test_elementwise_sub_op.py 15.3 KB
Newer Older
1
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6 7 8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

G
gongweibao 已提交
15
import unittest
16

G
gongweibao 已提交
17
import numpy as np
18 19
from op_test import OpTest, convert_float_to_uint16, skip_check_grad_ci

C
chentianyu03 已提交
20
import paddle
21
import paddle.fluid as fluid
G
gongweibao 已提交
22 23 24 25 26 27


class TestElementwiseOp(OpTest):
    def setUp(self):
        self.op_type = "elementwise_sub"
        self.inputs = {
28
            'X': np.random.uniform(0.1, 1, [2, 3, 4, 5]).astype("float64"),
29
            'Y': np.random.uniform(0.1, 1, [2, 3, 4, 5]).astype("float64"),
G
gongweibao 已提交
30 31 32 33 34 35 36
        }
        self.outputs = {'Out': self.inputs['X'] - self.inputs['Y']}

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
37
        self.check_grad(['X', 'Y'], 'Out')
G
gongweibao 已提交
38 39

    def test_check_grad_ingore_x(self):
40 41 42
        self.check_grad(
            ['Y'], 'Out', max_relative_error=0.005, no_grad_set=set("X")
        )
G
gongweibao 已提交
43 44

    def test_check_grad_ingore_y(self):
45 46 47
        self.check_grad(
            ['X'], 'Out', max_relative_error=0.005, no_grad_set=set('Y')
        )
G
gongweibao 已提交
48 49


50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
class TestElementwiseSubOp_ZeroDim1(TestElementwiseOp):
    def setUp(self):
        self.op_type = "elementwise_sub"
        self.inputs = {
            'X': np.random.uniform(0.1, 1, []).astype("float64"),
            'Y': np.random.uniform(0.1, 1, []).astype("float64"),
        }
        self.outputs = {'Out': self.inputs['X'] - self.inputs['Y']}


class TestElementwiseSubOp_ZeroDim2(TestElementwiseOp):
    def setUp(self):
        self.op_type = "elementwise_sub"
        self.inputs = {
            'X': np.random.uniform(0.1, 1, [2, 3, 4, 5]).astype("float64"),
            'Y': np.random.uniform(0.1, 1, []).astype("float64"),
        }
        self.outputs = {'Out': self.inputs['X'] - self.inputs['Y']}


class TestElementwiseSubOp_ZeroDim3(TestElementwiseOp):
    def setUp(self):
        self.op_type = "elementwise_sub"
        self.inputs = {
            'X': np.random.uniform(0.1, 1, []).astype("float64"),
            'Y': np.random.uniform(0.1, 1, [2, 3, 4, 5]).astype("float64"),
        }
        self.outputs = {'Out': self.inputs['X'] - self.inputs['Y']}


80 81 82 83 84 85 86 87 88 89
class TestBF16ElementwiseOp(OpTest):
    def setUp(self):
        self.op_type = "elementwise_sub"
        self.dtype = np.uint16
        x = np.random.uniform(0.1, 1, [13, 17]).astype(np.float32)
        y = np.random.uniform(0.1, 1, [13, 17]).astype(np.float32)
        out = x - y

        self.inputs = {
            'X': convert_float_to_uint16(x),
90
            'Y': convert_float_to_uint16(y),
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
        }
        self.outputs = {'Out': convert_float_to_uint16(out)}

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
        self.check_grad(['X', 'Y'], 'Out')

    def test_check_grad_ingore_x(self):
        self.check_grad(['Y'], 'Out', no_grad_set=set("X"))

    def test_check_grad_ingore_y(self):
        self.check_grad(['X'], 'Out', no_grad_set=set('Y'))


107
@skip_check_grad_ci(
108 109
    reason="[skip shape check] Use y_shape(1) to test broadcast."
)
110 111 112 113
class TestElementwiseSubOp_scalar(TestElementwiseOp):
    def setUp(self):
        self.op_type = "elementwise_sub"
        self.inputs = {
114
            'X': np.random.rand(10, 3, 4).astype(np.float64),
115
            'Y': np.random.rand(1).astype(np.float64),
116 117 118 119
        }
        self.outputs = {'Out': self.inputs['X'] - self.inputs['Y']}


