test_elementwise_sub_op.py 13.6 KB
Newer Older
1
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6 7 8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

G
gongweibao 已提交
15 16
import unittest
import numpy as np
C
chentianyu03 已提交
17
import paddle
18
import paddle.fluid as fluid
19
from op_test import OpTest, skip_check_grad_ci, convert_float_to_uint16
20
from paddle.fluid.framework import _test_eager_guard
G
gongweibao 已提交
21 22 23 24 25 26


class TestElementwiseOp(OpTest):
    def setUp(self):
        self.op_type = "elementwise_sub"
        self.inputs = {
27
            'X': np.random.uniform(0.1, 1, [2, 3, 4, 5]).astype("float64"),
28
            'Y': np.random.uniform(0.1, 1, [2, 3, 4, 5]).astype("float64"),
G
gongweibao 已提交
29 30 31 32 33 34 35
        }
        self.outputs = {'Out': self.inputs['X'] - self.inputs['Y']}

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
36
        self.check_grad(['X', 'Y'], 'Out')
G
gongweibao 已提交
37 38

    def test_check_grad_ingore_x(self):
39 40 41
        self.check_grad(
            ['Y'], 'Out', max_relative_error=0.005, no_grad_set=set("X")
        )
G
gongweibao 已提交
42 43

    def test_check_grad_ingore_y(self):
44 45 46
        self.check_grad(
            ['X'], 'Out', max_relative_error=0.005, no_grad_set=set('Y')
        )
G
gongweibao 已提交
47 48


49 50 51 52 53 54 55 56 57 58
class TestBF16ElementwiseOp(OpTest):
    def setUp(self):
        self.op_type = "elementwise_sub"
        self.dtype = np.uint16
        x = np.random.uniform(0.1, 1, [13, 17]).astype(np.float32)
        y = np.random.uniform(0.1, 1, [13, 17]).astype(np.float32)
        out = x - y

        self.inputs = {
            'X': convert_float_to_uint16(x),
59
            'Y': convert_float_to_uint16(y),
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
        }
        self.outputs = {'Out': convert_float_to_uint16(out)}

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
        self.check_grad(['X', 'Y'], 'Out')

    def test_check_grad_ingore_x(self):
        self.check_grad(['Y'], 'Out', no_grad_set=set("X"))

    def test_check_grad_ingore_y(self):
        self.check_grad(['X'], 'Out', no_grad_set=set('Y'))


76
@skip_check_grad_ci(
77 78
    reason="[skip shape check] Use y_shape(1) to test broadcast."
)
79 80 81 82
class TestElementwiseSubOp_scalar(TestElementwiseOp):
    def setUp(self):
        self.op_type = "elementwise_sub"
        self.inputs = {
83
            'X': np.random.rand(10, 3, 4).astype(np.float64),
84
            'Y': np.random.rand(1).astype(np.float64),
85 86 87 88
        }
        self.outputs = {'Out': self.inputs['X'] - self.inputs['Y']}


G
gongweibao 已提交
89 90 91 92
class TestElementwiseSubOp_Vector(TestElementwiseOp):
    def setUp(self):
        self.op_type = "elementwise_sub"
        self.inputs = {
93 94
            'X': np.random.random((100,)).astype("float64"),
            'Y': np.random.random((100,)).astype("float64"),
G
gongweibao 已提交
95 96 97 98 99 100 101 102
        }
        self.outputs = {'Out': self.inputs['X'] - self.inputs['Y']}


class TestElementwiseSubOp_broadcast_0(TestElementwiseOp):
    def setUp(self):
        self.op_type = "elementwise_sub"
        self.inputs = {
103
            'X': np.random.rand(100, 3, 2).astype(np.float64),
104
            'Y': np.random.rand(100).astype(np.float64),
G
gongweibao 已提交
105 106 107 108
        }

        self.attrs = {'axis': 0}
        self.outputs = {
109
            'Out': self.inputs['X'] - self.inputs['Y'].reshape(100, 1, 1)
G
gongweibao 已提交
110 111 112 113 114 115 116
        }


