Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
8672e153
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
8672e153
编写于
9月 04, 2019
作者:
D
danleifeng
提交者:
gongweibao
9月 04, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
elementwise broadcast function enhancement (#19536)
elementwise broadcast function enhancement
上级
a50785b0
变更
12
隐藏空白更改
内联
并排
Showing
12 changed file
with
293 addition
and
32 deletion
+293
-32
paddle/fluid/operators/elementwise/elementwise_op_function.h
paddle/fluid/operators/elementwise/elementwise_op_function.h
+172
-23
python/paddle/fluid/tests/unittests/ngraph/test_elementwise_max_ngraph_op.py
.../tests/unittests/ngraph/test_elementwise_max_ngraph_op.py
+1
-1
python/paddle/fluid/tests/unittests/ngraph/test_elementwise_min_ngraph_op.py
.../tests/unittests/ngraph/test_elementwise_min_ngraph_op.py
+1
-1
python/paddle/fluid/tests/unittests/ngraph/test_elementwise_pow_ngraph_op.py
.../tests/unittests/ngraph/test_elementwise_pow_ngraph_op.py
+1
-1
python/paddle/fluid/tests/unittests/ngraph/test_elementwise_sub_ngraph_op.py
.../tests/unittests/ngraph/test_elementwise_sub_ngraph_op.py
+1
-1
python/paddle/fluid/tests/unittests/test_elementwise_add_op.py
...n/paddle/fluid/tests/unittests/test_elementwise_add_op.py
+28
-0
python/paddle/fluid/tests/unittests/test_elementwise_div_op.py
...n/paddle/fluid/tests/unittests/test_elementwise_div_op.py
+20
-0
python/paddle/fluid/tests/unittests/test_elementwise_max_op.py
...n/paddle/fluid/tests/unittests/test_elementwise_max_op.py
+12
-0
python/paddle/fluid/tests/unittests/test_elementwise_min_op.py
...n/paddle/fluid/tests/unittests/test_elementwise_min_op.py
+17
-5
python/paddle/fluid/tests/unittests/test_elementwise_mul_op.py
...n/paddle/fluid/tests/unittests/test_elementwise_mul_op.py
+20
-0
python/paddle/fluid/tests/unittests/test_elementwise_pow_op.py
...n/paddle/fluid/tests/unittests/test_elementwise_pow_op.py
+10
-0
python/paddle/fluid/tests/unittests/test_elementwise_sub_op.py
...n/paddle/fluid/tests/unittests/test_elementwise_sub_op.py
+10
-0
未找到文件。
paddle/fluid/operators/elementwise/elementwise_op_function.h
浏览文件 @
8672e153
...
...
@@ -47,25 +47,65 @@ namespace operators {
* 2. shape(X) = (2, 3, 4, 5), shape(Y) = (4,5)
* pre=2*3, n=4*5, post=1
* x.shape(6, 20, 1) * y.shape(1, 20, 1).broadcast(6, 20, 1)
*
* New parameter: *mid_flag* is added to solve m*n*k & m*1*k
* broadcast cases.
* 3. shape(X) = (2, 3, 4, 5), shape(Y) = (2, 1, 4, 5)
* mid_flag should not be NULL.
* x.shape(2, 3, 20) * y.shape(2, 1, 20).broadcast(2, 3, 20)
*/
inline
void
get_mid_dims
(
const
framework
::
DDim
&
x_dims
,
const
framework
::
DDim
&
y_dims
,
const
int
axis
,
int
*
pre
,
int
*
n
,
int
*
post
)
{
int
*
pre
,
int
*
n
,
int
*
post
,
int
*
mid_flag
=
NULL
)
{
*
pre
=
1
;
*
n
=
1
;
*
post
=
1
;
for
(
int
i
=
0
;
i
<
axis
;
++
i
)
{
(
*
pre
)
*=
x_dims
[
i
];
}
if
(
mid_flag
!=
NULL
)
{
*
mid_flag
=
0
;
int
mid
=
0
;
for
(
int
i
=
0
;
i
<
axis
;
++
i
)
{
(
*
pre
)
*=
x_dims
[
i
];
}
for
(
int
i
=
0
;
i
<
y_dims
.
size
();
++
i
)
{
if
(
x_dims
[
i
+
axis
]
!=
y_dims
[
i
])
{
// only support single y_dims[i] = 1 now.
