test_elementwise_sub_op.py 19.1 KB
Newer Older
1
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6 7 8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

G
gongweibao 已提交
15
import unittest
16

G
gongweibao 已提交
17
import numpy as np
18
from eager_op_test import OpTest, convert_float_to_uint16, skip_check_grad_ci
19

C
chentianyu03 已提交
20
import paddle
21
import paddle.fluid as fluid
G
gongweibao 已提交
22 23 24 25 26


class TestElementwiseOp(OpTest):
    def setUp(self):
        self.op_type = "elementwise_sub"
27 28
        self.python_api = paddle.subtract
        self.prim_op_type = "prim"
G
gongweibao 已提交
29
        self.inputs = {
30
            'X': np.random.uniform(0.1, 1, [2, 3, 4, 5]).astype("float64"),
31
            'Y': np.random.uniform(0.1, 1, [2, 3, 4, 5]).astype("float64"),
G
gongweibao 已提交
32 33
        }
        self.outputs = {'Out': self.inputs['X'] - self.inputs['Y']}
34 35
        self.if_check_prim()
        self.if_skip_cinn()
G
gongweibao 已提交
36 37 38 39 40

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
41
        self.check_grad(['X', 'Y'], 'Out', check_prim=self.check_prim)
G
gongweibao 已提交
42 43

    def test_check_grad_ingore_x(self):
44
        self.check_grad(
45 46 47 48 49
            ['Y'],
            'Out',
            max_relative_error=0.005,
            no_grad_set=set("X"),
            check_prim=self.check_prim,
50
        )
G
gongweibao 已提交
51 52

    def test_check_grad_ingore_y(self):
53
        self.check_grad(
54 55 56 57 58
            ['X'],
            'Out',
            max_relative_error=0.005,
            no_grad_set=set('Y'),
            check_prim=self.check_prim,
59
        )
G
gongweibao 已提交
60

61 62 63 64 65 66
    def if_check_prim(self):
        self.check_prim = True

    def if_skip_cinn(self):
        pass

G
gongweibao 已提交
67

68 69 70
class TestElementwiseSubOp_ZeroDim1(TestElementwiseOp):
    def setUp(self):
        self.op_type = "elementwise_sub"
71 72
        self.python_api = paddle.subtract
        self.prim_op_type = "prim"
73 74 75 76 77
        self.inputs = {
            'X': np.random.uniform(0.1, 1, []).astype("float64"),
            'Y': np.random.uniform(0.1, 1, []).astype("float64"),
        }
        self.outputs = {'Out': self.inputs['X'] - self.inputs['Y']}
78 79 80 81 82 83 84 85
        self.if_check_prim()
        self.if_skip_cinn()

    def if_check_prim(self):
        self.check_prim = True

    def if_skip_cinn(self):
        self.enable_cinn = False
86 87 88 89 90


class TestElementwiseSubOp_ZeroDim2(TestElementwiseOp):
    def setUp(self):
        self.op_type = "elementwise_sub"
91 92
        self.python_api = paddle.subtract
        self.prim_op_type = "prim"
93 94 95 96 97
        self.inputs = {
            'X': np.random.uniform(0.1, 1, [2, 3, 4, 5]).astype("float64"),
            'Y': np.random.uniform(0.1, 1, []).astype("float64"),
        }
        self.outputs = {'Out': self.inputs['X'] - self.inputs['Y']}
98 99 100 101 102 103 104 105
        self.if_check_prim()
        self.if_skip_cinn()

    def if_check_prim(self):
        self.check_prim = True

    def if_skip_cinn(self):
        self.enable_cinn = False
106 107 108 109 110


class TestElementwiseSubOp_ZeroDim3(TestElementwiseOp):
    def setUp(self):
        self.op_type = "elementwise_sub"
111 112
        self.python_api = paddle.subtract
        self.prim_op_type = "prim"
113 114 115 116 117
        self.inputs = {
            'X': np.random.uniform(0.1, 1, []).astype("float64"),
            'Y': np.random.uniform(0.1, 1, [2, 3, 4, 5]).astype("float64"),
        }
        self.outputs = {'Out': self.inputs['X'] - self.inputs['Y']}
118 119 120 121 122 123 124 125
        self.if_check_prim()
        self.if_skip_cinn()

