self._gradient_scale

    @gradient_scale.setter
    def gradient_scale(self, gs):
        self._gradient_scale = gs

203 204 205 206 207 208 209 210
    @property
    def data_parallel(self):
        return self._data_parallel

    @data_parallel.setter
    def data_parallel(self, dp):
        self._data_parallel = dp

211 212 213 214 215
    def _backup_serial_info(self, mode):
        self._backup_serial_main_program_stack.append(
            self._serial_main_program.clone())
        self._backup_serial_startup_program_stack.append(
            self._serial_startup_program.clone())
216 217
        self._backup_pass_context_stack.append(copy.deepcopy(
            self._pass_context))
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
        self._backup_block_state_stack.append(copy.deepcopy(self._block_state))

    def _backup_dist_info(self, mode):
        self._backup_dist_tensors_for_program_stack.append(
            copy.deepcopy(self._dist_tensors_for_program))
        self._backup_dist_ops_for_program_stack.append(
            copy.deepcopy(self._dist_ops_for_program))

    def _backup(self, serial=True, serial_mode=None, dist=True, dist_mode=None):
        # Use this function carefully
        if serial:
            self._backup_serial_info(serial_mode)
        if dist:
            self._backup_dist_info(dist_mode)

233
    def _restore_serial_loss(self):
234 235
        if self._original_serial_loss:
            if isinstance(self._original_serial_loss, list):
236 237 238 239 240 241 242 243 244 245 246
                if len(self._original_serial_loss) == 1:
                    loss = self._original_serial_loss[0]
                    block_idx = loss.block.idx
                    var_name = loss.name
                    var = self._serial_main_program.blocks[
                        block_idx]._var_recursive(var_name)
                    self._serial_loss = var
                elif len(self._original_serial_loss) == 0:
                    self._serial_loss = []
                else:
                    raise ValueError("multi loss vars are not supported.")
247
            else:
248 249 250 251 252 253
                block_idx = self._original_serial_loss.block.idx
                var_name = self._original_serial_loss.name
                var = self._serial_main_program.blocks[
                    block_idx]._var_recursive(var_name)
                self._serial_loss = var

254
    def _restore_serial_feed_vars(self):
255 256 257 258 259 260 261 262 263 264
        for key, var_list in self._original_serial_feed_vars.items():
            new_var_list = []
            for var in var_list:
                block_idx = var.block.idx
                var_name = var.name
                var = self._serial_main_program.blocks[
                    block_idx]._var_recursive(var_name)
                new_var_list.append(var)
            self._serial_feed_vars[key] = new_var_list

265
    def _restore_serial_fetch_vars(self):
266 267
        for key, var_list in self._original_serial_fetch_vars.items():
            new_var_list = []
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
            # metrics is a list of list
            if key == "metrics":
                for inner_var_list in var_list:
                    new_inner_var_list = []
                    for var in inner_var_list:
                        block_idx = var.block.idx
                        var_name = var.name
                        var = self._serial_main_program.blocks[
                            block_idx]._var_recursive(var_name)
                        new_inner_var_list.append(var)
                    new_var_list.append(new_inner_var_list)
            else:
                for var in var_list:
                    block_idx = var.block.idx
                    var_name = var.name
                    var = self._serial_main_program.blocks[
                        block_idx]._var_recursive(var_name)
                    new_var_list.append(var)
286 287
            self._serial_fetch_vars[key] = new_var_list

288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
    def _restore_serial_info(self, mode="to_backup"):
        if mode == "to_backup":
            self._serial_main_program = self._backup_serial_main_program_stack.pop(
            )
            self._serial_startup_program = self._backup_serial_startup_program_stack.pop(
            )
        elif mode == "to_original":
            assert self._original_serial_main_program is not None
            assert self._original_serial_startup_program is not None
            self._serial_main_program = self._original_serial_main_program.clone(
            )
            self._serial_startup_program = self._original_serial_startup_program.clone(
            )

        self._restore_serial_loss()
        self._restore_serial_feed_vars()
        self._restore_serial_fetch_vars()
        self._serial_optimizer = self._original_serial_optimizer
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
        self._pass_context = self._backup_pass_context_stack.pop()
        self._block_state = self._backup_block_state_stack.pop()