PADDLE_ENFORCE_EQ
(
*
mid_flag
,
0
,
"Broadcast support y_dims with single 1."
);
PADDLE_ENFORCE_EQ
(
y_dims
[
i
],
1
,
"Broadcast dimension mismatch."
);
// m*n*k m*1*k
for
(
int
j
=
0
;
j
<
i
;
++
j
)
{
(
*
pre
)
*=
y_dims
[
j
];
}
*
n
=
std
::
max
(
x_dims
[
i
+
axis
],
y_dims
[
i
]);
*
mid_flag
=
1
;
mid
=
i
;
break
;
}
(
*
n
)
*=
y_dims
[
i
];
}
if
(
*
mid_flag
)
{
for
(
int
i
=
mid
+
1
;
i
<
x_dims
.
size
();
++
i
)
{
(
*
post
)
*=
x_dims
[
i
];
}
}
else
{
for
(
int
i
=
axis
+
y_dims
.
size
();
i
<
x_dims
.
size
();
++
i
)
{
(
*
post
)
*=
x_dims
[
i
];
}
}
}
else
{
// for fused_elementwise_activation_op. keep the old version.
for
(
int
i
=
0
;
i
<
axis
;
++
i
)
{
(
*
pre
)
*=
x_dims
[
i
];
}
for
(
int
i
=
0
;
i
<
y_dims
.
size
();
++
i
)
{
PADDLE_ENFORCE_EQ
(
x_dims
[
i
+
axis
],
y_dims
[
i
],
"Broadcast dimension mismatch."
);
(
*
n
)
*=
y_dims
[
i
];
}
for
(
int
i
=
0
;
i
<
y_dims
.
size
();
++
i
)
{
PADDLE_ENFORCE_EQ
(
x_dims
[
i
+
axis
],
y_dims
[
i
],
"Broadcast dimension mismatch."
);
(
*
n
)
*=
y_dims
[
i
];
}
for
(
int
i
=
axis
+
y_dims
.
size
();
i
<
x_dims
.
size
();
++
i
)
{
(
*
post
)
*=
x_dims
[
i
];
for
(
int
i
=
axis
+
y_dims
.
size
();
i
<
x_dims
.
size
();
++
i
)
{
(
*
post
)
*=
x_dims
[
i
];
}
}
}
...
...
@@ -171,7 +211,6 @@ class MidWiseTransformIterator<T, platform::CPUDeviceContext>
}
}
}
return
*
this
;
}
...
...
@@ -268,6 +307,15 @@ class TransformFunctor {
MidWiseTransformIterator
<
T
,
DeviceContext
>
(
y_
,
n
,
post
),
z_
,
func_
);
}
inline
void
RunMidRowWise
(
int
n
,
int
pre
,
int
post
)
const
{
platform
::
Transform
<
DeviceContext
>
trans
;
for
(
int
i
=
0
;
i
<
pre
;
i
++
)
{
trans
(
ctx_
,
x_
+
i
*
n
*
post
,
x_
+
(
i
+
1
)
*
n
*
post
,
RowwiseTransformIterator
<
T
,
DeviceContext
>
(
y_
+
i
*
post
,
post
),
z_
+
i
*
n
*
post
,
func_
);
}
}
private:
const
T
*
x_
;
const
T
*
y_
;
...
...