G
gongweibao 已提交
120 121 122 123
class TestElementwiseSubOp_Vector(TestElementwiseOp):
    def setUp(self):
        self.op_type = "elementwise_sub"
        self.inputs = {
124 125
            'X': np.random.random((100,)).astype("float64"),
            'Y': np.random.random((100,)).astype("float64"),
G
gongweibao 已提交
126 127 128 129 130 131 132 133
        }
        self.outputs = {'Out': self.inputs['X'] - self.inputs['Y']}


class TestElementwiseSubOp_broadcast_0(TestElementwiseOp):
    def setUp(self):
        self.op_type = "elementwise_sub"
        self.inputs = {
134
            'X': np.random.rand(100, 3, 2).astype(np.float64),
135
            'Y': np.random.rand(100).astype(np.float64),
G
gongweibao 已提交
136 137 138 139
        }

        self.attrs = {'axis': 0}
        self.outputs = {
140
            'Out': self.inputs['X'] - self.inputs['Y'].reshape(100, 1, 1)
G
gongweibao 已提交
141 142 143 144 145 146 147
        }


class TestElementwiseSubOp_broadcast_1(TestElementwiseOp):
    def setUp(self):
        self.op_type = "elementwise_sub"
        self.inputs = {
148
            'X': np.random.rand(2, 100, 3).astype(np.float64),
149
            'Y': np.random.rand(100).astype(np.float64),
G
gongweibao 已提交
150 151 152 153
        }

        self.attrs = {'axis': 1}
        self.outputs = {
154
            'Out': self.inputs['X'] - self.inputs['Y'].reshape(1, 100, 1)
G
gongweibao 已提交
155 156 157 158 159 160 161
        }


class TestElementwiseSubOp_broadcast_2(TestElementwiseOp):
    def setUp(self):
        self.op_type = "elementwise_sub"
        self.inputs = {
162
            'X': np.random.rand(2, 3, 100).astype(np.float64),
163
            'Y': np.random.rand(100).astype(np.float64),
G
gongweibao 已提交
164 165 166
        }

        self.outputs = {
167
            'Out': self.inputs['X'] - self.inputs['Y'].reshape(1, 1, 100)
G
gongweibao 已提交
168 169 170 171 172 173 174
        }


class TestElementwiseSubOp_broadcast_3(TestElementwiseOp):
    def setUp(self):
        self.op_type = "elementwise_sub"
        self.inputs = {
175
            'X': np.random.rand(2, 10, 12, 3).astype(np.float64),
176
            'Y': np.random.rand(10, 12).astype(np.float64),
G
gongweibao 已提交
177 178 179 180
        }

        self.attrs = {'axis': 1}
        self.outputs = {
181
            'Out': self.inputs['X'] - self.inputs['Y'].reshape(1, 10, 12, 1)
G
gongweibao 已提交
182 183 184
        }


185 186 187 188
class TestElementwiseSubOp_broadcast_4(TestElementwiseOp):
    def setUp(self):
        self.op_type = "elementwise_sub"
        self.inputs = {
189
            'X': np.random.rand(2, 5, 3, 12).astype(np.float64),
190
            'Y': np.random.rand(2, 5, 1, 12).astype(np.float64),
191 192 193 194
        }
        self.outputs = {'Out': self.inputs['X'] - self.inputs['Y']}


195 196 197 198
class TestElementwiseSubOp_commonuse_1(TestElementwiseOp):
    def setUp(self):
        self.op_type = "elementwise_sub"
        self.inputs = {
199
            'X': np.random.rand(2, 3, 100).astype(np.float64),
200
            'Y': np.random.rand(1, 1, 100).astype(np.float64),
201 202 203 204 205 206 207 208
        }
        self.outputs = {'Out': self.inputs['X'] - self.inputs['Y']}


class TestElementwiseSubOp_commonuse_2(TestElementwiseOp):
    def setUp(self):
        self.op_type = "elementwise_sub"
        self.inputs = {
209
            'X': np.random.rand(10, 3, 1, 4).astype(np.float64),
210
            'Y': np.random.rand(10, 1, 12, 1).astype(np.float64),
211 212 213 214 215 216 217 218
        }
        self.outputs = {'Out': self.inputs['X'] - self.inputs['Y']}


class TestElementwiseSubOp_xsize_lessthan_ysize(TestElementwiseOp):
    def setUp(self):
        self.op_type = "elementwise_sub"
        self.inputs = {
219
            'X': np.random.rand(10, 12).astype(np.float64),
220
            'Y': np.random.rand(2, 3, 10, 12).astype(np.float64),
221 222 223 224 225
        }

        self.attrs = {'axis': 2}

        self.outputs = {
226
            'Out': self.inputs['X'].reshape(1, 1, 10, 12) - self.inputs['Y']
227 228 229
        }


