nn.py 28.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16
"""
P
peizhilin 已提交
17
import os
S
sneaxiy 已提交
18
import inspect
19 20 21 22 23
import warnings

import numpy as np

import paddle
Y
Yu Yang 已提交
24
from ..layer_helper import LayerHelper
25 26 27 28 29 30 31 32 33 34 35
from ..framework import (
    Variable,
    OpProtoHolder,
    dygraph_only,
    _dygraph_tracer,
    default_main_program,
    _varbase_creator,
    static_only,
    _global_flags,
    in_dygraph_mode,
)
36
from ..framework import _current_expected_place
37
from .. import dygraph_utils
Y
yangyaming 已提交
38
from ..param_attr import ParamAttr
39 40 41 42 43
from .layer_function_generator import (
    autodoc,
    templatedoc,
    _generate_doc_string_,
)
44
from .tensor import fill_constant, zeros
45
from . import utils
F
fengjiayi 已提交
46
from .. import unique_name
47
from .. import core
48
from ...utils import deprecated
49 50 51 52 53 54
from ..data_feeder import (
    convert_dtype,
    check_variable_and_dtype,
    check_type,
    check_dtype,
)
55
from paddle.utils import deprecated
56
from paddle import _C_ops, _legacy_C_ops
57 58
from collections.abc import Iterable

Y
Yu Yang 已提交
59 60

__all__ = [
X
Xin Pan 已提交
61 62
    'embedding',
    'autoincreased_step_counter',
Y
Yu Yang 已提交
63 64
]

65
OP_NAMEMAPPING = {
66 67 68 69 70 71 72 73
    'elementwise_max': 'maximum',
    'elementwise_min': 'minimum',
    'elementwise_pow': 'elementwise_pow',
    'elementwise_floordiv': 'floor_divide',
    'elementwise_add': 'add',
    'elementwise_sub': 'subtract',
    'elementwise_mul': 'multiply',
    'elementwise_div': 'divide',
C
Chen Weihang 已提交
74
    'elementwise_mod': 'remainder',
75 76
}

Y
Yu Yang 已提交
77

78 79
def _get_reduce_dim(dim, input):
    """
80
    Internal function for reduce_sum, reduce_mean, reduce_prod.
81 82 83 84 85 86 87 88 89
    It computes the attribute reduce_all value based on axis.
    """
    if dim is not None and not isinstance(dim, list):
        if isinstance(dim, (tuple, range)):
            dim = list(dim)
        elif isinstance(dim, int):
            dim = [dim]
        else:
            raise TypeError(
90
                "The type of dim must be int, list, tuple or range, but received {}".format(
91
                    type(dim)
92 93
                )
            )
94 95 96 97 98 99 100 101 102 103
    if dim is None:
        dim = []
    if dim == [] or len(dim) == len(input.shape):
        reduce_all = True
    else:
        reduce_all = False

    return reduce_all, dim


T
tangwei12 已提交
104
@deprecated(since="2.0.0", update_to="paddle.nn.functional.embedding")
105 106 107 108 109 110 111 112 113
def embedding(
    input,
    size,
    is_sparse=False,
    is_distributed=False,
    padding_idx=None,
    param_attr=None,
    dtype='float32',
):
114
    r"""
115
    :api_attr: Static Graph
116

117 118 119 120 121 122 123 124 125 126 127 128
    **WARING:** This OP will be deprecated in a future release. This OP requires the
    last dimension of Tensor shape must be equal to 1. It is recommended to use
    fluid. :ref:`api_fluid_embedding` .

    The operator is used to lookup embeddings vector of ids provided by :attr:`input` .
    It automatically constructs a 2D embedding matrix based on the
    input :attr:`size` (vocab_size, emb_size) and :attr:`dtype` .

    This OP requires the last dimension of Tensor shape must be equal to 1. The shape
    of output Tensor is generated by replacing the last dimension of the input Tensor shape
    with emb_size.

129
    **Note:** The id in :attr:`input` must satisfy :math:`0 =< id < size[0]` ,
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
    otherwise the program will throw an exception and exit.