class TestElementwiseSubOp_broadcast_1(TestElementwiseOp):
    def setUp(self):
        self.op_type = "elementwise_sub"
        self.inputs = {
117
            'X': np.random.rand(2, 100, 3).astype(np.float64),
118
            'Y': np.random.rand(100).astype(np.float64),
G
gongweibao 已提交
119 120 121 122
        }

        self.attrs = {'axis': 1}
        self.outputs = {
123
            'Out': self.inputs['X'] - self.inputs['Y'].reshape(1, 100, 1)
G
gongweibao 已提交
124 125 126 127 128 129 130
        }


class TestElementwiseSubOp_broadcast_2(TestElementwiseOp):
    def setUp(self):
        self.op_type = "elementwise_sub"
        self.inputs = {
131
            'X': np.random.rand(2, 3, 100).astype(np.float64),
132
            'Y': np.random.rand(100).astype(np.float64),
G
gongweibao 已提交
133 134 135
        }

        self.outputs = {
136
            'Out': self.inputs['X'] - self.inputs['Y'].reshape(1, 1, 100)
G
gongweibao 已提交
137 138 139 140 141 142 143
        }


class TestElementwiseSubOp_broadcast_3(TestElementwiseOp):
    def setUp(self):
        self.op_type = "elementwise_sub"
        self.inputs = {
144
            'X': np.random.rand(2, 10, 12, 3).astype(np.float64),
145
            'Y': np.random.rand(10, 12).astype(np.float64),
G
gongweibao 已提交
146 147 148 149
        }

        self.attrs = {'axis': 1}
        self.outputs = {
150
            'Out': self.inputs['X'] - self.inputs['Y'].reshape(1, 10, 12, 1)
G
gongweibao 已提交
151 152 153
        }


154 155 156 157
class TestElementwiseSubOp_broadcast_4(TestElementwiseOp):
    def setUp(self):
        self.op_type = "elementwise_sub"
        self.inputs = {
158
            'X': np.random.rand(2, 5, 3, 12).astype(np.float64),
159
            'Y': np.random.rand(2, 5, 1, 12).astype(np.float64),
160 161 162 163
        }
        self.outputs = {'Out': self.inputs['X'] - self.inputs['Y']}


164 165 166 167
class TestElementwiseSubOp_commonuse_1(TestElementwiseOp):
    def setUp(self):
        self.op_type = "elementwise_sub"
        self.inputs = {
168
            'X': np.random.rand(2, 3, 100).astype(np.float64),
169
            'Y': np.random.rand(1, 1, 100).astype(np.float64),
170 171 172 173 174 175 176 177
        }
        self.outputs = {'Out': self.inputs['X'] - self.inputs['Y']}


class TestElementwiseSubOp_commonuse_2(TestElementwiseOp):
    def setUp(self):
        self.op_type = "elementwise_sub"
        self.inputs = {
178
            'X': np.random.rand(10, 3, 1, 4).astype(np.float64),
179
            'Y': np.random.rand(10, 1, 12, 1).astype(np.float64),
180 181 182 183 184 185 186 187
        }
        self.outputs = {'Out': self.inputs['X'] - self.inputs['Y']}


class TestElementwiseSubOp_xsize_lessthan_ysize(TestElementwiseOp):
    def setUp(self):
        self.op_type = "elementwise_sub"
        self.inputs = {
188
            'X': np.random.rand(10, 12).astype(np.float64),
189
            'Y': np.random.rand(2, 3, 10, 12).astype(np.float64),
190 191 192 193 194
        }

        self.attrs = {'axis': 2}

        self.outputs = {
195
            'Out': self.inputs['X'].reshape(1, 1, 10, 12) - self.inputs['Y']
196 197 198
        }


C
chentianyu03 已提交
199 200 201 202 203 204 205 206 207 208
class TestComplexElementwiseSubOp(OpTest):
    def setUp(self):
        self.op_type = "elementwise_sub"
        self.dtype = np.float64
        self.shape = (2, 3, 4, 5)
        self.init_input_output()
        self.init_grad_input_output()

        self.inputs = {
            'X': OpTest.np_dtype_to_fluid_dtype(self.x),
209
            'Y': OpTest.np_dtype_to_fluid_dtype(self.y),
C
chentianyu03 已提交
210 211 212 213 214 215 216 217 218
        }
        self.attrs = {'axis': -1, 'use_mkldnn': False}
        self.outputs = {'Out': self.out}

