Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
c7371b7b
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
c7371b7b
编写于
1月 11, 2021
作者:
C
chentianyu03
提交者:
GitHub
1月 11, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
type promotion for grad (#30177)
* type promotion for grad * add type promotion for div op
上级
6d14659f
变更
9
隐藏空白更改
内联
并排
Showing
9 changed file
with
208 addition
and
1 deletion
+208
-1
paddle/fluid/operators/elementwise/elementwise_div_op.h
paddle/fluid/operators/elementwise/elementwise_div_op.h
+15
-1
paddle/fluid/operators/elementwise/elementwise_op.h
paddle/fluid/operators/elementwise/elementwise_op.h
+26
-0
paddle/fluid/operators/kron_op.cc
paddle/fluid/operators/kron_op.cc
+13
-0
paddle/fluid/operators/matmul_v2_op.cc
paddle/fluid/operators/matmul_v2_op.cc
+21
-0
python/paddle/fluid/tests/unittests/test_elementwise_div_op.py
...n/paddle/fluid/tests/unittests/test_elementwise_div_op.py
+15
-0
python/paddle/fluid/tests/unittests/test_elementwise_mul_op.py
...n/paddle/fluid/tests/unittests/test_elementwise_mul_op.py
+15
-0
python/paddle/fluid/tests/unittests/test_elementwise_sub_op.py
...n/paddle/fluid/tests/unittests/test_elementwise_sub_op.py
+74
-0
python/paddle/fluid/tests/unittests/test_kron_op.py
python/paddle/fluid/tests/unittests/test_kron_op.py
+14
-0
python/paddle/fluid/tests/unittests/test_matmul_v2_op.py
python/paddle/fluid/tests/unittests/test_matmul_v2_op.py
+15
-0
未找到文件。
paddle/fluid/operators/elementwise/elementwise_div_op.h
浏览文件 @
c7371b7b
...
...
@@ -14,6 +14,7 @@ limitations under the License. */
#pragma once
#include <string>
#include <vector>
#include "paddle/fluid/operators/elementwise/elementwise_mul_op.h"
#include "paddle/fluid/operators/elementwise/elementwise_op.h"
...
...
@@ -203,7 +204,7 @@ class ElementwiseDivOpDoubleGrad : public framework::OperatorWithKernel {
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
input_data_type
=
OperatorWithKernel
::
IndicateVarDataType
(
ctx
,
"
DDX
"
);
auto
input_data_type
=
OperatorWithKernel
::
IndicateVarDataType
(
ctx
,
"
Out
"
);
#ifdef PADDLE_WITH_MKLDNN
if
(
this
->
CanMKLDNNBeUsed
(
ctx
))
{
...
...
@@ -214,6 +215,19 @@ class ElementwiseDivOpDoubleGrad : public framework::OperatorWithKernel {
#endif
return
framework
::
OpKernelType
(
input_data_type
,
ctx
.
GetPlace
());
}
framework
::
OpKernelType
GetKernelTypeForVar
(
const
std
::
string
&
var_name
,
const
framework
::
Tensor
&
tensor
,
const
framework
::
OpKernelType
&
expected_kernel_type
)
const
{
if
(
framework
::
IsComplexType
(
expected_kernel_type
.
data_type_
))
{
// only promote inputs’s types when contains complex input
return
framework
::
OpKernelType
(
tensor
.
type
(),
tensor
.
place
(),
tensor
.
layout
());
}
else
{
return
framework
::
OpKernelType
(
expected_kernel_type
.
data_type_
,
tensor
.
place
(),
tensor
.
layout
());
}
}
};
template
<
typename
DeviceContext
,
typename
T
>
...
...
paddle/fluid/operators/elementwise/elementwise_op.h
浏览文件 @
c7371b7b
...
...
@@ -289,6 +289,19 @@ class ElementwiseOpGrad : public framework::OperatorWithKernel {
#endif
return
framework
::
OpKernelType
(
input_data_type
,
ctx
.