    def if_check_prim(self):
        self.check_prim = True

    def if_skip_cinn(self):
        self.enable_cinn = False
126 127


128 129 130
class TestBF16ElementwiseOp(OpTest):
    def setUp(self):
        self.op_type = "elementwise_sub"
131 132
        self.python_api = paddle.subtract
        self.prim_op_type = "prim"
133 134 135 136 137 138 139
        self.dtype = np.uint16
        x = np.random.uniform(0.1, 1, [13, 17]).astype(np.float32)
        y = np.random.uniform(0.1, 1, [13, 17]).astype(np.float32)
        out = x - y

        self.inputs = {
            'X': convert_float_to_uint16(x),
140
            'Y': convert_float_to_uint16(y),
141 142
        }
        self.outputs = {'Out': convert_float_to_uint16(out)}
143 144
        self.if_check_prim()
        self.if_skip_cinn()
145 146 147 148 149

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
150
        self.check_grad(['X', 'Y'], 'Out', check_prim=self.check_prim)
151 152

    def test_check_grad_ingore_x(self):
153 154 155
        self.check_grad(
            ['Y'], 'Out', no_grad_set=set("X"), check_prim=self.check_prim
        )
156 157

    def test_check_grad_ingore_y(self):
158 159 160 161 162 163 164 165 166
        self.check_grad(
            ['X'], 'Out', no_grad_set=set('Y'), check_prim=self.check_prim
        )

    def if_check_prim(self):
        self.check_prim = True

    def if_skip_cinn(self):
        self.enable_cinn = False
167 168


169
@skip_check_grad_ci(
170 171
    reason="[skip shape check] Use y_shape(1) to test broadcast."
)
172 173 174
class TestElementwiseSubOp_scalar(TestElementwiseOp):
    def setUp(self):
        self.op_type = "elementwise_sub"
175 176
        self.python_api = paddle.subtract
        self.prim_op_type = "prim"
177
        self.inputs = {
178
            'X': np.random.rand(10, 3, 4).astype(np.float64),
179
            'Y': np.random.rand(1).astype(np.float64),
180 181
        }
        self.outputs = {'Out': self.inputs['X'] - self.inputs['Y']}
182
        self.if_check_prim()
183 184


G
gongweibao 已提交
185 186 187
class TestElementwiseSubOp_Vector(TestElementwiseOp):
    def setUp(self):
        self.op_type = "elementwise_sub"
188 189
        self.python_api = paddle.subtract
        self.prim_op_type = "prim"
G
gongweibao 已提交
190
        self.inputs = {
191 192
            'X': np.random.random((100,)).astype("float64"),
            'Y': np.random.random((100,)).astype("float64"),
G
gongweibao 已提交
193 194
        }
        self.outputs = {'Out': self.inputs['X'] - self.inputs['Y']}
195
        self.if_check_prim()
G
gongweibao 已提交
196 197


198
class TestElementwiseSubOp_broadcast_O(TestElementwiseOp):
G
gongweibao 已提交
199 200
    def setUp(self):
        self.op_type = "elementwise_sub"
201
        self.python_api = paddle.subtract
G
gongweibao 已提交
202
        self.inputs = {
203
            'X': np.random.rand(100, 3, 2).astype(np.float64),
204
            'Y': np.random.rand(100).astype(np.float64),
G
gongweibao 已提交
205 206 207 208
        }

        self.attrs = {'axis': 0}
        self.outputs = {
209
            'Out': self.inputs['X'] - self.inputs['Y'].reshape(100, 1, 1)
G
gongweibao 已提交
210 211
        }

212 213 214 215 216
    def test_check_output(self):
        self.check_output(check_dygraph=False)

    def test_check_grad_normal(self):
        self.check_grad(['X', 'Y'], 'Out', check_dygraph=False)
G
gongweibao 已提交
217