    .. code-block:: text

        Case 1:

        input is a Tensor. padding_idx = -1
            input.data = [[[1], [3]], [[2], [4]], [[4], [127]]]
            input.shape = [3, 2, 1]
        Given size = [128, 16]
        output is a Tensor:
            out.shape = [3, 2, 16]
            out.data = [[[0.129435295, 0.244512452, ..., 0.436322452],
                        [0.345421456, 0.524563927, ..., 0.144534654]],

                        [[0.345249859, 0.124939536, ..., 0.194353745],
                        [0.945345345, 0.435394634, ..., 0.435345365]],
147

148 149 150 151
                        [[0.945345345, 0.435394634, ..., 0.435345365],
                        [0.0,         0.0,         ..., 0.0        ]]]  # padding data
        The input padding_idx is less than 0, it is automatically converted to padding_idx = -1 + 128 = 127
        It will pad all-zero data when ids is 127.
152

153
        Case 2:
154

155 156 157 158 159 160 161 162 163 164 165 166 167 168
        input is a LoDTensor with 1-level LoD. padding_idx = 0
            input.lod = [[2, 3]]
            input.data = [[1], [3], [2], [4], [0]]
            input.shape = [5, 1]
        Given size = [128, 16]
        output is a LoDTensor:
            out.lod = [[2, 3]]
            out.shape = [5, 16]
            out.data = [[0.129435295, 0.244512452, ..., 0.436322452],
                        [0.345421456, 0.524563927, ..., 0.144534654],
                        [0.345249859, 0.124939536, ..., 0.194353745],
                        [0.945345345, 0.435394634, ..., 0.435345365],
                        [0.0,         0.0,         ..., 0.0        ]]  # padding data
        It will pad all-zero data when ids is 0.
Y
Yu Yang 已提交
169 170

    Args:
171 172 173 174 175 176
        input(Variable): A Tensor or LoDTensor with type int64, which contains the id information.
            The last dimension of Tensor shape must be equal to 1. The value of the input id should
            satisfy :math:`0<= id < size[0]` .
        size(tuple|list): The shape of lookup table parameter. It should have two elements which
            indicates the size of the dictionary of embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update. This parameter only
177
            affects the performance of the backwards gradient update. It is recommended to set
178
            True because sparse update is faster. But some optimizer does not support sparse update,
179
            such as :ref:`api_fluid_optimizer_AdadeltaOptimizer` , :ref:`api_fluid_optimizer_AdamaxOptimizer` ,
180 181 182 183 184
            :ref:`api_fluid_optimizer_DecayedAdagradOptimizer` , :ref:`api_fluid_optimizer_FtrlOptimizer` ,
            :ref:`api_fluid_optimizer_LambOptimizer` and :ref:`api_fluid_optimizer_LarsMomentumOptimizer` .
            In these case, is_sparse must be False. Default: False.
        is_distributed(bool): Whether to store the embedding matrix in a distributed manner. Only used
            in multi-machine distributed CPU training. Default: False.
185
        padding_idx(int|long|None): padding_idx needs to be in the interval [-vocab_size, vocab_size).
186 187 188 189 190 191
            If :math:`padding\_idx < 0`, the :math:`padding\_idx` will automatically be converted
            to :math:`vocab\_size + padding\_idx` . It will output all-zero padding data whenever lookup
            encounters :math:`padding\_idx` in id. And the padding data will not be updated while training.
            If set None, it makes no effect to output. Default: None.
        param_attr(ParamAttr): To specify the weight parameter property. Default: None, which means the
            default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` . In addition,
192
            user-defined or pre-trained word vectors can be loaded with the :attr:`param_attr` parameter.
193
            The local word vector needs to be transformed into numpy format, and the shape of local word
T
tianshuo78520a 已提交
194
            vector should be consistent with :attr:`size` . Then :ref:`api_fluid_initializer_NumpyArrayInitializer`
195 196 197
            is used to load custom or pre-trained word vectors. See code example 2 for details.
        dtype(str|core.VarDesc.VarType): It refers to the data type of output Tensor.
            It must be float32 or float64. Default: float32.
Y
Yu Yang 已提交
198

199
    Returns:
200
        Variable: Embedding Tensor or LoDTensor mapped by input. The data type is the same as :attr:`dtype` .
Y
Yu Yang 已提交
201