GetPlace
());
}
framework
::
OpKernelType
GetKernelTypeForVar
(
const
std
::
string
&
var_name
,
const
framework
::
Tensor
&
tensor
,
const
framework
::
OpKernelType
&
expected_kernel_type
)
const
override
{
if
(
framework
::
IsComplexType
(
expected_kernel_type
.
data_type_
))
{
// only promote inputs’s types when contains complex input
return
framework
::
OpKernelType
(
tensor
.
type
(),
tensor
.
place
(),
tensor
.
layout
());
}
else
{
return
framework
::
OpKernelType
(
expected_kernel_type
.
data_type_
,
tensor
.
place
(),
tensor
.
layout
());
}
}
};
class
ElementwiseOpDoubleGrad
:
public
framework
::
OperatorWithKernel
{
...
...
@@ -326,6 +339,19 @@ class ElementwiseOpDoubleGrad : public framework::OperatorWithKernel {
#endif
return
framework
::
OpKernelType
(
input_data_type
,
ctx
.
GetPlace
());
}
framework
::
OpKernelType
GetKernelTypeForVar
(
const
std
::
string
&
var_name
,
const
framework
::
Tensor
&
tensor
,
const
framework
::
OpKernelType
&
expected_kernel_type
)
const
{
if
(
framework
::
IsComplexType
(
expected_kernel_type
.
data_type_
))
{
// only promote inputs’s types when contains complex input
return
framework
::
OpKernelType
(
tensor
.
type
(),
tensor
.
place
(),
tensor
.
layout
());
}
else
{
return
framework
::
OpKernelType
(
expected_kernel_type
.
data_type_
,
tensor
.
place
(),
tensor
.
layout
());
}
}
};
class
ElementwiseOpDoubleGradWithoutDXDY
...
...
paddle/fluid/operators/kron_op.cc
浏览文件 @
c7371b7b
...
...
@@ -134,6 +134,19 @@ class KronGradOp : public framework::OperatorWithKernel {
OperatorWithKernel
::
IndicateVarDataType
(
ctx
,
out_grad_name
),
ctx
.
GetPlace
());
}
framework
::
OpKernelType
GetKernelTypeForVar
(
const
std
::
string
&
var_name
,
const
framework
::
Tensor
&
tensor
,
const
framework
::
OpKernelType
&
expected_kernel_type
)
const
{
if
(
framework
::
IsComplexType
(
expected_kernel_type
.
data_type_
))
{
// only promote inputs’s types when contains complex input
return
framework
::
OpKernelType
(
tensor
.
type
(),
tensor
.
place
(),
tensor
.
layout
());
}
else
{
return
framework
::
OpKernelType
(
expected_kernel_type
.
data_type_
,
tensor
.
place
(),
tensor
.
layout
());
}
}
};
template
<
typename
T
>
...
...
paddle/fluid/operators/matmul_v2_op.cc
浏览文件 @
c7371b7b
...
...
@@ -150,6 +150,27 @@ class MatMulV2OpGrad : public framework::OperatorWithKernel {
context
->
SetOutputDim
(
y_grad_name
,
y_dims
);
}
}
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
out_grad_name
=
framework
::
GradVarName
(
"Out"
);
return
framework
::
OpKernelType
(
OperatorWithKernel
::
IndicateVarDataType
(
ctx
,
out_grad_name
),
ctx
.
GetPlace
());
}
framework
::
OpKernelType
GetKernelTypeForVar
(
const
std
::
string
&
var_name
,
const
framework
::
Tensor
&
tensor
,
const
framework
::
OpKernelType
&
expected_kernel_type
)
const
{
if
(
framework
::
IsComplexType
(
expected_kernel_type
.
data_type_
))
{
// only promote inputs’s types when contains complex input
return
framework
::
OpKernelType
(
tensor
.
type
(),
tensor
.
place
(),
tensor
.
layout
());
}
else
{
return
framework
::
OpKernelType
(
expected_kernel_type
.
data_type_
,
tensor
.
place
(),
tensor
.
layout
());
}
}
};
template
<
typename
T
>
...
...
python/paddle/fluid/tests/unittests/test_elementwise_div_op.py
浏览文件 @
c7371b7b
...
...