C
chentianyu03 已提交
230 231 232 233 234 235 236 237 238 239
class TestComplexElementwiseSubOp(OpTest):
    def setUp(self):
        self.op_type = "elementwise_sub"
        self.dtype = np.float64
        self.shape = (2, 3, 4, 5)
        self.init_input_output()
        self.init_grad_input_output()

        self.inputs = {
            'X': OpTest.np_dtype_to_fluid_dtype(self.x),
240
            'Y': OpTest.np_dtype_to_fluid_dtype(self.y),
C
chentianyu03 已提交
241 242 243 244 245 246 247 248 249
        }
        self.attrs = {'axis': -1, 'use_mkldnn': False}
        self.outputs = {'Out': self.out}

    def init_base_dtype(self):
        self.dtype = np.float64

    def init_input_output(self):
        self.x = np.random.random(self.shape).astype(
250 251
            self.dtype
        ) + 1j * np.random.random(self.shape).astype(self.dtype)
C
chentianyu03 已提交
252
        self.y = np.random.random(self.shape).astype(
253 254
            self.dtype
        ) + 1j * np.random.random(self.shape).astype(self.dtype)
C
chentianyu03 已提交
255 256 257
        self.out = self.x - self.y

    def init_grad_input_output(self):
258 259 260
        self.grad_out = np.ones(self.shape, self.dtype) + 1j * np.ones(
            self.shape, self.dtype
        )
C
chentianyu03 已提交
261 262 263 264 265 266 267
        self.grad_x = self.grad_out
        self.grad_y = -self.grad_out

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
268 269 270 271 272 273
        self.check_grad(
            ['X', 'Y'],
            'Out',
            user_defined_grads=[self.grad_x, self.grad_y],
            user_defined_grad_outputs=[self.grad_out],
        )
C
chentianyu03 已提交
274 275

    def test_check_grad_ingore_x(self):
276 277 278 279 280 281 282
        self.check_grad(
            ['Y'],
            'Out',
            no_grad_set=set("X"),
            user_defined_grads=[self.grad_y],
            user_defined_grad_outputs=[self.grad_out],
        )
C
chentianyu03 已提交
283 284

    def test_check_grad_ingore_y(self):
285 286 287 288 289 290 291
        self.check_grad(
            ['X'],
            'Out',
            no_grad_set=set('Y'),
            user_defined_grads=[self.grad_x],
            user_defined_grad_outputs=[self.grad_out],
        )
C
chentianyu03 已提交
292 293 294 295 296 297


class TestRealComplexElementwiseSubOp(TestComplexElementwiseSubOp):
    def init_input_output(self):
        self.x = np.random.random(self.shape).astype(self.dtype)
        self.y = np.random.random(self.shape).astype(
298 299
            self.dtype
        ) + 1j * np.random.random(self.shape).astype(self.dtype)
C
chentianyu03 已提交
300 301 302
        self.out = self.x - self.y

    def init_grad_input_output(self):
303 304 305
        self.grad_out = np.ones(self.shape, self.dtype) + 1j * np.ones(
            self.shape, self.dtype
        )
C
chentianyu03 已提交
306 307 308 309
        self.grad_x = np.real(self.grad_out)
        self.grad_y = -self.grad_out


310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
class TestSubtractApi(unittest.TestCase):
    def _executed_api(self, x, y, name=None):
        return paddle.subtract(x, y, name)

    def test_name(self):
        with fluid.program_guard(fluid.Program()):
            x = fluid.data(name="x", shape=[2, 3], dtype="float32")
            y = fluid.data(name='y', shape=[2, 3], dtype='float32')

            y_1 = self._executed_api(x, y, name='subtract_res')
            self.assertEqual(('subtract_res' in y_1.name), True)

    def test_declarative(self):
        with fluid.program_guard(fluid.Program()):

            def gen_data():
                return {
                    "x": np.array([2, 3, 4]).astype('float32'),
328
                    "y": np.array([1, 5, 2]).astype('float32'),
329 330 331 332 333 334 335 336
                }

            x = fluid.data(name="x", shape=[3], dtype='float32')
            y = fluid.data(name="y", shape=[3], dtype='float32')
            z = self._executed_api(x, y)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            z_value = exe.run(feed=gen_data(), fetch_list=[z.name])
337
            z_expected = np.array([1.0, -2.0, 2.0])
338 339 340 341 342 343 344 345 346 347
            self.assertEqual((z_value == z_expected).all(), True)

    def test_dygraph(self):
        with fluid.dygraph.guard():
            np_x = np.array([2, 3, 4]).astype('float64')
            np_y = np.array([1, 5, 2]).astype('float64')
            x = fluid.dygraph.to_variable(np_x)
            y = fluid.dygraph.to_variable(np_y)
            z = self._executed_api(x, y)
            np_z = z.numpy()
348
            z_expected = np.array([1.0, -2.0, 2.0])
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
            self.assertEqual((np_z == z_expected).all(), True)


class TestSubtractInplaceApi(TestSubtractApi):
    def _executed_api(self, x, y, name=None):
        return x.subtract_(y, name)