202 203
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
204

B
bdzhuxiaoning 已提交
205
          import paddle.fluid as fluid
206
          import numpy as np
207 208
          import paddle
          paddle.enable_static()
209

210 211
          data = fluid.data(name='x', shape=[None, 1], dtype='int64')

T
tianshuo78520a 已提交
212
          # example 1
213 214 215 216 217 218 219
          emb_1 = fluid.embedding(input=data, size=[128, 64])

          # example 2: load custom or pre-trained word vectors
          weight_data = np.random.random(size=(128, 100))  # word vectors with numpy format
          w_param_attrs = fluid.ParamAttr(
              name="emb_weight",
              learning_rate=0.5,
220
              initializer=paddle.nn.initializer.Assign(weight_data),
221
              trainable=True)
222
          emb_2 = fluid.layers.embedding(input=data, size=(128, 100), param_attr=w_param_attrs, dtype='float32')
Y
Yu Yang 已提交
223 224 225
    """

    helper = LayerHelper('embedding', **locals())
226 227 228 229 230 231 232 233 234
    check_variable_and_dtype(
        input, 'input', ['int64'], 'fluid.layers.embedding'
    )
    check_dtype(
        dtype,
        'dtype',
        ['uint16', 'float16', 'float32', 'float64'],
        'fluid.layers.embedding',
    )
235 236 237 238 239 240 241 242 243

    if is_distributed:
        is_distributed = False
        warnings.warn(
            "is_distributed is go out of use, `fluid.contrib.layers.sparse_embedding` is your needed"
        )

    remote_prefetch = True if is_sparse else False

244 245 246
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False
    )
X
Xin Pan 已提交
247
    tmp = helper.create_variable_for_type_inference(dtype)
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
    padding_idx = (
        -1
        if padding_idx is None
        else padding_idx
        if padding_idx >= 0
        else (size[0] + padding_idx)
    )
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input, 'W': w},
        outputs={'Out': tmp},
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
            'remote_prefetch': remote_prefetch,
            'padding_idx': padding_idx,
        },
    )
Y
Yu Yang 已提交
266 267 268
    return tmp


269 270 271 272 273 274 275 276 277 278 279
def _pull_sparse(
    input,
    size,
    table_id,
    accessor_class,
    name="embedding",
    ctr_label_name="",
    padding_id=0,
    dtype='float32',
    scale_sparse_grad=True,
):
280
    r"""
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
    **Pull Fleet Sparse Layer**

    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
    Fleet lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.

    Args:
        input(Variable|list of Variable): Input is a Tensor<int64> Variable, which
            contains the IDs information.
        size(int): The embedding size parameter, which indicates the size of
            each embedding vector respectively.
        table_id(int): the fleet table id of this embedding.
        accessor_class(str): the pslib accessor of the table, default is DownpourCtrAccessor.
        ctr_label_name(str): the layer name of click.
        padding_id(int): the padding id during lookup, default is 0.
        dtype(str): The dtype refers to the data type of output tensor. Only supports
            float32 now.
        scale_sparse_grad(bool): whether to scale sparse gradient with batch size. default
            is True.

    Returns:
        Variable|list of Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
G
GGBond8488 已提交
309
          data = paddle.static.data(name='sequence', shape=[-1, 1], dtype='int64', lod_level=1)
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
          emb = fluid.layers.nn._pull_sparse(
              input=data, size=11, table_id=0, accessor_class="DownpourCtrAccessor")
    """
    helper = LayerHelper(name, **locals())
    inputs = helper.multiple_input()
    outs = [helper.create_variable_for_type_inference(dtype)]
    input_names = [i.name for i in inputs]
    attrs = {
        'EmbeddingDim': size,
        'TableId': table_id,
        'AccessorClass': accessor_class,
        'CtrLabelName': ctr_label_name,
        'PaddingId': padding_id,
        'ScaleSparseGrad': scale_sparse_grad,
        'InputNames': input_names,
        # this is only for compatible with embedding op
326
        'is_distributed': True,
327 328
    }
    # this is only for compatible with embedding op
329 330 331 332 333 334 335 336 337
    w, _ = helper.create_or_get_global_variable(
        name=name, shape=[size], dtype=dtype, is_bias=False, persistable=True
    )
    helper.append_op(
        type='pull_sparse',
        inputs={'Ids': inputs, 'W': w},
        outputs={'Out': outs},
        attrs=attrs,
    )
338 339 340 341 342
    if len(outs) == 1:
        return outs[0]
    return outs