@@ -501,6 +549,88 @@ static void ElemwiseGradBroadcast2CUDA(cudaStream_t stream, const T *x,
#endif
template
<
typename
T
,
typename
DX_OP
,
typename
DY_OP
>
static
void
ElemwiseGradBroadcastMid2CPU
(
const
T
*
x
,
const
T
*
y
,
const
T
*
out
,
const
T
*
dout
,
int
pre
,
int
n
,
int
post
,
DX_OP
dx_op
,
DY_OP
dy_op
,
T
*
dx
,
T
*
dy
)
{
for
(
int
i
=
0
;
i
<
pre
;
++
i
)
{
for
(
int
j
=
0
;
j
<
n
;
++
j
)
{
for
(
int
k
=
0
;
k
<
post
;
++
k
)
{
int
x_offset
=
i
*
n
*
post
+
j
*
post
+
k
;
int
y_offset
=
i
*
post
+
k
;
if
(
dx
!=
nullptr
)
{
dx
[
x_offset
]
=
dx_op
(
x
[
x_offset
],
y
[
y_offset
],
out
[
x_offset
],
dout
[
x_offset
]);
}
if
(
dy
!=
nullptr
)
{
T
tmp
=
dy_op
(
x
[
x_offset
],
y
[
y_offset
],
out
[
x_offset
],
dout
[
x_offset
]);
if
(
j
==
0
)
{
dy
[
y_offset
]
=
tmp
;
}
else
{
dy
[
y_offset
]
+=
tmp
;
}
}
}
}
}
}
#ifdef __NVCC__
template
<
typename
T
,
typename
DX_OP
,
typename
DY_OP
>
static
__global__
void
ElemwiseGradBroadcastMid2CUDAKernel
(
const
T
*
x
,
const
T
*
y
,
const
T
*
out
,
const
T
*
dout
,
int
pre
,
int
n
,
int
post
,
DX_OP
dx_op
,
DY_OP
dy_op
,
T
*
dx
,
T
*
dy
)
{
int
j
=
threadIdx
.
x
;
int
tid
=
blockIdx
.
x
;
T
val
(
0
);
int
ttid
=
tid
;
while
(
true
)
{
int
i
=
ttid
/
post
;
int
k
=
ttid
%
post
;
if
(
i
>=
pre
)
break
;
int
x_offset
=
i
*
n
*
post
+
j
*
post
+
k
;
int
y_offset
=
i
*
post
+
k
;
if
(
dx
!=
nullptr
)
{
dx
[
x_offset
]
=
dx_op
(
x
[
x_offset
],
y
[
y_offset
],
out
[
x_offset
],
dout
[
x_offset
]);
}
if
(
dy
!=
nullptr
)
{
val
+=
dy_op
(
x
[
x_offset
],
y
[
y_offset
],
out
[
x_offset
],
dout
[
x_offset
]);
}
ttid
+=
ELEMWISE_MAX_BLOCK_DIM
;
}
if
(
dy
)
{
int
h
=
n
;
h
=
h
>
ELEMWISE_MAX_BLOCK_DIM
?
ELEMWISE_MAX_BLOCK_DIM
:
h
;
val
=
paddle
::
platform
::
reduceSum
(
val
,
j
,
h
);
if
(
threadIdx
.
x
==
0
)
{
dy
[
tid
]
=
val
;
}
}
}
template
<
typename
T
,
typename
DX_OP
,
typename
DY_OP
>
static
void
ElemwiseGradBroadcastMid2CUDA
(
cudaStream_t
stream
,
const
T
*
x
,
const
T
*
y
,
const
T
*
out
,
const
T
*
dout
,
int
pre
,
int
n
,
int
post
,
DX_OP
dx_op
,
DY_OP
dy_op
,
T
*
dx
,
T
*
dy
)
{
int
block_size
=
std
::
min
(
ELEMWISE_MAX_BLOCK_DIM
,
n
);
int
gird_size
=
pre
*
post
;
ElemwiseGradBroadcastMid2CUDAKernel
<<<
gird_size
,
block_size
,
0
,
stream
>>>
(
x
,
y
,
out
,
dout
,
pre
,
n
,
post
,
dx_op
,
dy_op
,
dx
,
dy
);
}
#endif
template
<
typename
DeviceContext
,
typename
T
,
typename
DX_OP
,
typename
DY_OP
>
void
ElemwiseGradComputeNoBroadcast
(
const
framework
::
ExecutionContext
&
ctx
,
const
framework
::
DDim
&
x_dim
,
...
...
