test_elementwise_sub_op.py 12.6 KB
Newer Older
1
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6 7 8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
G
gongweibao 已提交
16 17
import unittest
import numpy as np
C
chentianyu03 已提交
18
import paddle
19
import paddle.fluid as fluid
20 21
import paddle.fluid.core as core
from op_test import OpTest, skip_check_grad_ci, convert_float_to_uint16
G
gongweibao 已提交
22 23 24


class TestElementwiseOp(OpTest):
25

G
gongweibao 已提交
26 27 28
    def setUp(self):
        self.op_type = "elementwise_sub"
        self.inputs = {
29 30
            'X': np.random.uniform(0.1, 1, [2, 3, 4, 5]).astype("float64"),
            'Y': np.random.uniform(0.1, 1, [2, 3, 4, 5]).astype("float64")
G
gongweibao 已提交
31 32 33 34 35 36 37
        }
        self.outputs = {'Out': self.inputs['X'] - self.inputs['Y']}

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
38
        self.check_grad(['X', 'Y'], 'Out')
G
gongweibao 已提交
39 40

    def test_check_grad_ingore_x(self):
41 42 43 44
        self.check_grad(['Y'],
                        'Out',
                        max_relative_error=0.005,
                        no_grad_set=set("X"))
G
gongweibao 已提交
45 46

    def test_check_grad_ingore_y(self):
47 48 49 50
        self.check_grad(['X'],
                        'Out',
                        max_relative_error=0.005,
                        no_grad_set=set('Y'))
G
gongweibao 已提交
51 52


53
class TestBF16ElementwiseOp(OpTest):
54

55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
    def setUp(self):
        self.op_type = "elementwise_sub"
        self.dtype = np.uint16
        x = np.random.uniform(0.1, 1, [13, 17]).astype(np.float32)
        y = np.random.uniform(0.1, 1, [13, 17]).astype(np.float32)
        out = x - y

        self.inputs = {
            'X': convert_float_to_uint16(x),
            'Y': convert_float_to_uint16(y)
        }
        self.outputs = {'Out': convert_float_to_uint16(out)}

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
        self.check_grad(['X', 'Y'], 'Out')

    def test_check_grad_ingore_x(self):
        self.check_grad(['Y'], 'Out', no_grad_set=set("X"))

    def test_check_grad_ingore_y(self):
        self.check_grad(['X'], 'Out', no_grad_set=set('Y'))


81 82
@skip_check_grad_ci(
    reason="[skip shape check] Use y_shape(1) to test broadcast.")
83
class TestElementwiseSubOp_scalar(TestElementwiseOp):
84

85 86 87
    def setUp(self):
        self.op_type = "elementwise_sub"
        self.inputs = {
88 89
            'X': np.random.rand(10, 3, 4).astype(np.float64),
            'Y': np.random.rand(1).astype(np.float64)
90 91 92 93
        }
        self.outputs = {'Out': self.inputs['X'] - self.inputs['Y']}


G
gongweibao 已提交
94
class TestElementwiseSubOp_Vector(TestElementwiseOp):
95

G
gongweibao 已提交
96 97 98
    def setUp(self):
        self.op_type = "elementwise_sub"
        self.inputs = {
99 100
            'X': np.random.random((100, )).astype("float64"),
            'Y': np.random.random((100, )).astype("float64")
G
gongweibao 已提交
101 102 103 104 105
        }
        self.outputs = {'Out': self.inputs['X'] - self.inputs['Y']}


class TestElementwiseSubOp_broadcast_0(TestElementwiseOp):
106

G
gongweibao 已提交
107 108 109
    def setUp(self):
        self.op_type = "elementwise_sub"
        self.inputs = {
110 111
            'X': np.random.rand(100, 3, 2).astype(np.float64),
            'Y': np.random.rand(100).astype(np.float64)
G
gongweibao 已提交
112 113 114 115
        }

        self.attrs = {'axis': 0}
        self.outputs = {
116
            'Out': self.inputs['X'] - self.inputs['Y'].reshape(100, 1, 1)
G
gongweibao 已提交
117 118 119 120
        }


class TestElementwiseSubOp_broadcast_1(TestElementwiseOp):
121

G
gongweibao 已提交
122 123 124
    def setUp(self):
        self.op_type = "elementwise_sub"
        self.inputs = {
125 126
            'X': np.random.rand(2, 100, 3).astype(np.float64),
            'Y': np.random.rand(100).astype(np.float64)
G
gongweibao 已提交
127 128 129 130
        }

        self.attrs = {'axis': 1}
        self.outputs = {
131
            'Out': self.inputs['X'] - self.inputs['Y'].reshape(1, 100, 1)
G
gongweibao 已提交
132 133 134 135
        }


class TestElementwiseSubOp_broadcast_2(TestElementwiseOp):
136

G
gongweibao 已提交
137 138 139
    def setUp(self):
        self.op_type = "elementwise_sub"
        self.inputs = {
140 141
            'X': np.random.rand(2, 3, 100).astype(np.float64),
            'Y': np.random.rand(100).astype(np.float64)
G
gongweibao 已提交
142 143 144
        }