343 344 345 346 347 348 349 350 351 352 353
def _pull_sparse_v2(
    input,
    size,
    table_id,
    accessor_class,
    name="embedding",
    ctr_label_name="",
    padding_id=0,
    dtype='float32',
    scale_sparse_grad=True,
):
354
    r"""
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
    **Pull Fleet Sparse Layer**

    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
    Fleet lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.

    Args:
        input(Variable|list of Variable): Input is a Tensor<int64> Variable, which
            contains the IDs information.
        size(int): The embedding size parameter, which indicates the size of
            each embedding vector respectively.
        table_id(int): the pslib table id of this embedding.
        accessor_class(str): the fleet accessor of the table, default is DownpourCtrAccessor.
        ctr_label_name(str): the layer name of click.
        padding_id(int): the padding id during lookup, default is 0.
        dtype(str): The dtype refers to the data type of output tensor. Only supports
            float32 now.
        scale_sparse_grad(bool): whether to scale sparse gradient with batch size. default
            is True.

    Returns:
        Variable|list of Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
G
GGBond8488 已提交
383
          data = paddle.static.data(name='sequence', shape=[-1, 1], dtype='int64', lod_level=1)
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
          emb = fluid.layers.nn._pull_sparse_v2(
              input=data, size=11, table_id=0, accessor_class="DownpourCtrAccessor")
    """
    helper = LayerHelper(name, **locals())
    inputs = helper.multiple_input()
    outs = [helper.create_variable_for_type_inference(dtype)]
    input_names = [i.name for i in inputs]
    attrs = {
        'EmbeddingDim': size,
        'TableId': table_id,
        'AccessorClass': accessor_class,
        'CtrLabelName': ctr_label_name,
        'PaddingId': padding_id,
        'ScaleSparseGrad': scale_sparse_grad,
        'InputNames': input_names,
        # this is only for compatible with embedding op
400
        'is_distributed': True,
401 402
    }
    # this is only for compatible with embedding op
403 404 405 406 407 408 409 410 411
    w, _ = helper.create_or_get_global_variable(
        name=name, shape=[size], dtype=dtype, is_bias=False, persistable=True
    )
    helper.append_op(
        type='pull_sparse_v2',
        inputs={'Ids': inputs, 'W': w},
        outputs={'Out': outs},
        attrs=attrs,
    )
412
    if len(outs) == 1:
Y
yaoxuefeng 已提交
413 414 415 416
        return outs[0]
    return outs


417 418 419
def _pull_gpups_sparse(
    input, size, dtype='float32', is_distributed=False, is_sparse=False
):
Y
yaoxuefeng 已提交
420 421 422 423 424 425 426 427 428 429 430 431 432
    r"""
    **Pull GpuPS Sparse Layer**

    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
    GpuPS lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.

    Args:
        input(Variable|list of Variable): Input is a Tensor<int64> Variable, which
            contains the IDs information.
        size(int|list of int): The embedding size parameter of each input, which indicates the size of
            each embedding vector respectively.
        dtype(str): The dtype refers to the data type of output tensor. Only supports
433
        float32 now.
Y
yaoxuefeng 已提交
434 435 436 437 438 439 440 441 442 443