218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
    def test_check_grad_ingore_x(self):
        self.check_grad(
            ['Y'],
            'Out',
            max_relative_error=0.005,
            no_grad_set=set("X"),
            check_dygraph=False,
        )

    def test_check_grad_ingore_y(self):
        self.check_grad(
            ['X'],
            'Out',
            max_relative_error=0.005,
            no_grad_set=set('Y'),
            check_dygraph=False,
        )


class TestElementwiseSubOp_broadcast_1(TestElementwiseSubOp_broadcast_O):
G
gongweibao 已提交
238 239
    def setUp(self):
        self.op_type = "elementwise_sub"
240
        self.python_api = paddle.subtract
G
gongweibao 已提交
241
        self.inputs = {
242
            'X': np.random.rand(2, 100, 3).astype(np.float64),
243
            'Y': np.random.rand(100).astype(np.float64),
G
gongweibao 已提交
244 245 246 247
        }

        self.attrs = {'axis': 1}
        self.outputs = {
248
            'Out': self.inputs['X'] - self.inputs['Y'].reshape(1, 100, 1)
G
gongweibao 已提交
249 250 251 252 253 254
        }


class TestElementwiseSubOp_broadcast_2(TestElementwiseOp):
    def setUp(self):
        self.op_type = "elementwise_sub"
255 256
        self.python_api = paddle.subtract
        self.prim_op_type = "prim"
G
gongweibao 已提交
257
        self.inputs = {
258
            'X': np.random.rand(2, 3, 100).astype(np.float64),
259
            'Y': np.random.rand(100).astype(np.float64),
G
gongweibao 已提交
260 261 262
        }

        self.outputs = {
263
            'Out': self.inputs['X'] - self.inputs['Y'].reshape(1, 1, 100)
G
gongweibao 已提交
264
        }
265 266 267 268
        self.if_check_prim()

    def if_check_prim(self):
        self.check_prim = True
G
gongweibao 已提交
269 270


271
class TestElementwiseSubOp_broadcast_3(TestElementwiseSubOp_broadcast_O):
G
gongweibao 已提交
272 273
    def setUp(self):
        self.op_type = "elementwise_sub"
274
        self.python_api = paddle.subtract
G
gongweibao 已提交
275
        self.inputs = {
276
            'X': np.random.rand(2, 10, 12, 3).astype(np.float64),
277
            'Y': np.random.rand(10, 12).astype(np.float64),
G
gongweibao 已提交
278 279 280 281
        }

        self.attrs = {'axis': 1}
        self.outputs = {
282
            'Out': self.inputs['X'] - self.inputs['Y'].reshape(1, 10, 12, 1)
G
gongweibao 已提交
283 284 285
        }


286 287 288
class TestElementwiseSubOp_broadcast_4(TestElementwiseOp):
    def setUp(self):
        self.op_type = "elementwise_sub"
289 290
        self.python_api = paddle.subtract
        self.prim_op_type = "prim"
291
        self.inputs = {
292
            'X': np.random.rand(2, 5, 3, 12).astype(np.float64),
293
            'Y': np.random.rand(2, 5, 1, 12).astype(np.float64),
294 295
        }
        self.outputs = {'Out': self.inputs['X'] - self.inputs['Y']}
296 297 298 299
        self.if_check_prim()

    def if_check_prim(self):
        self.check_prim = True
300 301


302 303 304
class TestElementwiseSubOp_commonuse_1(TestElementwiseOp):
    def setUp(self):
        self.op_type = "elementwise_sub"
305 306
        self.python_api = paddle.subtract
        self.prim_op_type = "prim"
307
        self.inputs = {
308
            'X': np.random.rand(2, 3, 100).astype(np.float64),
309
            'Y': np.random.rand(1, 1, 100).astype(np.float64),
310 311
        }
        self.outputs = {'Out': self.inputs['X'] - self.inputs['Y']}
312 313 314 315
        self.if_check_prim()