    def _restore_dist_info(self, mode="to_backup"):
        if mode == "to_backup":
            self._dist_tensors_for_program = self._backup_dist_tensors_for_program_stack.pop(
            )
            self._dist_ops_for_program = self._backup_dist_ops_for_program_stack.pop(
            )
        elif mode == "to_original":
            assert self._original_dist_tensors_for_program
            assert self._original_dist_ops_for_program
            self._dist_tensors_for_program = copy.deepcopy(
                self._original_dist_tensors_for_program)
            self._dist_ops_for_program = copy.deepcopy(
                self._original_dist_ops_for_program)
        elif mode == "to_default":
            new_tensors_ids = []
            for tensor_id, dist_tensor in self._dist_tensors_for_program.items(
            ):
                if tensor_id in self._tensors_ids:
                    dist_tensor.dist_attr.reset()
                else:
                    new_tensors_ids.append(tensor_id)
            for tensor_id in new_tensors_ids:
                self._dist_tensors_for_program.pop(tensor_id)
            new_ops_ids = []
            for op_id, dist_op in self._dist_ops_for_program.items():
                if op_id in self._ops_ids:
                    dist_op.dist_attr.reset()
                else:
                    new_ops_ids.append(op_id)
            for op_id in new_ops_ids:
                self._dist_ops_for_program.pop(op_id)
        else:
            new_tensors_ids = []
            for tensor_id, dist_tensor in self._dist_tensors_for_program.items(
            ):
                new_tensors_ids.append(tensor_id)
            for tensor_id in new_tensors_ids:
                self._dist_tensors_for_program.pop(tensor_id)
            new_ops_ids = []
            for op_id, dist_op in self._dist_ops_for_program.items():
                new_ops_ids.append(op_id)
            for op_id in new_ops_ids:
                self._dist_ops_for_program.pop(op_id)
        self._dist_main_programs = {}
        self._dist_startup_programs = {}
        self._dist_op_context = DistributedOperatorContext()
        self._need_copy_dist_attr_to_graph = True
        self._process_meshes = []

    def _restore(self,
                 serial=True,
                 serial_mode="to_backup",
                 dist=True,
                 dist_mode="to_backup"):
        # Use this function carefully
        if serial:
            self._restore_serial_info(serial_mode)
        if dist:
            self._restore_dist_info(dist_mode)

369
    def initialize(self, with_graph=True):
370 371
        if not self._is_initialized:
            if not self._serial_main_program:
372 373 374
                if self._original_serial_main_program:
                    self._serial_main_program = self._original_serial_main_program.clone(
                    )
375
            if not self._serial_startup_program:
376 377 378
                if self._original_serial_startup_program:
                    self._serial_startup_program = self._original_serial_startup_program.clone(
                    )
379
            if not self._serial_loss:
380
                self._restore_serial_loss()
381 382 383
            if not self._serial_optimizer:
                self._serial_optimizer = self._original_serial_optimizer
            if not self._serial_feed_vars:
384
                self._restore_serial_feed_vars()
385
            if not self._serial_fetch_vars:
386
                self._restore_serial_fetch_vars()
387

388
            self._init_dist_attr_for_program()
389 390 391 392 393
            # Backup the original distributed information for later restore
            self._original_dist_tensors_for_program = copy.deepcopy(
                self._dist_tensors_for_program)
            self._original_dist_ops_for_program = copy.deepcopy(
                self._dist_ops_for_program)
394 395 396
            self._tensors_ids = list(self._dist_tensors_for_program.keys())
            self._ops_ids = list(self._dist_ops_for_program.keys())
            self._is_initialized = True
397 398 399 400 401 402 403 404 405

            if with_graph:
                set_flags({"FLAGS_convert_all_blocks": True})
                self._serial_graph = framework.IrGraph(
                    core.Graph(self._serial_main_program.desc))
                self._init_dist_attr_for_graph()
                self._need_copy_dist_attr_to_graph = False

        if self._need_copy_dist_attr_to_graph and with_graph:
406
            self.copy_dist_attr_from_program_to_graph()
407

408 409 410 411 412 413 414 415
    def add_process_mesh(self, process_mesh):
        assert isinstance(process_mesh, ProcessMesh), \
            'The type of dim_mapping must be ProcessMesh.'
        if process_mesh not in self.process_meshes:
            self._process_meshes.append(process_mesh)

    def add_dist_tensor_for_program(self, dist_tensor):
        inner_serial_tensor = dist_tensor.serial_tensor
416
        inner_serial_tensor_id = inner_serial_tensor.desc.original_id()
417 418 419 420
        self._dist_tensors_for_program[inner_serial_tensor_id] = dist_tensor

    def add_dist_op_for_program(self, dist_op):
        inner_serial_op = dist_op.serial_op
421
        inner_serial_op_id = inner_serial_op.desc.original_id()
422 423 424 425
        self._dist_ops_for_program[inner_serial_op_id] = dist_op

    def get_dist_tensor_for_program(self, serial_tensor):
        serial_tensor_id = serial_tensor.desc.id()
426 427 428 429 430
        dist_tensor = self._dist_tensors_for_program.get(serial_tensor_id, None)
        if dist_tensor:
            return dist_tensor
        else:
            serial_tensor_id = serial_tensor.desc.original_id()
431 432
            dist_tensor = self._dist_tensors_for_program.get(
                serial_tensor_id, None)
433 434 435 436
            if dist_tensor:
                return dist_tensor
            else:
                return None
437 438

    def get_dist_tensor_for_graph(self, serial_tensor_node):
439
        serial_tensor_node_id = _node_id(serial_tensor_node)
440 441
        return self._dist_tensors_for_graph.get(serial_tensor_node_id, None)