    Returns:
        Variable|list of Variable: The tensor variable storing the embeddings of the \
                  supplied inputs, whose size are indicated by size respectively.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          slots = []
G
GGBond8488 已提交
444
          data_1 = paddle.static.data(name='sequence', shape=[-1,1], dtype='int64', lod_level=1)
Y
yaoxuefeng 已提交
445
          slots.append(data_1)
G
GGBond8488 已提交
446
          data_2 = paddle.static.data(name='sequence', shape=[-1,1], dtype='int64', lod_level=1)
Y
yaoxuefeng 已提交
447 448 449 450 451 452
          slots.append(data_2)
          embs = fluid.layers.pull_gpups_sparse(input=slots, size=[11, 35])
    """
    helper = LayerHelper('pull_gpups_sparse', **locals())
    if dtype != 'float32':
        raise ValueError(
453 454 455
            "GpuPS only support float type embedding now, and your type is: "
            + dtype
        )
Y
yaoxuefeng 已提交
456 457 458 459 460 461
    helper.input_dtype()
    inputs = helper.multiple_input()
    outs = [
        helper.create_variable_for_type_inference(dtype)
        for i in range(len(inputs))
    ]
462 463 464 465 466 467 468 469 470 471 472 473 474
    w = helper.create_parameter(
        attr=helper.param_attr, shape=[size[0]], dtype=dtype, is_bias=False
    )
    helper.append_op(
        type='pull_gpups_sparse',
        inputs={'Ids': inputs, 'W': w},
        outputs={'Out': outs},
        attrs={
            'size': size,
            'is_distributed': is_distributed,
            'is_sparse': is_sparse,
        },
    )
Y
yaoxuefeng 已提交
475
    if len(outs) == 1:
476 477 478 479
        return outs[0]
    return outs


480 481 482
def _pull_box_sparse(
    input, size, dtype='float32', is_distributed=False, is_sparse=False
):
483
    r"""
H
hutuxian 已提交
484 485 486 487 488 489 490
    **Pull Box Sparse Layer**

    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
    BoxPS lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.

    Args:
491
        input(Variable|list of Variable): Input is a Tensor<int64> Variable, which
H
hutuxian 已提交
492
            contains the IDs information.
493
        size(int): The embedding size parameter, which indicates the size of
H
hutuxian 已提交
494
            each embedding vector respectively.
495
        dtype(str): The dtype refers to the data type of output tensor. Only supports
496
        float32 now.
H
hutuxian 已提交
497 498 499 500 501 502 503 504 505

    Returns:
        Variable|list of Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
G
GGBond8488 已提交
506
          data = paddle.static.data(name='sequence', shape=[-1,1], dtype='int64', lod_level=1)
507
          emb = fluid.layers.pull_box_sparse(input=data, size=[11])
H
hutuxian 已提交
508 509 510 511
    """
    helper = LayerHelper('pull_box_sparse', **locals())
    if dtype != 'float32':
        raise ValueError(
512 513 514
            "BoxPS only support float type embedding now, and your type is: "
            + dtype
        )
H
hutuxian 已提交
515 516 517 518 519 520
    helper.input_dtype()
    inputs = helper.multiple_input()
    outs = [
        helper.create_variable_for_type_inference(dtype)
        for i in range(len(inputs))
    ]
521 522 523 524 525 526 527 528 529 530 531 532 533
    w = helper.create_parameter(
        attr=helper.param_attr, shape=[size], dtype=dtype, is_bias=False
    )
    helper.append_op(
        type='pull_box_sparse',
        inputs={'Ids': inputs, 'W': w},
        outputs={'Out': outs},
        attrs={
            'size': size,
            'is_distributed': is_distributed,
            'is_sparse': is_sparse,
        },
    )
H
hutuxian 已提交
534 535 536 537 538
    if len(outs) == 1:
        return outs[0]
    return outs


C
caoying03 已提交
539
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
540
    """
541

Y
yangyaming 已提交
542
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
543 544

    Args:
545 546 547
        input (Variable): The input variable which is a Tensor, the data type is float32,
            float64, int32, int64.
        dim (list|int, optional): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
548 549
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
550 551
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
552
        keep_dim (bool, optional): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
553
            output Tensor. The result tensor will have one fewer dimension
554 555 556 557
            than the :attr:`input` unless :attr:`keep_dim` is true, default
            value is False.
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
G
guosheng 已提交
558 559

    Returns:
560 561
        Variable: Tensor, results of summation operation on the specified dim of input tensor,
        it's data type is the same as input's Tensor.
F
fengjiayi 已提交
562

563 564
    Raises:
        TypeError, if out data type is different with the input data type.
565