class TestSubtractInplaceBroadcastSuccess(unittest.TestCase):
    def init_data(self):
        self.x_numpy = np.random.rand(2, 3, 4).astype('float')
        self.y_numpy = np.random.rand(3, 4).astype('float')

    def test_broadcast_success(self):
        paddle.disable_static()
        self.init_data()
        x = paddle.to_tensor(self.x_numpy)
        y = paddle.to_tensor(self.y_numpy)
        inplace_result = x.subtract_(y)
        numpy_result = self.x_numpy - self.y_numpy
        self.assertEqual((inplace_result.numpy() == numpy_result).all(), True)
        paddle.enable_static()


class TestSubtractInplaceBroadcastSuccess2(TestSubtractInplaceBroadcastSuccess):
    def init_data(self):
        self.x_numpy = np.random.rand(1, 2, 3, 1).astype('float')
        self.y_numpy = np.random.rand(3, 1).astype('float')


class TestSubtractInplaceBroadcastSuccess3(TestSubtractInplaceBroadcastSuccess):
    def init_data(self):
        self.x_numpy = np.random.rand(2, 3, 1, 5).astype('float')
        self.y_numpy = np.random.rand(1, 3, 1, 5).astype('float')


class TestSubtractInplaceBroadcastError(unittest.TestCase):
    def init_data(self):
        self.x_numpy = np.random.rand(3, 4).astype('float')
        self.y_numpy = np.random.rand(2, 3, 4).astype('float')

    def test_broadcast_errors(self):
        paddle.disable_static()
        self.init_data()
        x = paddle.to_tensor(self.x_numpy)
        y = paddle.to_tensor(self.y_numpy)

        def broadcast_shape_error():
            x.subtract_(y)

        self.assertRaises(ValueError, broadcast_shape_error)
        paddle.enable_static()


class TestSubtractInplaceBroadcastError2(TestSubtractInplaceBroadcastError):
    def init_data(self):
        self.x_numpy = np.random.rand(2, 1, 4).astype('float')
        self.y_numpy = np.random.rand(2, 3, 4).astype('float')


class TestSubtractInplaceBroadcastError3(TestSubtractInplaceBroadcastError):
    def init_data(self):
        self.x_numpy = np.random.rand(5, 2, 1, 4).astype('float')
        self.y_numpy = np.random.rand(2, 3, 4).astype('float')


415
class TestFloatElementwiseSubop(unittest.TestCase):
416
    def test_dygraph_sub(self):
417 418 419 420 421 422 423 424 425 426 427
        paddle.disable_static()

        np_a = np.random.random((2, 3, 4)).astype(np.float64)
        np_b = np.random.random((2, 3, 4)).astype(np.float64)

        tensor_a = paddle.to_tensor(np_a, dtype="float32")
        tensor_b = paddle.to_tensor(np_b, dtype="float32")

        # normal case: tensor - tensor
        expect_out = np_a - np_b
        actual_out = tensor_a - tensor_b
428 429 430
        np.testing.assert_allclose(
            actual_out, expect_out, rtol=1e-07, atol=1e-07
        )
431 432 433 434

        # normal case: tensor - scalar
        expect_out = np_a - 1
        actual_out = tensor_a - 1
435 436 437
        np.testing.assert_allclose(
            actual_out, expect_out, rtol=1e-07, atol=1e-07
        )
438 439 440 441

        # normal case: scalar - tenor
        expect_out = 1 - np_a
        actual_out = 1 - tensor_a
442 443 444
        np.testing.assert_allclose(
            actual_out, expect_out, rtol=1e-07, atol=1e-07
        )
445 446 447 448

        paddle.enable_static()


449
class TestFloatElementwiseSubop1(unittest.TestCase):
450
    def test_dygraph_sub(self):
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
        paddle.disable_static()

        np_a = np.random.random((2, 3, 4)).astype(np.float32)
        np_b = np.random.random((2, 3, 4)).astype(np.float32)

        tensor_a = paddle.to_tensor(np_a, dtype="float32")
        tensor_b = paddle.to_tensor(np_b, dtype="float32")

        # normal case: nparray - tenor
        expect_out = np_a - np_b
        actual_out = np_a - tensor_b
        np.testing.assert_allclose(
            actual_out, expect_out, rtol=1e-07, atol=1e-07
        )

        # normal case: tenor - nparray
        actual_out = tensor_a - np_b
        np.testing.assert_allclose(
            actual_out, expect_out, rtol=1e-07, atol=1e-07
        )

        paddle.enable_static()


G
gongweibao 已提交
475
if __name__ == '__main__':
C
chentianyu03 已提交
476
    paddle.enable_static()
G
gongweibao 已提交
477
    unittest.main()