@@ -320,6 +320,21 @@ class TestComplexElementwiseDivOp(OpTest):
user_defined_grad_outputs
=
[
self
.
grad_out
])
class
TestRealComplexElementwiseDivOp
(
TestComplexElementwiseDivOp
):
def
init_input_output
(
self
):
self
.
x
=
np
.
random
.
random
((
2
,
3
,
4
,
5
)).
astype
(
self
.
dtype
)
self
.
y
=
np
.
random
.
random
(
(
2
,
3
,
4
,
5
)).
astype
(
self
.
dtype
)
+
1J
*
np
.
random
.
random
(
(
2
,
3
,
4
,
5
)).
astype
(
self
.
dtype
)
self
.
out
=
self
.
x
/
self
.
y
def
init_grad_input_output
(
self
):
self
.
grad_out
=
np
.
ones
((
2
,
3
,
4
,
5
),
self
.
dtype
)
+
1J
*
np
.
ones
(
(
2
,
3
,
4
,
5
),
self
.
dtype
)
self
.
grad_x
=
np
.
real
(
self
.
grad_out
/
np
.
conj
(
self
.
y
))
self
.
grad_y
=
-
self
.
grad_out
*
np
.
conj
(
self
.
x
/
self
.
y
/
self
.
y
)
if
__name__
==
'__main__'
:
paddle
.
enable_static
()
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_elementwise_mul_op.py
浏览文件 @
c7371b7b
...
...
@@ -304,6 +304,21 @@ class TestComplexElementwiseMulOp(OpTest):
user_defined_grad_outputs
=
[
self
.
grad_out
])
class
TestRealComplexElementwiseMulOp
(
TestComplexElementwiseMulOp
):
def
init_input_output
(
self
):
self
.
x
=
np
.
random
.
random
((
2
,
3
,
4
,
5
)).
astype
(
self
.
dtype
)
self
.
y
=
np
.
random
.
random
(
(
2
,
3
,
4
,
5
)).
astype
(
self
.
dtype
)
+
1J
*
np
.
random
.
random
(
(
2
,
3
,
4
,
5
)).
astype
(
self
.
dtype
)
self
.
out
=
self
.
x
*
self
.
y
def
init_grad_input_output
(
self
):
self
.
grad_out
=
np
.
ones
((
2
,
3
,
4
,
5
),
self
.
dtype
)
+
1J
*
np
.
ones
(
(
2
,
3
,
4
,
5
),
self
.
dtype
)
self
.
grad_x
=
np
.
real
(
self
.
grad_out
*
np
.
conj
(
self
.
y
))
self
.
grad_y
=
self
.
grad_out
*
np
.
conj
(
self
.
x
)
if
__name__
==
'__main__'
:
paddle
.
enable_static
()
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_elementwise_sub_op.py
浏览文件 @
c7371b7b
...
...
@@ -15,6 +15,7 @@
from
__future__
import
print_function
import
unittest
import
numpy
as
np
import
paddle
from
op_test
import
OpTest
,
skip_check_grad_ci
...
...
@@ -164,5 +165,78 @@ class TestElementwiseSubOp_xsize_lessthan_ysize(TestElementwiseOp):
}
class
TestComplexElementwiseSubOp
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_sub"
self
.
dtype
=
np
.
float64
self
.
shape
=
(
2
,
3
,
4
,
5
)
self
.
init_input_output
()
self
.
init_grad_input_output
()
self
.
inputs
=
{
'X'
:
OpTest
.
np_dtype_to_fluid_dtype
(
self
.
x
),
'Y'
:
OpTest
.
np_dtype_to_fluid_dtype
(
self
.
y
)
}
self
.
attrs
=
{
'axis'
:
-
1
,
'use_mkldnn'
:
False
}
self
.
outputs
=
{
'Out'
:
self
.
out
}
def
init_base_dtype
(
self
):
self
.
dtype
=
np
.
float64
def
init_input_output
(
self
):
self
.
x
=
np
.
random
.
random
(
self
.
shape
).
astype
(
self
.
dtype
)
+
1J
*
np
.
random
.
random
(
self
.
shape
).
astype
(
self
.
dtype
)
self
.
y
=
np
.
random
.
random
(
self
.
shape
).
astype
(
self
.
dtype
)
+
1J
*
np
.
random
.
random
(
self
.
shape
).
astype
(
self
.
dtype
)
self
.
out
=
self
.
x
-
self
.
y
def
init_grad_input_output
(
self
):
self
.
grad_out
=
np
.
ones
(
self
.
shape
,
self
.
dtype
)
+
1J
*
np
.
ones
(
self
.
shape
,
self
.
dtype
)
self
.
grad_x
=
self
.
grad_out
self
.
grad_y
=
-
self
.
grad_out
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad_normal
(
self
):
self
.