G
guosheng 已提交
566 567 568
    Examples:
        .. code-block:: python

569
            import paddle.fluid as fluid
570 571
            import paddle
            paddle.enable_static()
G
guosheng 已提交
572 573 574
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
575
            # Each example is followed by the corresponding output tensor.
576
            x = fluid.data(name='x', shape=[2, 4], dtype='float32')
G
guosheng 已提交
577 578 579 580
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
581

582
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
583 584
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
585
            # Each example is followed by the corresponding output tensor.
586
            y = fluid.data(name='y', shape=[2, 2, 2], dtype='float32')
587 588
            fluid.layers.reduce_sum(y, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(y, dim=[0, 1]) # [16, 20]
W
whs 已提交
589

G
guosheng 已提交
590
    """
591 592
    reduce_all, dim = _get_reduce_dim(dim, input)

593
    if in_dygraph_mode():
594
        return _C_ops.sum(input, dim, None, keep_dim)
姜永久 已提交
595 596 597 598 599 600 601
    else:
        attrs = {'dim': dim, 'keep_dim': keep_dim, 'reduce_all': reduce_all}
        check_variable_and_dtype(
            input,
            'input',
            ['float16', 'float32', 'float64', 'int32', 'int64'],
            'reduce_sum',
602
        )
姜永久 已提交
603 604 605 606 607 608 609 610 611 612 613
        helper = LayerHelper('reduce_sum', **locals())
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype()
        )
        helper.append_op(
            type='reduce_sum',
            inputs={'X': input},
            outputs={'Out': out},
            attrs=attrs,
        )
        return out
G
guosheng 已提交
614 615


Y
Yu Yang 已提交
616
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
617
    """
618 619
    :api_attr: Static Graph

620 621
    Create an auto-increase variable. which will be automatically increased
    by 1 in every iteration. By default, the first return of this counter is 1,
Y
Yibing Liu 已提交
622
    and the step size is 1.
Y
Yu Yang 已提交
623 624

    Args:
Y
Yibing Liu 已提交
625 626 627
        counter_name(str, optional): The counter name. Default '@STEP_COUNTER@'.
        begin(int, optional): The first return value of this counter. Default 1.
        step(int, optional): The step size. Default 1.
Y
Yu Yang 已提交
628

629
    Returns:
Y
Yibing Liu 已提交
630
        Variable: The auto-increased Variable with data type int64.
Y
yi.wu 已提交
631 632 633 634

    Examples:
        .. code-block:: python

635
           import paddle.fluid as fluid
636 637
           import paddle
           paddle.enable_static()
Y
yi.wu 已提交
638
           global_step = fluid.layers.autoincreased_step_counter(
Y
Yibing Liu 已提交
639
               counter_name='@LR_DECAY_COUNTER@', begin=0, step=1)
Y
Yu Yang 已提交
640 641
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
642 643
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
644
    counter, is_new_var = helper.create_or_get_global_variable(
H
hong 已提交
645 646 647 648
        name=counter_name,
        dtype='int64',
        shape=[1],
        persistable=True,
649 650
        belong_to_optimizer=True,
    )
Y
Yu Yang 已提交
651
    if is_new_var:
652
        helper.set_variable_initializer(
653 654 655 656
            counter,
            initializer=paddle.nn.initializer.ConstantInitializer(
                value=begin - 1, force_cpu=True
            ),
657
        )
W
Wu Yi 已提交
658
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
659 660
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
661
            outputs={'Out': [counter]},
662 663
            attrs={'step': float(step)},
        )
Y
Yu Yang 已提交
664 665 666
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
667 668


669
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
670
    """
671
    Insert single-dimensional entries to the shape of a Tensor. Takes one
M
minqiyang 已提交
672 673
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
674

M
minqiyang 已提交
675
    For example:
H
haowang101779990 已提交
676 677 678

    .. code-block:: text

M
minqiyang 已提交
679
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
680
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
681

Y
Yibing Liu 已提交
682
    Args:
683
        input (Variable): The input Tensor to be unsqueezed. Supported data type: float32, float64, bool, int8, int32, int64.
684
        axes (int|list|tuple|Variable): Indicates the dimensions to be inserted. The data type is ``int32`` . If ``axes`` is a list or tuple, the elements of it should be integers or Tensors with shape [1]. If ``axes`` is an Variable, it should be an 1-D Tensor .
685
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
686 687