442 443 444 445 446 447 448 449 450 451 452 453
    def get_dist_op_for_program(self, serial_op):
        serial_op_id = serial_op.desc.id()
        dist_op = self._dist_ops_for_program.get(serial_op_id, None)
        if dist_op:
            return dist_op
        else:
            serial_op_id = serial_op.desc.original_id()
            dist_op = self._dist_ops_for_program.get(serial_op_id, None)
            if dist_op:
                return dist_op
            else:
                return None
454

455 456 457 458 459
    def del_dist_op_for_program(self, serial_tensor):
        serial_tensor_id = serial_tensor.desc.id()
        if self._dist_ops_for_program.get(serial_tensor_id, None):
            del self._dist_ops_for_program[serial_tensor_id]

460
    def get_dist_op_for_graph(self, serial_op_node):
461
        serial_op_node_id = _node_id(serial_op_node)
462
        return self._dist_ops_for_graph.get(serial_op_node_id, None)
463 464 465 466 467 468 469

    def get_tensor_dist_attr_for_program(self, serial_tensor):
        serial_tensor_id = serial_tensor.desc.id()
        dist_tensor = self._dist_tensors_for_program.get(serial_tensor_id, None)
        if dist_tensor:
            return dist_tensor.dist_attr
        else:
470
            serial_tensor_id = serial_tensor.desc.original_id()
471 472
            dist_tensor = self._dist_tensors_for_program.get(
                serial_tensor_id, None)
473 474 475 476
            if dist_tensor:
                return dist_tensor.dist_attr
            else:
                return None
477

478 479 480 481 482 483 484
    def get_tensor_dist_attr_for_program_with_id(self, tensor_id):
        dist_tensor = self._dist_tensors_for_program.get(tensor_id, None)
        if dist_tensor:
            return dist_tensor.dist_attr
        else:
            return None

485 486 487 488 489
    def set_tensor_dist_attr_for_program(self, serial_tensor, dist_attr):
        dist_tensor = DistributedTensor(serial_tensor, dist_attr)
        self.add_dist_tensor_for_program(dist_tensor)

    def get_tensor_dist_attr_for_graph(self, serial_tensor_node):
490
        serial_tensor_node_id = _node_id(serial_tensor_node)
491 492 493 494 495 496 497 498 499 500 501 502 503
        dist_tensor = self._dist_tensors_for_graph.get(serial_tensor_node_id,
                                                       None)
        if dist_tensor:
            return dist_tensor.dist_attr
        else:
            return None

    def get_op_dist_attr_for_program(self, serial_op):
        serial_op_id = serial_op.desc.id()
        dist_op = self._dist_ops_for_program.get(serial_op_id, None)
        if dist_op:
            return dist_op.dist_attr
        else:
504 505 506 507 508 509
            serial_op_id = serial_op.desc.original_id()
            dist_op = self._dist_ops_for_program.get(serial_op_id, None)
            if dist_op:
                return dist_op.dist_attr
            else:
                return None
510

511 512 513 514 515 516 517
    def get_op_dist_attr_for_program_with_id(self, op_id):
        dist_op = self._dist_ops_for_program.get(op_id, None)
        if dist_op:
            return dist_op.dist_attr
        else:
            return None

518 519 520 521 522
    def set_op_dist_attr_for_program(self, serial_op, dist_attr):
        dist_op = DistributedOperator(serial_op, dist_attr)
        self.add_dist_op_for_program(dist_op)

    def get_op_dist_attr_for_graph(self, serial_op_node):
523
        serial_op_node_id = _node_id(serial_op_node)
524 525 526 527 528 529
        dist_op = self._dist_ops_for_graph.get(serial_op_node_id, None)
        if dist_op:
            return dist_op.dist_attr
        else:
            return None

530 531
    def get_dist_attr_for_graph(self, serial_node):
        if serial_node.is_var() and serial_node.var() is not None:
532
            serial_tensor_node_id = _node_id(serial_node)
533 534 535 536 537 538 539
            dist_tensor = self._dist_tensors_for_graph.get(
                serial_tensor_node_id, None)
            if dist_tensor:
                return dist_tensor.dist_attr
            else:
                return None
        if serial_node.is_op() and serial_node.op() is not None:
540
            serial_op_node_id = _node_id(serial_node)
541 542 543 544 545 546
            dist_op = self._dist_ops_for_graph.get(serial_op_node_id, None)
            if dist_op:
                return dist_op.dist_attr
            else:
                return None
        return None
547