    def if_check_prim(self):
        self.check_prim = True
316 317 318 319 320


class TestElementwiseSubOp_commonuse_2(TestElementwiseOp):
    def setUp(self):
        self.op_type = "elementwise_sub"
321 322
        self.python_api = paddle.subtract
        self.prim_op_type = "prim"
323
        self.inputs = {
324
            'X': np.random.rand(10, 3, 1, 4).astype(np.float64),
325
            'Y': np.random.rand(10, 1, 12, 1).astype(np.float64),
326 327
        }
        self.outputs = {'Out': self.inputs['X'] - self.inputs['Y']}
328 329 330 331
        self.if_check_prim()

    def if_check_prim(self):
        self.check_prim = True
332 333 334 335 336


class TestElementwiseSubOp_xsize_lessthan_ysize(TestElementwiseOp):
    def setUp(self):
        self.op_type = "elementwise_sub"
337 338
        self.python_api = paddle.subtract
        self.prim_op_type = "prim"
339
        self.inputs = {
340
            'X': np.random.rand(10, 12).astype(np.float64),
341
            'Y': np.random.rand(2, 3, 10, 12).astype(np.float64),
342 343 344 345
        }
        self.attrs = {'axis': 2}

        self.outputs = {
346
            'Out': self.inputs['X'].reshape(1, 1, 10, 12) - self.inputs['Y']
347
        }
348 349 350 351
        self.if_check_prim()

    def if_check_prim(self):
        self.check_prim = True
352 353


C
chentianyu03 已提交
354 355 356
class TestComplexElementwiseSubOp(OpTest):
    def setUp(self):
        self.op_type = "elementwise_sub"
357 358
        self.python_api = paddle.subtract
        self.prim_op_type = "prim"
C
chentianyu03 已提交
359 360 361 362 363 364 365
        self.dtype = np.float64
        self.shape = (2, 3, 4, 5)
        self.init_input_output()
        self.init_grad_input_output()

        self.inputs = {
            'X': OpTest.np_dtype_to_fluid_dtype(self.x),
366
            'Y': OpTest.np_dtype_to_fluid_dtype(self.y),
C
chentianyu03 已提交
367 368 369
        }
        self.attrs = {'axis': -1, 'use_mkldnn': False}
        self.outputs = {'Out': self.out}
370 371
        self.if_check_prim()
        self.if_skip_cinn()
C
chentianyu03 已提交
372 373 374 375 376 377

    def init_base_dtype(self):
        self.dtype = np.float64

    def init_input_output(self):
        self.x = np.random.random(self.shape).astype(
378 379
            self.dtype
        ) + 1j * np.random.random(self.shape).astype(self.dtype)
C
chentianyu03 已提交
380
        self.y = np.random.random(self.shape).astype(
381 382
            self.dtype
        ) + 1j * np.random.random(self.shape).astype(self.dtype)
C
chentianyu03 已提交
383 384 385
        self.out = self.x - self.y

    def init_grad_input_output(self):
386 387 388
        self.grad_out = np.ones(self.shape, self.dtype) + 1j * np.ones(
            self.shape, self.dtype
        )
C
chentianyu03 已提交
389 390 391 392 393 394 395
        self.grad_x = self.grad_out
        self.grad_y = -self.grad_out

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
396 397 398 399 400
        self.check_grad(
            ['X', 'Y'],
            'Out',
            user_defined_grads=[self.grad_x, self.grad_y],
            user_defined_grad_outputs=[self.grad_out],
401
            check_prim=self.check_prim,
402
        )
C
chentianyu03 已提交
403 404

    def test_check_grad_ingore_x(self):
405 406 407 408 409 410
        self.check_grad(
            ['Y'],
            'Out',
            no_grad_set=set("X"),
            user_defined_grads=[self.grad_y],
            user_defined_grad_outputs=[self.grad_out],
411
            check_prim=self.check_prim,
412
        )
C
chentianyu03 已提交
413 414

    def test_check_grad_ingore_y(self):
415 416 417 418 419 420
        self.check_grad(
            ['X'],
            'Out',
            no_grad_set=set('Y'),
            user_defined_grads=[self.grad_x],
            user_defined_grad_outputs=[self.grad_out],
421
            check_prim=self.check_prim,
422
        )
C
chentianyu03 已提交
423