    Returns:
688
        Variable: Unsqueezed Tensor, with the same data type as input.
Y
Yibing Liu 已提交
689 690 691 692

    Examples:
        .. code-block:: python

693
            import paddle.fluid as fluid
G
GGBond8488 已提交
694
            x = paddle.static.data(name='x', shape=[-1, 5, 10], dtype="float32")
695
            y = fluid.layers.unsqueeze(input=x, axes=[1])
696

Y
Yibing Liu 已提交
697
    """
姜永久 已提交
698
    if in_dygraph_mode():
L
Leo Chen 已提交
699 700 701
        if isinstance(axes, int):
            axes = [axes]
        elif isinstance(axes, Variable):
702
            axes = axes.numpy().tolist()
L
Leo Chen 已提交
703 704 705 706 707
        elif isinstance(axes, (list, tuple)):
            axes = [
                item.numpy().item(0) if isinstance(item, Variable) else item
                for item in axes
            ]
708
        return _C_ops.unsqueeze(input, axes)
姜永久 已提交
709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
    else:
        check_type(axes, 'axis/axes', (int, list, tuple, Variable), 'unsqueeze')
        check_variable_and_dtype(
            input,
            'input',
            [
                'float16',
                'float32',
                'float64',
                'bool',
                'int8',
                'int16',
                'int32',
                'int64',
                'complex64',
                'complex128',
            ],
            'unsqueeze',
        )
        helper = LayerHelper("unsqueeze2", **locals())
        inputs = {"X": input}
        attrs = {}
731

姜永久 已提交
732 733 734 735 736 737 738 739 740 741
        if isinstance(axes, int):
            axes = [axes]
        if isinstance(axes, Variable):
            axes.stop_gradient = True
            inputs["AxesTensor"] = axes
        elif isinstance(axes, (list, tuple)):
            if utils._contain_var(axes):
                inputs["AxesTensorList"] = utils._convert_to_tensor_list(axes)
            else:
                attrs["axes"] = axes
742

姜永久 已提交
743 744 745 746 747 748 749 750
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
        x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
        helper.append_op(
            type="unsqueeze2",
            inputs=inputs,
            attrs=attrs,
            outputs={"Out": out, "XShape": x_shape},
        )
Y
Yibing Liu 已提交
751

姜永久 已提交
752
        return out
753

754

755
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
姜永久 已提交
756
    if in_dygraph_mode():
757
        op = getattr(_legacy_C_ops, op_name)
758 759 760 761
        if binary_op:
            return op(x, y)
        else:
            return op(x)
姜永久 已提交
762
    else:
763
        check_variable_and_dtype(
姜永久 已提交
764 765
            x,
            "x",
766
            ["bool", "int8", "int16", "int32", "int64", "float32", "float64"],
767 768
            op_name,
        )
姜永久 已提交
769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785
        if y is not None:
            check_variable_and_dtype(
                y,
                "y",
                [
                    "bool",
                    "int8",
                    "int16",
                    "int32",
                    "int64",
                    "float32",
                    "float64",
                ],
                op_name,
            )
        if out is not None:
            check_type(out, "out", Variable, op_name)
786

姜永久 已提交
787
        helper = LayerHelper(op_name, **locals())
M
minqiyang 已提交
788

姜永久 已提交
789 790 791 792 793
        if binary_op and x.dtype != y.dtype:
            raise ValueError(
                "(InvalidArgument) The DataType of %s Op's Variable must be consistent, but received %s and %s."
                % (op_name, x.dtype, y.dtype)
            )
M
minqiyang 已提交
794

姜永久 已提交
795 796
        if out is None:
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
797

姜永久 已提交
798 799 800 801 802 803 804 805
        if binary_op:
            helper.append_op(
                type=op_name, inputs={"X": x, "Y": y}, outputs={"Out": out}
            )
        else:
            helper.append_op(
                type=op_name, inputs={"X": x}, outputs={"Out": out}
            )
M
minqiyang 已提交
806

姜永久 已提交
807
        return out