548
    def _init_dist_attr_for_program(self, no_default=False):
549
        # Copy the dist tensors and dist ops annotated by users from the default context
550 551 552 553 554
        if not no_default:
            default_ctx = get_default_distributed_context()
            self._process_meshes = copy.deepcopy(default_ctx.process_meshes)
        else:
            default_ctx = self
555 556
        # Copy the data parallel flag from the default context
        self._data_parallel = default_ctx.data_parallel
557
        for block in self._serial_main_program.blocks:
558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
            for tensor in block.vars.values():
                # Copy the distributed tensors in the default context
                default_dist_tensor = default_ctx.get_dist_tensor_for_program(
                    tensor)
                if default_dist_tensor and default_ctx is not self:
                    self.add_dist_tensor_for_program(default_dist_tensor)
                current_dist_tensor = self.get_dist_tensor_for_program(tensor)
                if current_dist_tensor is None:
                    dist_tensor = DistributedTensor(tensor)
                    self.add_dist_tensor_for_program(dist_tensor)
            for op in block.ops:
                # Copy the distributed operators in the default context
                default_dist_op = default_ctx.get_dist_op_for_program(op)
                if default_dist_op and default_ctx is not self:
                    self.add_dist_op_for_program(default_dist_op)
                current_dist_op = self.get_dist_op_for_program(op)
                if current_dist_op is None:
                    dist_op = DistributedOperator(op)
                    self.add_dist_op_for_program(dist_op)
577 578 579 580
        self._original_dist_tensors_for_program = copy.deepcopy(
            self._dist_tensors_for_program)
        self._original_dist_ops_for_program = copy.deepcopy(
            self._dist_ops_for_program)
581

582
    def _order_nodes_by_program_order(self):
583

584 585
        def _contains(nodes, target_node):
            for node in nodes:
586
                if _node_id(node) == _node_id(target_node):
587 588 589
                    return True
            return False

590 591 592 593 594 595
        serial_ordered_tensor_nodes = []
        serial_ordered_op_nodes = []
        all_nodes = []
        for idx, graph in enumerate(self._serial_graph.all_sub_graphs()):
            for node in graph.all_nodes():
                all_nodes.append(node)
596 597
        for node in all_nodes:
            if node.is_var() and node.var() is not None:
598
                serial_ordered_tensor_nodes.append(node)
599
            if node.is_op() and node.op() is not None:
600 601 602 603 604 605 606 607 608 609
                serial_ordered_op_nodes.append(node)
        serial_ordered_tensor_nodes.sort(
            key=lambda node: node.node.original_desc_id())
        serial_ordered_op_nodes.sort(
            key=lambda node: node.node.original_desc_id())
        num_nodes_before = len(serial_ordered_tensor_nodes) + len(
            serial_ordered_op_nodes)

        new_serial_ordered_tensor_nodes = []
        new_serial_ordered_op_nodes = []
610
        new_serial_ordered_nodes = []
611
        for op_node in serial_ordered_op_nodes:
612 613 614 615
            tensor_nodes = []
            for tensor_node in op_node.inputs:
                if tensor_node.is_var() \
                    and tensor_node.var() is not None \
616
                    and not _contains(new_serial_ordered_nodes, tensor_node):
617
                    tensor_nodes.append(tensor_node)
618
                    new_serial_ordered_tensor_nodes.append(tensor_node)
619
            tensor_nodes.sort(key=lambda node: node.node.original_desc_id())
620 621
            new_serial_ordered_nodes.extend(tensor_nodes)
            new_serial_ordered_nodes.append(op_node)
622
            new_serial_ordered_op_nodes.append(op_node)
623 624 625 626
            tensor_nodes = []
            for tensor_node in op_node.outputs:
                if tensor_node.is_var() \
                    and tensor_node.var() is not None \
627
                    and not _contains(new_serial_ordered_nodes, tensor_node):
628
                    tensor_nodes.append(tensor_node)
629 630
                    new_serial_ordered_tensor_nodes.append(tensor_node)
            tensor_nodes.sort(key=lambda node: node.node.original_desc_id())
631
            new_serial_ordered_nodes.extend(tensor_nodes)
632 633 634 635 636 637
        new_serial_ordered_tensor_nodes.sort(
            key=lambda node: node.node.original_desc_id())
        new_serial_ordered_op_nodes.sort(
            key=lambda node: node.node.original_desc_id())
        self._serial_ordered_tensor_nodes = new_serial_ordered_tensor_nodes
        self._serial_ordered_op_nodes = new_serial_ordered_op_nodes
638
        self._serial_ordered_nodes = new_serial_ordered_nodes
639 640 641 642 643 644 645 646 647 648 649
        assert len(self._serial_ordered_nodes) == len(
            self._serial_ordered_tensor_nodes) + len(
                self._serial_ordered_op_nodes)
        self._serial_orphan_tensor_nodes = []
        for tensor_node in serial_ordered_tensor_nodes:
            if not _contains(self._serial_ordered_tensor_nodes, tensor_node):
                self._serial_orphan_tensor_nodes.append(tensor_node)
        if len(self._serial_ordered_nodes) != num_nodes_before:
            print(
                "WARNING: there are some orphan tensors or ops which are not used in the execution."
            )
650