    def init_base_dtype(self):
        self.dtype = np.float64

    def init_input_output(self):
        self.x = np.random.random(self.shape).astype(
219 220
            self.dtype
        ) + 1j * np.random.random(self.shape).astype(self.dtype)
C
chentianyu03 已提交
221
        self.y = np.random.random(self.shape).astype(
222 223
            self.dtype
        ) + 1j * np.random.random(self.shape).astype(self.dtype)
C
chentianyu03 已提交
224 225 226
        self.out = self.x - self.y

    def init_grad_input_output(self):
227 228 229
        self.grad_out = np.ones(self.shape, self.dtype) + 1j * np.ones(
            self.shape, self.dtype
        )
C
chentianyu03 已提交
230 231 232 233 234 235 236
        self.grad_x = self.grad_out
        self.grad_y = -self.grad_out

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
237 238 239 240 241 242
        self.check_grad(
            ['X', 'Y'],
            'Out',
            user_defined_grads=[self.grad_x, self.grad_y],
            user_defined_grad_outputs=[self.grad_out],
        )
C
chentianyu03 已提交
243 244

    def test_check_grad_ingore_x(self):
245 246 247 248 249 250 251
        self.check_grad(
            ['Y'],
            'Out',
            no_grad_set=set("X"),
            user_defined_grads=[self.grad_y],
            user_defined_grad_outputs=[self.grad_out],
        )
C
chentianyu03 已提交
252 253

    def test_check_grad_ingore_y(self):
254 255 256 257 258 259 260
        self.check_grad(
            ['X'],
            'Out',
            no_grad_set=set('Y'),
            user_defined_grads=[self.grad_x],
            user_defined_grad_outputs=[self.grad_out],
        )
C
chentianyu03 已提交
261 262 263 264 265 266


class TestRealComplexElementwiseSubOp(TestComplexElementwiseSubOp):
    def init_input_output(self):
        self.x = np.random.random(self.shape).astype(self.dtype)
        self.y = np.random.random(self.shape).astype(
267 268
            self.dtype
        ) + 1j * np.random.random(self.shape).astype(self.dtype)
C
chentianyu03 已提交
269 270 271
        self.out = self.x - self.y

    def init_grad_input_output(self):
272 273 274
        self.grad_out = np.ones(self.shape, self.dtype) + 1j * np.ones(
            self.shape, self.dtype
        )
C
chentianyu03 已提交
275 276 277 278
        self.grad_x = np.real(self.grad_out)
        self.grad_y = -self.grad_out


279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
class TestSubtractApi(unittest.TestCase):
    def _executed_api(self, x, y, name=None):
        return paddle.subtract(x, y, name)

    def test_name(self):
        with fluid.program_guard(fluid.Program()):
            x = fluid.data(name="x", shape=[2, 3], dtype="float32")
            y = fluid.data(name='y', shape=[2, 3], dtype='float32')

            y_1 = self._executed_api(x, y, name='subtract_res')
            self.assertEqual(('subtract_res' in y_1.name), True)

    def test_declarative(self):
        with fluid.program_guard(fluid.Program()):

            def gen_data():
                return {
                    "x": np.array([2, 3, 4]).astype('float32'),
297
                    "y": np.array([1, 5, 2]).astype('float32'),
298 299 300 301 302 303 304 305
                }

            x = fluid.data(name="x", shape=[3], dtype='float32')
            y = fluid.data(name="y", shape=[3], dtype='float32')
            z = self._executed_api(x, y)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            z_value = exe.run(feed=gen_data(), fetch_list=[z.name])
306
            z_expected = np.array([1.0, -2.0, 2.0])
307 308 309 310 311 312 313 314 315 316
            self.assertEqual((z_value == z_expected).all(), True)

    def test_dygraph(self):
        with fluid.dygraph.guard():
            np_x = np.array([2, 3, 4]).astype('float64')
            np_y = np.array([1, 5, 2]).astype('float64')
            x = fluid.dygraph.to_variable(np_x)
            y = fluid.dygraph.to_variable(np_y)
            z = self._executed_api(x, y)
            np_z = z.numpy()
317
            z_expected = np.array([1.0, -2.0, 2.0])
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
            self.assertEqual((np_z == z_expected).all(), True)