@@ -533,23 +663,39 @@ void ElemwiseGradComputeWithBroadcast(
auto
y_dim
=
trim_trailing_singular_dims
(
y_dim_untrimed
);
axis
=
(
y_dim
.
size
()
==
0
)
?
x_dim
.
size
()
:
axis
;
int
pre
,
n
,
post
;
get_mid_dims
(
x_dim
,
y_dim
,
axis
,
&
pre
,
&
n
,
&
post
);
if
(
post
==
1
)
{
int
h
=
pre
;
int
w
=
n
;
int
pre
,
n
,
post
,
mid_flag
=
0
;
get_mid_dims
(
x_dim
,
y_dim
,
axis
,
&
pre
,
&
n
,
&
post
,
&
mid_flag
);
if
(
mid_flag
)
{
PADDLE_ENFORCE_EQ
(
mid_flag
,
1
,
"mid_flag should be no more than 1."
);
if
(
platform
::
is_gpu_place
(
ctx
.
GetPlace
()))
{
#ifdef __NVCC__
ElemwiseGradBroadcastMid2CUDA
(
ctx
.
template
device_context
<
DeviceContext
>().
stream
(),
x
.
data
<
T
>
(),
y
.
data
<
T
>
(),
out
.
data
<
T
>
(),
dout
.
data
<
T
>
(),
pre
,
n
,
post
,
dx_op
,
dy_op
,
dx
==
nullptr
?
nullptr
:
dx
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()),
dy
==
nullptr
?
nullptr
:
dy
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()));
#endif
}
else
{
ElemwiseGradBroadcastMid2CPU
(
x
.
data
<
T
>
(),
y
.
data
<
T
>
(),
out
.
data
<
T
>
(),
dout
.
data
<
T
>
(),
pre
,
n
,
post
,
dx_op
,
dy_op
,
dx
==
nullptr
?
nullptr
:
dx
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()),
dy
==
nullptr
?
nullptr
:
dy
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()));
}
}
else
if
(
post
==
1
)
{
if
(
platform
::
is_gpu_place
(
ctx
.
GetPlace
()))
{
#ifdef __NVCC__
ElemwiseGradBroadcast1CUDA
(
ctx
.
template
device_context
<
DeviceContext
>().
stream
(),
x
.
data
<
T
>
(),
y
.
data
<
T
>
(),
out
.
data
<
T
>
(),
dout
.
data
<
T
>
(),
h
,
w
,
dx_op
,
dy_op
,
y
.
data
<
T
>
(),
out
.
data
<
T
>
(),
dout
.
data
<
T
>
(),
pre
,
n
,
dx_op
,
dy_op
,
dx
==
nullptr
?
nullptr
:
dx
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()),
dy
==
nullptr
?
nullptr
:
dy
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()));
#endif
}
else
{
ElemwiseGradBroadcast1CPU
(
x
.
data
<
T
>
(),
y
.
data
<
T
>
(),
out
.
data
<
T
>
(),
dout
.
data
<
T
>
(),
h
,
w
,
dx_op
,
dy_op
,
dx
==
nullptr
?
nullptr
:
dx
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()),
x
.
data
<
T
>
(),
y
.
data
<
T
>
(),
out
.
data
<
T
>
(),
dout
.
data
<
T
>
(),
pre
,
n
,
dx_op
,
dy_op
,
dx
==
nullptr
?
nullptr
:
dx
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()),
dy
==
nullptr
?
nullptr
:
dy
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()));
}
}
else
{
...
...
@@ -689,9 +835,12 @@ void ElementwiseComputeEx(const framework::ExecutionContext &ctx,
"Axis should be in range [0, x_dims)"
);
auto
y_dims
=
trim_trailing_singular_dims
(
y_dims_untrimed
);
axis
=
(
y_dims
.
size
()
==
0
)
?
x_dims
.
size
()
:
axis
;
int
pre
,
n
,
post
;
get_mid_dims
(
x_dims
,
y_dims
,
axis
,
&
pre
,
&
n
,
&
post
);
int
pre
,
n
,
post
,
mid_flag
=
0
;
get_mid_dims
(
x_dims
,
y_dims
,
axis
,
&
pre
,
&
n
,
&
post
,
&
mid_flag
);
if
(
mid_flag
)
{
functor
.