651 652 653
    def _init_dist_attr_for_graph(self):
        # Convert program to graph and initialize the distributed attributes
        self._order_nodes_by_program_order()
654
        for node in self.serial_ordered_nodes:
655
            if node.is_var() and node.var() is not None:
656 657 658 659 660 661 662
                dist_tensor = None
                tensor_id = node.node.original_desc_id()
                for cur_tensor_id, cur_dist_tensor in self._dist_tensors_for_program.items(
                ):
                    if tensor_id == cur_tensor_id \
                        or tensor_id == cur_dist_tensor.serial_tensor.desc.original_id():
                        dist_tensor = cur_dist_tensor
663 664
                        self._node_id_to_tensor_id[_node_id(
                            node)] = cur_tensor_id
665 666
                assert dist_tensor is not None, \
                    "Tensor must have a distributed tensor after the initialization for program."
667
                serial_tensor_node_id = _node_id(node)
668 669 670 671
                new_dist_tensor = DistributedTensor(dist_tensor.serial_tensor,
                                                    dist_tensor.dist_attr)
                self._dist_tensors_for_graph[
                    serial_tensor_node_id] = new_dist_tensor
672
            if node.is_op() and node.op() is not None:
673 674 675 676 677 678 679
                dist_op = None
                op_id = node.node.original_desc_id()
                for cur_op_id, cur_dist_op in self._dist_ops_for_program.items(
                ):
                    if op_id == cur_op_id \
                        or op_id == cur_dist_op.serial_op.desc.original_id():
                        dist_op = cur_dist_op
680
                        self._node_id_to_op_id[_node_id(node)] = cur_op_id
681 682
                assert dist_op is not None, \
                    "Operator must have a distributed operator after the initialization for program."
683
                serial_op_node_id = _node_id(node)
684 685 686
                new_dist_op = DistributedOperator(dist_op.serial_op,
                                                  dist_op.dist_attr)
                self._dist_ops_for_graph[serial_op_node_id] = new_dist_op
687 688 689 690 691 692 693 694 695

    def clear_dist_info_for_program(self):
        self._dist_tensors_for_program.clear()
        self._dist_ops_for_program.clear()

    def clear_dist_info_for_graph(self):
        self._dist_tensors_for_graph.clear()
        self._dist_ops_for_graph.clear()

696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
    def copy_dist_attr_from_program_to_graph(self):
        for node in self.serial_ordered_nodes:
            if node.is_var() and node.var() is not None:
                dist_tensor = None
                tensor_id = node.node.original_desc_id()
                for cur_tensor_id, cur_dist_tensor in self._dist_tensors_for_program.items(
                ):
                    if tensor_id == cur_tensor_id \
                        or tensor_id == cur_dist_tensor.serial_tensor.desc.original_id():
                        dist_tensor = cur_dist_tensor
                assert dist_tensor is not None, \
                    "Tensor must have a distributed tensor after the initialization for program."
                serial_tensor_node_id = _node_id(node)
                new_dist_tensor = DistributedTensor(dist_tensor.serial_tensor,
                                                    dist_tensor.dist_attr)
                self._dist_tensors_for_graph[
                    serial_tensor_node_id] = new_dist_tensor
            if node.is_op() and node.op() is not None:
                dist_op = None
                op_id = node.node.original_desc_id()
                for cur_op_id, cur_dist_op in self._dist_ops_for_program.items(
                ):
                    if op_id == cur_op_id \
                        or op_id == cur_dist_op.serial_op.desc.original_id():
                        dist_op = cur_dist_op
                assert dist_op is not None, \
                    "Operator must have a distributed operator after the initialization for program."
                serial_op_node_id = _node_id(node)
                new_dist_op = DistributedOperator(dist_op.serial_op,
                                                  dist_op.dist_attr)
                self._dist_ops_for_graph[serial_op_node_id] = new_dist_op