class TestSubtractInplaceApi(TestSubtractApi):
    def _executed_api(self, x, y, name=None):
        return x.subtract_(y, name)


class TestSubtractInplaceBroadcastSuccess(unittest.TestCase):
    def init_data(self):
        self.x_numpy = np.random.rand(2, 3, 4).astype('float')
        self.y_numpy = np.random.rand(3, 4).astype('float')

    def test_broadcast_success(self):
        paddle.disable_static()
        self.init_data()
        x = paddle.to_tensor(self.x_numpy)
        y = paddle.to_tensor(self.y_numpy)
        inplace_result = x.subtract_(y)
        numpy_result = self.x_numpy - self.y_numpy
        self.assertEqual((inplace_result.numpy() == numpy_result).all(), True)
        paddle.enable_static()


class TestSubtractInplaceBroadcastSuccess2(TestSubtractInplaceBroadcastSuccess):
    def init_data(self):
        self.x_numpy = np.random.rand(1, 2, 3, 1).astype('float')
        self.y_numpy = np.random.rand(3, 1).astype('float')


class TestSubtractInplaceBroadcastSuccess3(TestSubtractInplaceBroadcastSuccess):
    def init_data(self):
        self.x_numpy = np.random.rand(2, 3, 1, 5).astype('float')
        self.y_numpy = np.random.rand(1, 3, 1, 5).astype('float')


class TestSubtractInplaceBroadcastError(unittest.TestCase):
    def init_data(self):
        self.x_numpy = np.random.rand(3, 4).astype('float')
        self.y_numpy = np.random.rand(2, 3, 4).astype('float')

    def test_broadcast_errors(self):
        paddle.disable_static()
        self.init_data()
        x = paddle.to_tensor(self.x_numpy)
        y = paddle.to_tensor(self.y_numpy)

        def broadcast_shape_error():
            x.subtract_(y)

        self.assertRaises(ValueError, broadcast_shape_error)
        paddle.enable_static()


class TestSubtractInplaceBroadcastError2(TestSubtractInplaceBroadcastError):
    def init_data(self):
        self.x_numpy = np.random.rand(2, 1, 4).astype('float')
        self.y_numpy = np.random.rand(2, 3, 4).astype('float')


class TestSubtractInplaceBroadcastError3(TestSubtractInplaceBroadcastError):
    def init_data(self):
        self.x_numpy = np.random.rand(5, 2, 1, 4).astype('float')
        self.y_numpy = np.random.rand(2, 3, 4).astype('float')


384 385 386 387 388 389 390 391 392 393 394 395 396
class TestFloatElementwiseSubop(unittest.TestCase):
    def func_dygraph_sub(self):
        paddle.disable_static()

        np_a = np.random.random((2, 3, 4)).astype(np.float64)
        np_b = np.random.random((2, 3, 4)).astype(np.float64)

        tensor_a = paddle.to_tensor(np_a, dtype="float32")
        tensor_b = paddle.to_tensor(np_b, dtype="float32")

        # normal case: tensor - tensor
        expect_out = np_a - np_b
        actual_out = tensor_a - tensor_b
397 398 399
        np.testing.assert_allclose(
            actual_out, expect_out, rtol=1e-07, atol=1e-07
        )
400 401 402 403

        # normal case: tensor - scalar
        expect_out = np_a - 1
        actual_out = tensor_a - 1
404 405 406
        np.testing.assert_allclose(
            actual_out, expect_out, rtol=1e-07, atol=1e-07
        )
407 408 409 410

        # normal case: scalar - tenor
        expect_out = 1 - np_a
        actual_out = 1 - tensor_a
411 412 413
        np.testing.assert_allclose(
            actual_out, expect_out, rtol=1e-07, atol=1e-07
        )
414 415 416 417 418 419 420 421 422

        paddle.enable_static()

    def test_dygraph_sub(self):
        with _test_eager_guard():
            self.func_dygraph_sub()
        self.func_dygraph_sub()


G
gongweibao 已提交
423
if __name__ == '__main__':
C
chentianyu03 已提交
424
    paddle.enable_static()
G
gongweibao 已提交
425
    unittest.main()