check_grad
(
[
'X'
,
'Y'
],
'Out'
,
user_defined_grads
=
[
self
.
grad_x
,
self
.
grad_y
],
user_defined_grad_outputs
=
[
self
.
grad_out
])
def
test_check_grad_ingore_x
(
self
):
self
.
check_grad
(
[
'Y'
],
'Out'
,
no_grad_set
=
set
(
"X"
),
user_defined_grads
=
[
self
.
grad_y
],
user_defined_grad_outputs
=
[
self
.
grad_out
])
def
test_check_grad_ingore_y
(
self
):
self
.
check_grad
(
[
'X'
],
'Out'
,
no_grad_set
=
set
(
'Y'
),
user_defined_grads
=
[
self
.
grad_x
],
user_defined_grad_outputs
=
[
self
.
grad_out
])
class
TestRealComplexElementwiseSubOp
(
TestComplexElementwiseSubOp
):
def
init_input_output
(
self
):
self
.
x
=
np
.
random
.
random
(
self
.
shape
).
astype
(
self
.
dtype
)
self
.
y
=
np
.
random
.
random
(
self
.
shape
).
astype
(
self
.
dtype
)
+
1J
*
np
.
random
.
random
(
self
.
shape
).
astype
(
self
.
dtype
)
self
.
out
=
self
.
x
-
self
.
y
def
init_grad_input_output
(
self
):
self
.
grad_out
=
np
.
ones
(
self
.
shape
,
self
.
dtype
)
+
1J
*
np
.
ones
(
self
.
shape
,
self
.
dtype
)
self
.
grad_x
=
np
.
real
(
self
.
grad_out
)
self
.
grad_y
=
-
self
.
grad_out
if
__name__
==
'__main__'
:
paddle
.
enable_static
()
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_kron_op.py
浏览文件 @
c7371b7b
...
...
@@ -186,6 +186,20 @@ class TestComplexKronOp(OpTest):
user_defined_grad_outputs
=
[
self
.
grad_out
])
class
TestKronOpTypePromotion
(
TestComplexKronOp
):
def
init_input_output
(
self
):
self
.
x
=
np
.
random
.
random
(
self
.
x_shape
).
astype
(
self
.
dtype
)
self
.
y
=
np
.
random
.
random
(
self
.
y_shape
).
astype
(
self
.
dtype
)
+
1J
*
np
.
random
.
random
(
self
.
y_shape
).
astype
(
self
.
dtype
)
self
.
out
=
np
.
kron
(
self
.
x
,
self
.
y
)
def
init_grad_input_output
(
self
):
self
.
grad_out
=
np
.
ones
(
self
.
out_shape
,
self
.
dtype
)
+
1J
*
np
.
ones
(
self
.
out_shape
,
self
.
dtype
)
self
.
grad_x
=
self
.
get_grad_x_by_numpy
().
real
self
.
grad_y
=
self
.
get_grad_y_by_numpy
()
if
__name__
==
'__main__'
:
paddle
.
enable_static
()
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_matmul_v2_op.py
浏览文件 @
c7371b7b
...
...
@@ -525,6 +525,21 @@ class TestComplexMatMulOpBroadcast(OpTest):
user_defined_grad_outputs
=
[
self
.
grad_out
])
class
TestMatMulTypePromotion
(
TestComplexMatMulOp
):
def
init_input_output
(
self
):
self
.
x
=
np
.
random
.
random
((
10
,
10
)).
astype
(
self
.
dtype
)
self
.
y
=
np
.
random
.
random
(
(
10
,
10
)).
astype
(
self
.
dtype
)
+
1J
*
np
.
random
.
random
(
(
10
,
10
)).
astype
(
self
.
dtype
)
self
.
out
=
np
.
dot
(
self
.
x
,
self
.
y
)
def
init_grad_input_output
(
self
):
self
.
grad_out
=
np
.
ones
((
10
,
10
),
self
.
dtype
)
+
1J
*
np
.
ones
(
(
10
,
10
),
self
.
dtype
)
self
.
grad_x
=
np
.
matmul
(
self
.
grad_out
,
np
.
conj
(
self
.
y
).
T
).
real
self
.
grad_y
=
np
.
matmul
(
np
.
conj
(
self
.
x
).
T
,
self
.
grad_out
)
if
__name__
==
"__main__"
:
paddle
.
enable_static
()
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录