728
    def copy_dist_attr_from_graph_to_program(self):
729
        assert self._is_initialized, \
730 731
            "Both program and graph must be initialized."
        updated_tensors = {}
732 733
        # all_nodes = self._serial_graph.all_nodes()
        all_nodes = self._serial_ordered_nodes
734 735
        for node in all_nodes:
            if node.is_var() and node.var() is not None:
736
                tensor_id = self._node_id_to_tensor_id[_node_id(node)]
737
                updated = updated_tensors.get(tensor_id, False)
738 739 740 741 742 743 744
                # If a var has multiples var nodes in graph, only use the first one for now
                if not updated:
                    tensor_dist_attr_for_graph = self.get_tensor_dist_attr_for_graph(
                        node)
                    dist_tensor_for_program = self._dist_tensors_for_program[
                        tensor_id]
                    dist_tensor_for_program.dist_attr = tensor_dist_attr_for_graph
745
                    updated_tensors[tensor_id] = True
746
            if node.is_op() and node.op() is not None:
747
                op_id = self._node_id_to_op_id[_node_id(node)]
748 749 750
                op_dist_attr_for_graph = self.get_op_dist_attr_for_graph(node)
                dist_op_for_program = self._dist_ops_for_program[op_id]
                dist_op_for_program.dist_attr = op_dist_attr_for_graph
751
        # TODO: the completion algorithm will skipped orphan tensors,
752 753 754
        # here we just set there process_mesh to the first one.
        for orphan_node in self._serial_orphan_tensor_nodes:
            serial_tensor_id = orphan_node.var().id()
755 756
            dist_tensor = self._dist_tensors_for_program.get(
                serial_tensor_id, None)
757 758 759 760 761 762 763
            if dist_tensor:
                dist_tensor.dist_attr.process_mesh = self._process_meshes[0]
            else:
                serial_tensor_id = orphan_node.var().original_id()
                dist_tensor = self._dist_tensors_for_program.get(
                    serial_tensor_id, None)
                dist_tensor.dist_attr.process_mesh = self._process_meshes[0]
764 765 766 767 768

    def amend_dist_attr_for_program(self):
        for dist_tensor in self._dist_tensors_for_program.values():
            serial_tensor = dist_tensor.serial_tensor
            dist_attr = dist_tensor.dist_attr
769 770 771
            if serial_tensor.type == core.VarDesc.VarType.READER \
                or serial_tensor.type == core.VarDesc.VarType.LOD_TENSOR_ARRAY \
                or serial_tensor.type == core.VarDesc.VarType.STEP_SCOPES:
772 773 774 775 776
                tensor_shape = []
            else:
                tensor_shape = serial_tensor.shape
            dims_mapping = dist_attr.dims_mapping
            process_mesh_shape = dist_attr.process_mesh.topology
777
            process_mesh_processes = dist_attr.process_mesh.processes
778 779 780 781 782 783
            # If the dimension of tensor is less than the sharding dimension of process mesh,
            # we just amend the dimension mapping to -1. (Is this really OK?)
            for i in range(len(tensor_shape)):
                if dims_mapping[i] != -1 and tensor_shape[i] > 0 \
                    and process_mesh_shape[dims_mapping[i]] > tensor_shape[i]:
                    dims_mapping[i] = -1
784 785
                if dims_mapping[i] != -1 and len(process_mesh_processes) == 1:
                    dims_mapping[i] = -1
786 787 788 789