        self.outputs = {
145
            'Out': self.inputs['X'] - self.inputs['Y'].reshape(1, 1, 100)
G
gongweibao 已提交
146 147 148 149
        }


class TestElementwiseSubOp_broadcast_3(TestElementwiseOp):
150

G
gongweibao 已提交
151 152 153
    def setUp(self):
        self.op_type = "elementwise_sub"
        self.inputs = {
154 155
            'X': np.random.rand(2, 10, 12, 3).astype(np.float64),
            'Y': np.random.rand(10, 12).astype(np.float64)
G
gongweibao 已提交
156 157 158 159
        }

        self.attrs = {'axis': 1}
        self.outputs = {
160
            'Out': self.inputs['X'] - self.inputs['Y'].reshape(1, 10, 12, 1)
G
gongweibao 已提交
161 162 163
        }


164
class TestElementwiseSubOp_broadcast_4(TestElementwiseOp):
165

166 167 168
    def setUp(self):
        self.op_type = "elementwise_sub"
        self.inputs = {
169 170
            'X': np.random.rand(2, 5, 3, 12).astype(np.float64),
            'Y': np.random.rand(2, 5, 1, 12).astype(np.float64)
171 172 173 174
        }
        self.outputs = {'Out': self.inputs['X'] - self.inputs['Y']}


175
class TestElementwiseSubOp_commonuse_1(TestElementwiseOp):
176

177 178 179
    def setUp(self):
        self.op_type = "elementwise_sub"
        self.inputs = {
180 181
            'X': np.random.rand(2, 3, 100).astype(np.float64),
            'Y': np.random.rand(1, 1, 100).astype(np.float64)
182 183 184 185 186
        }
        self.outputs = {'Out': self.inputs['X'] - self.inputs['Y']}


class TestElementwiseSubOp_commonuse_2(TestElementwiseOp):
187

188 189 190
    def setUp(self):
        self.op_type = "elementwise_sub"
        self.inputs = {
191 192
            'X': np.random.rand(10, 3, 1, 4).astype(np.float64),
            'Y': np.random.rand(10, 1, 12, 1).astype(np.float64)
193 194 195 196 197
        }
        self.outputs = {'Out': self.inputs['X'] - self.inputs['Y']}


class TestElementwiseSubOp_xsize_lessthan_ysize(TestElementwiseOp):
198

199 200 201
    def setUp(self):
        self.op_type = "elementwise_sub"
        self.inputs = {
202 203
            'X': np.random.rand(10, 12).astype(np.float64),
            'Y': np.random.rand(2, 3, 10, 12).astype(np.float64)
204 205 206 207 208
        }

        self.attrs = {'axis': 2}

        self.outputs = {
209
            'Out': self.inputs['X'].reshape(1, 1, 10, 12) - self.inputs['Y']
210 211 212
        }


C
chentianyu03 已提交
213
class TestComplexElementwiseSubOp(OpTest):
214

C
chentianyu03 已提交
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
    def setUp(self):
        self.op_type = "elementwise_sub"
        self.dtype = np.float64
        self.shape = (2, 3, 4, 5)
        self.init_input_output()
        self.init_grad_input_output()

        self.inputs = {
            'X': OpTest.np_dtype_to_fluid_dtype(self.x),
            'Y': OpTest.np_dtype_to_fluid_dtype(self.y)
        }
        self.attrs = {'axis': -1, 'use_mkldnn': False}
        self.outputs = {'Out': self.out}

    def init_base_dtype(self):
        self.dtype = np.float64

    def init_input_output(self):
        self.x = np.random.random(self.shape).astype(
            self.dtype) + 1J * np.random.random(self.shape).astype(self.dtype)
        self.y = np.random.random(self.shape).astype(
            self.dtype) + 1J * np.random.random(self.shape).astype(self.dtype)
        self.out = self.x - self.y

    def init_grad_input_output(self):
240 241
        self.grad_out = np.ones(
            self.shape, self.dtype) + 1J * np.ones(self.shape, self.dtype)
C
chentianyu03 已提交
242 243 244 245 246 247 248
        self.grad_x = self.grad_out
        self.grad_y = -self.grad_out

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
249 250 251 252
        self.check_grad(['X', 'Y'],
                        'Out',
                        user_defined_grads=[self.grad_x, self.grad_y],
                        user_defined_grad_outputs=[self.grad_out])
C
chentianyu03 已提交
253 254

    def test_check_grad_ingore_x(self):
255 256 257 258 259
        self.check_grad(['Y'],
                        'Out',
                        no_grad_set=set("X"),
                        user_defined_grads=[self.grad_y],
                        user_defined_grad_outputs=[self.grad_out])
C
chentianyu03 已提交
260 261

    def test_check_grad_ingore_y(self):
262 263 264 265 266
        self.check_grad(['X'],
                        'Out',
                        no_grad_set=set('Y'),
                        user_defined_grads=[self.grad_x],
                        user_defined_grad_outputs=[self.grad_out])
C
chentianyu03 已提交
267 268 269


class TestRealComplexElementwiseSubOp(TestComplexElementwiseSubOp):
270

C
chentianyu03 已提交
271 272 273 274 275 276 277
    def init_input_output(self):
        self.x = np.random.random(self.shape).astype(self.dtype)
        self.y = np.random.random(self.shape).astype(
            self.dtype) + 1J * np.random.random(self.shape).astype(self.dtype)
        self.out = self.x - self.y

    def init_grad_input_output(self):
278 279
        self.grad_out = np.ones(
            self.shape, self.dtype) + 1J * np.ones(self.shape, self.dtype)
C
chentianyu03 已提交
280 281 282 283
        self.grad_x = np.real(self.grad_out)
        self.grad_y = -self.grad_out