424 425 426 427 428 429
    def if_skip_cinn(self):
        self.enable_cinn = False

    def if_check_prim(self):
        self.check_prim = True

C
chentianyu03 已提交
430 431 432 433 434

class TestRealComplexElementwiseSubOp(TestComplexElementwiseSubOp):
    def init_input_output(self):
        self.x = np.random.random(self.shape).astype(self.dtype)
        self.y = np.random.random(self.shape).astype(
435 436
            self.dtype
        ) + 1j * np.random.random(self.shape).astype(self.dtype)
C
chentianyu03 已提交
437 438 439
        self.out = self.x - self.y

    def init_grad_input_output(self):
440 441 442
        self.grad_out = np.ones(self.shape, self.dtype) + 1j * np.ones(
            self.shape, self.dtype
        )
C
chentianyu03 已提交
443 444 445
        self.grad_x = np.real(self.grad_out)
        self.grad_y = -self.grad_out

446 447 448 449 450 451
    def if_skip_cinn(self):
        self.enable_cinn = False

    def if_check_prim(self):
        self.check_prim = False

C
chentianyu03 已提交
452

453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
class TestSubtractApi(unittest.TestCase):
    def _executed_api(self, x, y, name=None):
        return paddle.subtract(x, y, name)

    def test_name(self):
        with fluid.program_guard(fluid.Program()):
            x = fluid.data(name="x", shape=[2, 3], dtype="float32")
            y = fluid.data(name='y', shape=[2, 3], dtype='float32')

            y_1 = self._executed_api(x, y, name='subtract_res')
            self.assertEqual(('subtract_res' in y_1.name), True)

    def test_declarative(self):
        with fluid.program_guard(fluid.Program()):

            def gen_data():
                return {
                    "x": np.array([2, 3, 4]).astype('float32'),
471
                    "y": np.array([1, 5, 2]).astype('float32'),
472 473 474 475 476 477 478 479
                }

            x = fluid.data(name="x", shape=[3], dtype='float32')
            y = fluid.data(name="y", shape=[3], dtype='float32')
            z = self._executed_api(x, y)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            z_value = exe.run(feed=gen_data(), fetch_list=[z.name])
480
            z_expected = np.array([1.0, -2.0, 2.0])
481 482 483 484 485 486 487 488 489 490
            self.assertEqual((z_value == z_expected).all(), True)

    def test_dygraph(self):
        with fluid.dygraph.guard():
            np_x = np.array([2, 3, 4]).astype('float64')
            np_y = np.array([1, 5, 2]).astype('float64')
            x = fluid.dygraph.to_variable(np_x)
            y = fluid.dygraph.to_variable(np_y)
            z = self._executed_api(x, y)
            np_z = z.numpy()
491
            z_expected = np.array([1.0, -2.0, 2.0])
492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
            self.assertEqual((np_z == z_expected).all(), True)


class TestSubtractInplaceApi(TestSubtractApi):
    def _executed_api(self, x, y, name=None):
        return x.subtract_(y, name)


class TestSubtractInplaceBroadcastSuccess(unittest.TestCase):
    def init_data(self):
        self.x_numpy = np.random.rand(2, 3, 4).astype('float')
        self.y_numpy = np.random.rand(3, 4).astype('float')

    def test_broadcast_success(self):
        paddle.disable_static()
        self.init_data()
        x = paddle.to_tensor(self.x_numpy)
        y = paddle.to_tensor(self.y_numpy)
        inplace_result = x.subtract_(y)
        numpy_result = self.x_numpy - self.y_numpy
        self.assertEqual((inplace_result.numpy() == numpy_result).all(), True)
        paddle.enable_static()