        for dist_op in self._dist_ops_for_program.values():
            serial_op = dist_op.serial_op
            dist_attr = dist_op.dist_attr
790 791
            process_mesh_shape = dist_attr.process_mesh.topology
            process_mesh_processes = dist_attr.process_mesh.processes
792 793 794 795 796
            for arg_name in serial_op.input_arg_names:
                if dist_op.get_serial_input(arg_name) is None:
                    tensor_shape = []
                else:
                    if dist_op.get_serial_input(arg_name).type == core.VarDesc.VarType.READER \
797
                        or dist_op.get_serial_input(arg_name).type == core.VarDesc.VarType.LOD_TENSOR_ARRAY \
798 799 800 801 802 803 804 805 806 807 808
                        or dist_op.serial_op.type == "create_py_reader":
                        tensor_shape = []
                    else:
                        tensor_shape = dist_op.get_serial_input(arg_name).shape
                dims_mapping = dist_attr.get_input_dims_mapping(arg_name)
                # If the dimension of tensor is less than the sharding dimension of process mesh,
                # we just amend the dimension mapping to -1. (Is this really OK?)
                for i in range(len(tensor_shape)):
                    if dims_mapping[i] != -1 and tensor_shape[i] > 0 \
                        and process_mesh_shape[dims_mapping[i]] > tensor_shape[i]:
                        dims_mapping[i] = -1
809 810 811
                    if dims_mapping[i] != -1 and len(
                            process_mesh_processes) == 1:
                        dims_mapping[i] = -1
812
            for arg_name in serial_op.output_arg_names:
813 814 815
                if dist_op.get_serial_output(arg_name).type == core.VarDesc.VarType.READER \
                    or dist_op.get_serial_output(arg_name).type == core.VarDesc.VarType.LOD_TENSOR_ARRAY \
                    or dist_op.get_serial_output(arg_name).type == core.VarDesc.VarType.STEP_SCOPES:
816 817 818 819 820 821 822 823 824 825
                    tensor_shape = []
                else:
                    tensor_shape = dist_op.get_serial_output(arg_name).shape
                dims_mapping = dist_attr.get_output_dims_mapping(arg_name)
                # If the dimension of tensor is less than the sharding dimension of process mesh,
                # we just amend the dimension mapping to -1. (Is this really OK?)
                for i in range(len(tensor_shape)):
                    if dims_mapping[i] != -1 and tensor_shape[i] > 0 \
                        and process_mesh_shape[dims_mapping[i]] > tensor_shape[i]:
                        dims_mapping[i] = -1
826 827 828 829 830 831
                    if dims_mapping[i] != -1 and len(
                            process_mesh_processes) == 1:
                        dims_mapping[i] = -1
            if len(process_mesh_processes) == 1:
                dist_op.dist_attr.impl_type = "default"
                dist_op.dist_attr.impl_idx = 0
832 833

    def validate_dist_attr_for_program(self):
834
        if not self._is_initialized:
835 836
            assert False, \
                "Program must be initialized before validating its distributed attributes"
837
        for block in self.serial_main_program.blocks:
838 839
            for tensor in block.vars.values():
                dist_tensor = self.get_dist_tensor_for_program(tensor)
840 841 842
                assert dist_tensor is not None, \
                    "Tensor {} does not have a distributed attribute.".format(
                        dist_tensor.serial_tensor.name)
843 844
                if (dist_tensor
                        is not None) and (not dist_tensor.validate_dist_attr()):
845
                    assert False, "Tensor {} (id: {}, original_id: {}) has a wrong distributed attributes {}.".format(
C
caozhou 已提交
846 847 848 849
                        dist_tensor.serial_tensor.name,
                        dist_tensor.serial_tensor.desc.id(),
                        dist_tensor.serial_tensor.desc.original_id(),
                        dist_tensor.dist_attr)
850 851
            for op in block.ops:
                dist_op = self.get_dist_op_for_program(op)
852 853 854
                assert dist_op is not None, \
                    "Operator {} does not have a distributed attribute.".format(
                        dist_op.serial_op.type)
855
                if (dist_op is not None) and (not dist_op.validate_dist_attr()):
856
                    assert False, "Operator {} (id: {}, original_id: {}) has a wrong distributed attributes {} .".format(
857
                        dist_op.serial_op.type, dist_op.serial_op.desc.id(),
858
                        dist_op.serial_op.desc.original_id(), dist_op.dist_attr)
859 860
        return True

Z
zhaoyingli 已提交
861 862 863 864 865
    def __deepcopy__(self, memo):
        cls = self.__class__
        result = cls.__new__(cls)
        memo[id(self)] = result
        for k, v in self.__dict__.items():
866 867 868 869 870
            if k in [
                "_original_serial_main_program", "_original_serial_startup_program", \
                "_serial_main_program", "_serial_startup_program", "_serial_graph", \
                "_dist_main_programs", "_dist_startup_programs", \
                "_serial_ordered_nodes", "_serial_ordered_tensor_nodes", \
871 872 873 874 875
                "_serial_ordered_op_nodes", "_original_serial_loss", \
                "_original_serial_feed_vars", "_original_serial_fetch_vars", \
                "_serial_loss", "_serial_feed_vars", "_serial_fetch_vars", "_lr_optimizer", \
                "_backup_serial_main_program_stack", "_backup_serial_startup_program_stack", \
                "_pass_context"]:
Z
zhaoyingli 已提交
876 877 878
                setattr(result, k, v)
            else:
                setattr(result, k, copy.deepcopy(v, memo))
879 880 881 882

        # update dist tensor's dist_context
        for key in result._dist_tensors_for_program.keys():
            result._dist_tensors_for_program[key]._dist_context = result
Z
zhaoyingli 已提交
883 884
        return result