284
class TestSubtractApi(unittest.TestCase):
285

286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
    def _executed_api(self, x, y, name=None):
        return paddle.subtract(x, y, name)

    def test_name(self):
        with fluid.program_guard(fluid.Program()):
            x = fluid.data(name="x", shape=[2, 3], dtype="float32")
            y = fluid.data(name='y', shape=[2, 3], dtype='float32')

            y_1 = self._executed_api(x, y, name='subtract_res')
            self.assertEqual(('subtract_res' in y_1.name), True)

    def test_declarative(self):
        with fluid.program_guard(fluid.Program()):

            def gen_data():
                return {
                    "x": np.array([2, 3, 4]).astype('float32'),
                    "y": np.array([1, 5, 2]).astype('float32')
                }

            x = fluid.data(name="x", shape=[3], dtype='float32')
            y = fluid.data(name="y", shape=[3], dtype='float32')
            z = self._executed_api(x, y)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            z_value = exe.run(feed=gen_data(), fetch_list=[z.name])
            z_expected = np.array([1., -2., 2.])
            self.assertEqual((z_value == z_expected).all(), True)

    def test_dygraph(self):
        with fluid.dygraph.guard():
            np_x = np.array([2, 3, 4]).astype('float64')
            np_y = np.array([1, 5, 2]).astype('float64')
            x = fluid.dygraph.to_variable(np_x)
            y = fluid.dygraph.to_variable(np_y)
            z = self._executed_api(x, y)
            np_z = z.numpy()
            z_expected = np.array([1., -2., 2.])
            self.assertEqual((np_z == z_expected).all(), True)


class TestSubtractInplaceApi(TestSubtractApi):
328

329 330 331 332 333
    def _executed_api(self, x, y, name=None):
        return x.subtract_(y, name)


class TestSubtractInplaceBroadcastSuccess(unittest.TestCase):
334

335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
    def init_data(self):
        self.x_numpy = np.random.rand(2, 3, 4).astype('float')
        self.y_numpy = np.random.rand(3, 4).astype('float')

    def test_broadcast_success(self):
        paddle.disable_static()
        self.init_data()
        x = paddle.to_tensor(self.x_numpy)
        y = paddle.to_tensor(self.y_numpy)
        inplace_result = x.subtract_(y)
        numpy_result = self.x_numpy - self.y_numpy
        self.assertEqual((inplace_result.numpy() == numpy_result).all(), True)
        paddle.enable_static()


class TestSubtractInplaceBroadcastSuccess2(TestSubtractInplaceBroadcastSuccess):
351

352 353 354 355 356 357
    def init_data(self):
        self.x_numpy = np.random.rand(1, 2, 3, 1).astype('float')
        self.y_numpy = np.random.rand(3, 1).astype('float')


class TestSubtractInplaceBroadcastSuccess3(TestSubtractInplaceBroadcastSuccess):
358

359 360 361 362 363 364
    def init_data(self):
        self.x_numpy = np.random.rand(2, 3, 1, 5).astype('float')
        self.y_numpy = np.random.rand(1, 3, 1, 5).astype('float')


class TestSubtractInplaceBroadcastError(unittest.TestCase):
365

366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
    def init_data(self):
        self.x_numpy = np.random.rand(3, 4).astype('float')
        self.y_numpy = np.random.rand(2, 3, 4).astype('float')

    def test_broadcast_errors(self):
        paddle.disable_static()
        self.init_data()
        x = paddle.to_tensor(self.x_numpy)
        y = paddle.to_tensor(self.y_numpy)

        def broadcast_shape_error():
            x.subtract_(y)

        self.assertRaises(ValueError, broadcast_shape_error)
        paddle.enable_static()


class TestSubtractInplaceBroadcastError2(TestSubtractInplaceBroadcastError):
384

385 386 387 388 389 390
    def init_data(self):
        self.x_numpy = np.random.rand(2, 1, 4).astype('float')
        self.y_numpy = np.random.rand(2, 3, 4).astype('float')


class TestSubtractInplaceBroadcastError3(TestSubtractInplaceBroadcastError):
391

392 393 394 395 396
    def init_data(self):
        self.x_numpy = np.random.rand(5, 2, 1, 4).astype('float')
        self.y_numpy = np.random.rand(2, 3, 4).astype('float')


G
gongweibao 已提交
397
if __name__ == '__main__':
C
chentianyu03 已提交
398
    paddle.enable_static()
G
gongweibao 已提交
399
    unittest.main()