class TestSubtractInplaceBroadcastSuccess2(TestSubtractInplaceBroadcastSuccess):
    def init_data(self):
        self.x_numpy = np.random.rand(1, 2, 3, 1).astype('float')
        self.y_numpy = np.random.rand(3, 1).astype('float')


class TestSubtractInplaceBroadcastSuccess3(TestSubtractInplaceBroadcastSuccess):
    def init_data(self):
        self.x_numpy = np.random.rand(2, 3, 1, 5).astype('float')
        self.y_numpy = np.random.rand(1, 3, 1, 5).astype('float')


class TestSubtractInplaceBroadcastError(unittest.TestCase):
    def init_data(self):
        self.x_numpy = np.random.rand(3, 4).astype('float')
        self.y_numpy = np.random.rand(2, 3, 4).astype('float')

    def test_broadcast_errors(self):
        paddle.disable_static()
        self.init_data()
        x = paddle.to_tensor(self.x_numpy)
        y = paddle.to_tensor(self.y_numpy)

        def broadcast_shape_error():
            x.subtract_(y)

        self.assertRaises(ValueError, broadcast_shape_error)
        paddle.enable_static()


class TestSubtractInplaceBroadcastError2(TestSubtractInplaceBroadcastError):
    def init_data(self):
        self.x_numpy = np.random.rand(2, 1, 4).astype('float')
        self.y_numpy = np.random.rand(2, 3, 4).astype('float')


class TestSubtractInplaceBroadcastError3(TestSubtractInplaceBroadcastError):
    def init_data(self):
        self.x_numpy = np.random.rand(5, 2, 1, 4).astype('float')
        self.y_numpy = np.random.rand(2, 3, 4).astype('float')


558
class TestFloatElementwiseSubop(unittest.TestCase):
559
    def test_dygraph_sub(self):
560 561 562 563 564 565 566 567 568 569 570
        paddle.disable_static()

        np_a = np.random.random((2, 3, 4)).astype(np.float64)
        np_b = np.random.random((2, 3, 4)).astype(np.float64)

        tensor_a = paddle.to_tensor(np_a, dtype="float32")
        tensor_b = paddle.to_tensor(np_b, dtype="float32")

        # normal case: tensor - tensor
        expect_out = np_a - np_b
        actual_out = tensor_a - tensor_b
571 572 573
        np.testing.assert_allclose(
            actual_out, expect_out, rtol=1e-07, atol=1e-07
        )
574 575 576 577

        # normal case: tensor - scalar
        expect_out = np_a - 1
        actual_out = tensor_a - 1
578 579 580
        np.testing.assert_allclose(
            actual_out, expect_out, rtol=1e-07, atol=1e-07
        )
581 582 583 584

        # normal case: scalar - tenor
        expect_out = 1 - np_a
        actual_out = 1 - tensor_a
585 586 587
        np.testing.assert_allclose(
            actual_out, expect_out, rtol=1e-07, atol=1e-07
        )
588 589 590 591

        paddle.enable_static()


592
class TestFloatElementwiseSubop1(unittest.TestCase):
593
    def test_dygraph_sub(self):
594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617
        paddle.disable_static()

        np_a = np.random.random((2, 3, 4)).astype(np.float32)
        np_b = np.random.random((2, 3, 4)).astype(np.float32)

        tensor_a = paddle.to_tensor(np_a, dtype="float32")
        tensor_b = paddle.to_tensor(np_b, dtype="float32")

        # normal case: nparray - tenor
        expect_out = np_a - np_b
        actual_out = np_a - tensor_b
        np.testing.assert_allclose(
            actual_out, expect_out, rtol=1e-07, atol=1e-07
        )

        # normal case: tenor - nparray
        actual_out = tensor_a - np_b
        np.testing.assert_allclose(
            actual_out, expect_out, rtol=1e-07, atol=1e-07
        )

        paddle.enable_static()


G
gongweibao 已提交
618
if __name__ == '__main__':
C
chentianyu03 已提交
619
    paddle.enable_static()
G
gongweibao 已提交
620
    unittest.main()