RunMidRowWise
(
n
,
pre
,
post
);
return
;
}
if
(
post
==
1
)
{
functor
.
RunRowWise
(
n
,
pre
);
return
;
...
...
python/paddle/fluid/tests/unittests/ngraph/test_elementwise_max_ngraph_op.py
浏览文件 @
8672e153
...
...
@@ -16,7 +16,7 @@ from __future__ import print_function
import
unittest
,
sys
sys
.
path
.
append
(
"../"
)
from
test_elementwise_max_op
import
*
from
test_elementwise_max_op
import
TestElementwiseMaxOp_scalar
,
TestElementwiseMaxOp_Vector
,
TestElementwiseMaxOp_broadcast_0
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/ngraph/test_elementwise_min_ngraph_op.py
浏览文件 @
8672e153
...
...
@@ -16,7 +16,7 @@ from __future__ import print_function
import
unittest
,
sys
sys
.
path
.
append
(
"../"
)
from
test_elementwise_min_op
import
*
from
test_elementwise_min_op
import
TestElementwiseMinOp_scalar
,
TestElementwiseMinOp_Vector
,
TestElementwiseMinOp_broadcast_0
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/ngraph/test_elementwise_pow_ngraph_op.py
浏览文件 @
8672e153
...
...
@@ -16,7 +16,7 @@ from __future__ import print_function
import
unittest
,
sys
sys
.
path
.
append
(
"../"
)
from
test_elementwise_pow_op
import
*
from
test_elementwise_pow_op
import
TestElementwisePowOp_scalar
,
TestElementwisePowOp_tensor
,
TestElementwisePowOp_broadcast_0
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/ngraph/test_elementwise_sub_ngraph_op.py
浏览文件 @
8672e153
...
...
@@ -16,7 +16,7 @@ from __future__ import print_function
import
unittest
,
sys
sys
.
path
.
append
(
"../"
)
from
test_elementwise_sub_op
import
*
from
test_elementwise_sub_op
import
TestElementwiseSubOp_scalar
,
TestElementwiseSubOp_Vector
,
TestElementwiseSubOp_broadcast_0
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_elementwise_add_op.py
浏览文件 @
8672e153
...
...
@@ -218,6 +218,34 @@ class TestFP16ElementwiseAddOp_broadcast_4(TestFP16ElementwiseAddOp):
self
.
axis
=
0
class
TestElementwiseAddOp_broadcast_5
(
TestElementwiseAddOp
):
def
init_input_output
(
self
):
self
.
x
=
np
.
random
.
rand
(
2
,
3
,
4
).
astype
(
self
.
dtype
)
self
.
y
=
np
.
random
.
rand
(
2
,
1
,
4
).
astype
(
self
.
dtype
)
self
.
out
=
self
.
x
+
self
.
y
class
TestFP16ElementwiseAddOp_broadcast_5
(
TestFP16ElementwiseAddOp
):
def
init_input_output
(
self
):
self
.
x
=
np
.
random
.
rand
(
2
,
3
,
4
).
astype
(
self
.
dtype
)
self
.
y
=
np
.
random
.
rand
(
2
,
1
,
4
).
astype
(
self
.
dtype
)
self
.
out
=
self
.
x
+
self
.
y
class
TestElementwiseAddOp_broadcast_6
(
TestElementwiseAddOp
):
def
init_input_output
(
self
):
self
.
x
=
np
.
random
.
rand
(
2
,
3
,
4
,
5
).
astype
(
self
.
dtype
)
self
.
y
=
np
.
random
.
rand
(
2
,
3
,
1
,
5
).
astype
(
self
.
dtype
)
self
.
out
=
self
.
x
+
self
.
y
class
TestFP16ElementwiseAddOp_broadcast_6
(
TestFP16ElementwiseAddOp
):
def
init_input_output
(
self
):
self
.
x
=
np
.
random
.
rand
(
2
,
3
,
4
,
5
).
astype
(
self
.
dtype
)
self
.
y
=
np
.
random
.
rand
(
2
,
3
,
1
,
5
).
astype
(
self
.
dtype
)
self
.
out
=
self
.
x
+
self
.
y
class
TestElementwiseAddOp_rowwise_add_0
(
TestElementwiseAddOp
):
def
init_input_output
(
self
):
self
.
x
=
np
.
random
.
rand
(
2
,
3
,
4
).
astype
(
self
.
dtype
)
...