885 886 887 888 889 890 891 892 893

class DistributedOperatorContext:
    """
    DistributedOperatorContext is used to create a dist op desc in Program.
    Every time to create a new dist op, the context should be updated for it accordingly.
    """

    def __init__(self):
        self._dst_main_program = None
894
        self._main_block = None
895
        self._dst_startup_program = None
896
        self._startup_block = None
897 898
        self._cur_src_op = None
        self._cur_dist_attr = None
899
        self.grad_op_id_to_op_id = {}
900
        self.grad_var_to_var = defaultdict(dict)
901
        self._work_block = None
902
        self.already_init_sync_vars = set()
903 904
        self.varname_mapping = None
        self.rank_id = None
905 906 907 908 909
        # NOTE Support correct parallelism for high-order differential model.
        # by default exceed_backward_init_op is False and it means we are in Forward phase; After exceed_backward_init_op = True,
        # it means we are in Backward phase.
        # And the final sulotion should be revise high-order differential logic for these two phases in future.
        self._exceed_backward_init_op = False
910

Z
zhaoyingli 已提交
911 912 913 914 915
    def __deepcopy__(self, memo):
        cls = self.__class__
        result = cls.__new__(cls)
        memo[id(self)] = result
        for k, v in self.__dict__.items():
916 917 918 919
            if k in [
                    "_dst_main_program", "_dst_startup_program", "_cur_src_op",
                    "_work_block", "_main_block", "_startup_block"
            ]:
Z
zhaoyingli 已提交
920 921 922 923 924
                setattr(result, k, v)
            else:
                setattr(result, k, copy.deepcopy(v, memo))
        return result

925 926
    @property
    def dst_main_program(self):
927 928
        return self._dst_main_program

929 930 931 932
    @dst_main_program.setter
    def dst_main_program(self, prog):
        self._dst_main_program = prog
        self._main_block = prog.blocks[0]
933

934 935 936
    @property
    def main_block(self):
        return self._main_block
937

938 939 940
    @property
    def dst_startup_program(self):
        return self._dst_startup_program
941

942 943 944 945
    @dst_startup_program.setter
    def dst_startup_program(self, prog):
        self._dst_startup_program = prog
        self._startup_block = prog.blocks[0]
946

947 948 949
    @property
    def startup_block(self):
        return self._startup_block
950

951 952 953 954
    @property
    def work_block(self):
        assert self._work_block is not None
        return self._work_block
955

956 957 958 959
    @work_block.setter
    def work_block(self, block):
        assert block is not None
        self._work_block = block
960

961 962 963
    @property
    def cur_src_op(self):
        assert self._cur_src_op is not None
964 965
        return self._cur_src_op

966 967 968
    def in_backward_phase(self):
        return self._exceed_backward_init_op

969
    def prepare_context(self, src_op):
970

971
        self._cur_src_op = src_op
972

973 974 975
        if is_loss_grad_op(src_op):
            self._exceed_backward_init_op = True

976 977 978 979 980
        # build input varname mapping
        kinputs = {}
        for input_name in src_op.desc.input_names():
            varnames = []
            for varname in src_op.desc.input(input_name):
981 982
                assert varname in self.varname_mapping
                varnames.append(self.varname_mapping[varname])
983 984 985 986 987 988 989
            kinputs[input_name] = varnames

        # build output varname mapping
        koutputs = {}
        for output_name in src_op.desc.output_names():
            varnames = []
            for varname in src_op.desc.output(output_name):
990 991
                assert varname in self.varname_mapping
                varnames.append(self.varname_mapping[varname])
992 993 994
            koutputs[output_name] = varnames

        return kinputs, koutputs
995 996 997


class BlockState(object):
998

999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
    def __init__(self):
        self.nblock = 0
        self.forward_indices = []
        self.backward_indices = []
        self.backward_to_forward_index_map = {}

    def parse_forward_blocks(self, program):

        while program.current_block_idx != 0:
            program._rollback()

        assert program.current_block_idx == 0

        for idx, block in enumerate(program.blocks):

            assert idx == block.idx, "index doesn't match"
            assert block.forward_block_idx == -1, "forward_block_idx of forward block [{}] is not [{}]".format(
                idx, block.forward_block_idx)
            self.forward_indices.append(idx)
            self.nblock += 1

        assert self.nblock >= 1

    def parse_backward_blocks(self, program):

        assert 0 in self.forward_indices, "forward block idx are{}".format(
            self.forward_indices)
        self.backward_to_forward_index_map[0] = 0

        for idx, block in enumerate(program.blocks):

            if idx < len(self.forward_indices):
                continue

            assert idx == block.idx, "index doesn't match"
            assert block.forward_block_idx in self.forward_indices
            self.backward_indices.append(idx)
            self.backward_to_forward_index_map[idx] = block.forward_block_idx
            self.nblock += 1

        assert self.nblock == len(program.blocks)