...
python/paddle/fluid/tests/unittests/test_elementwise_div_op.py
浏览文件 @
8672e153
...
...
@@ -131,6 +131,26 @@ class TestElementwiseDivOp_broadcast_3(ElementwiseDivOp):
}
class
TestElementwiseDivOp_broadcast_4
(
ElementwiseDivOp
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_div"
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
2
,
3
,
4
]).
astype
(
"float32"
),
'Y'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
2
,
1
,
4
]).
astype
(
"float32"
)
}
self
.
outputs
=
{
'Out'
:
np
.
divide
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
])}
class
TestElementwiseDivOp_broadcast_5
(
ElementwiseDivOp
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_div"
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
2
,
3
,
4
,
5
]).
astype
(
"float32"
),
'Y'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
2
,
3
,
1
,
5
]).
astype
(
"float32"
)
}
self
.
outputs
=
{
'Out'
:
np
.
divide
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
])}
class
TestElementwiseDivOpFp16
(
ElementwiseDivOp
):
def
init_dtype
(
self
):
self
.
dtype
=
np
.
float16
...
...
python/paddle/fluid/tests/unittests/test_elementwise_max_op.py
浏览文件 @
8672e153
...
...
@@ -128,5 +128,17 @@ class TestElementwiseMaxOp_broadcast_3(TestElementwiseOp):
}
class
TestElementwiseMaxOp_broadcast_4
(
TestElementwiseOp
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_max"
x
=
np
.
random
.
uniform
(
0.5
,
1
,
(
2
,
3
,
4
,
5
)).
astype
(
np
.
float32
)
sgn
=
np
.
random
.
choice
([
-
1
,
1
],
(
2
,
3
,
1
,
5
)).
astype
(
np
.
float32
)
y
=
x
+
sgn
*
\
np
.
random
.
uniform
(
1
,
2
,
(
2
,
3
,
1
,
5
)).
astype
(
np
.
float32
)
self
.
inputs
=
{
'X'
:
x
,
'Y'
:
y
}
self
.
outputs
=
{
'Out'
:
np
.
maximum
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
])}
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_elementwise_min_op.py
浏览文件 @
8672e153
...
...
@@ -55,7 +55,7 @@ class TestElementwiseMinOp_scalar(TestElementwiseOp):
self
.
outputs
=
{
'Out'
:
np
.
minimum
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
])}
class
TestElementwiseM
ax
Op_Vector
(
TestElementwiseOp
):
class
TestElementwiseM
in
Op_Vector
(
TestElementwiseOp
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_min"
x
=
np
.
random
.
random
((
32
,
)).
astype
(
"float32"
)
...
...
@@ -65,7 +65,7 @@ class TestElementwiseMaxOp_Vector(TestElementwiseOp):
self
.
outputs
=
{
'Out'
:
np
.
minimum
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
])}
class
TestElementwiseM
ax
Op_broadcast_0
(
TestElementwiseOp
):
class
TestElementwiseM
in
Op_broadcast_0
(
TestElementwiseOp
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_min"
x
=
np
.
random
.
uniform
(
0.5
,
1
,
(
2
,
3
,
4
)).
astype
(
np
.
float32
)
...
...
@@ -81,7 +81,7 @@ class TestElementwiseMaxOp_broadcast_0(TestElementwiseOp):
}
class
TestElementwiseM
ax
Op_broadcast_1
(
TestElementwiseOp
):
class
TestElementwiseM
in
Op_broadcast_1
(
TestElementwiseOp
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_min"
x
=
np
.
random
.
uniform
(
0.5
,
1
,
(
2
,
3
,
4
)).
astype
(
np
.
float32
)
...
...
@@ -97,7 +97,7 @@ class TestElementwiseMaxOp_broadcast_1(TestElementwiseOp):
}
class
TestElementwiseM
ax
Op_broadcast_2
(
TestElementwiseOp
):
class
TestElementwiseM
in
Op_broadcast_2
(
TestElementwiseOp
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_min"
x
=
np
.
random
.
uniform
(
0.5
,
1
,
(
2
,
3
,
4
)).
astype
(
np
.
float32
)
...
...
@@ -112,7 +112,7 @@ class TestElementwiseMaxOp_broadcast_2(TestElementwiseOp):
}
class
TestElementwiseM
ax
Op_broadcast_3
(
TestElementwiseOp
):
class
TestElementwiseM
in
Op_broadcast_3
(
TestElementwiseOp
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_min"
x
=
np
.
random
.
uniform
(
0.5
,
1
,
(
2
,
3
,
4
,
5
)).
astype
(
np
.
float32
)
...
...
@@ -128,5 +128,17 @@ class TestElementwiseMaxOp_broadcast_3(TestElementwiseOp):
}
class
TestElementwiseMinOp_broadcast_4
(
TestElementwiseOp
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_min"
x
=
np
.
random
.
uniform
(
0.5
,
1
,
(
2
,
3
,
4
,
5
)).
astype
(
np
.
float32
)
sgn
=
np
.
random
.
choice
([
-
1
,
1
],
(
2
,
3
,
1
,
5
)).
astype
(
np
.
float32
)
y
=
x
+
sgn
*
\
np
.
random
.
uniform
(
1
,
2
,
(
2
,
3
,
1
,
5
)).
astype
(
np
.
float32
)
self
.
inputs
=
{
'X'
:
x
,
'Y'
:
y
}
self
.
outputs
=
{
'Out'
:
np
.
minimum
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
])}
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_elementwise_mul_op.py
浏览文件 @
8672e153
...
...
@@ -135,6 +135,26 @@ class TestElementwiseMulOp_broadcast_3(ElementwiseMulOp):
}
class
TestElementwiseMulOp_broadcast_4
(
ElementwiseMulOp
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_mul"
self
.
inputs
=
{
'X'
:
np
.
random
.
rand
(
2
,
3
,
4
).
astype
(
np
.
float64
),
'Y'
:
np
.
random
.
rand
(
2
,
1
,
4
).
astype
(
np
.
float64
)
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
]
*
self
.
inputs
[
'Y'
]}
class
TestElementwiseMulOp_broadcast_5
(
ElementwiseMulOp
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_mul"
self
.
inputs
=
{
'X'
:
np
.
random
.
rand
(
2
,
3
,
4
,
5
).
astype
(
np
.
float64
),
'Y'
:
np
.
random
.
rand
(
2
,
3
,
1
,
5
).
astype
(
np
.
float64
)
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
]
*
self
.
inputs
[
'Y'
]}
class
TestElementwiseMulOpFp16
(
ElementwiseMulOp
):
def
init_dtype
(
self
):
self
.
dtype
=
np
.
float16
...
...
python/paddle/fluid/tests/unittests/test_elementwise_pow_op.py
浏览文件 @
8672e153
...
...
@@ -104,5 +104,15 @@ class TestElementwisePowOp_broadcast_3(TestElementwisePowOp):
}
class
TestElementwisePowOp_broadcast_4
(
TestElementwisePowOp
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_pow"
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
2
,
3
,
4
,
5
]).
astype
(
"float32"
),
'Y'
:
np
.
random
.
uniform
(
0.1
,
1
,
[
2
,
3
,
1
,
5
]).
astype
(
"float32"
)
}
self
.
outputs
=
{
'Out'
:
np
.
power
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
])}
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_elementwise_sub_op.py
浏览文件 @
8672e153
...
...
@@ -117,5 +117,15 @@ class TestElementwiseSubOp_broadcast_3(TestElementwiseOp):
}
class
TestElementwiseSubOp_broadcast_4
(
TestElementwiseOp
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_sub"
self
.
inputs
=
{
'X'
:
np
.
random
.
rand
(
2
,
3
,
4
,
5
).
astype
(
np
.
float32
),
'Y'
:
np
.
random
.
rand
(
2
,
3
,
1
,
5
).
astype
(
np
.
float32
)
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
]
-
self
.
inputs
[
'Y'
]}
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录