Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
572b3e90
P
Paddle
项目概览
PaddlePaddle
/
Paddle
接近 2 年 前同步成功
通知
2323
Star
20933
Fork
5424
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
572b3e90
编写于
12月 24, 2021
作者:
Y
yaoxuefeng
提交者:
GitHub
12月 24, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add pull gpups sparse op (#37124)
add pull gpups sparse op
上级
9409ff6b
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
424 addition
and
1 deletion
+424
-1
paddle/fluid/operators/pull_gpups_sparse_op.cc
paddle/fluid/operators/pull_gpups_sparse_op.cc
+148
-0
paddle/fluid/operators/pull_gpups_sparse_op.cu
paddle/fluid/operators/pull_gpups_sparse_op.cu
+48
-0
paddle/fluid/operators/pull_gpups_sparse_op.h
paddle/fluid/operators/pull_gpups_sparse_op.h
+104
-0
python/paddle/fluid/incubate/fleet/parameter_server/pslib/optimizer_factory.py
...ncubate/fleet/parameter_server/pslib/optimizer_factory.py
+2
-1
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+63
-0
python/paddle/fluid/tests/unittests/test_pull_gpups_sparse_op.py
...paddle/fluid/tests/unittests/test_pull_gpups_sparse_op.py
+58
-0
tools/static_mode_white_list.py
tools/static_mode_white_list.py
+1
-0
未找到文件。
paddle/fluid/operators/pull_gpups_sparse_op.cc
0 → 100644
浏览文件 @
572b3e90
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/operators/pull_gpups_sparse_op.h"
namespace
paddle
{
namespace
operators
{
class
PullGpuPSSparseOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE_GE
(
ctx
->
Inputs
(
"Ids"
).
size
(),
1UL
,
platform
::
errors
::
InvalidArgument
(
"Inputs(Ids) of PullGpuPSSparseOp should not be empty."
));
PADDLE_ENFORCE_GE
(
ctx
->
Outputs
(
"Out"
).
size
(),
1UL
,
platform
::
errors
::
InvalidArgument
(
"Outputs(Out) of PullGpuPSSparseOp should not be empty."
));
auto
embedding_size_vec
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
int
>>
(
"size"
);
PADDLE_ENFORCE_EQ
(
ctx
->
Inputs
(
"Ids"
).
size
(),
embedding_size_vec
.
size
(),
platform
::
errors
::
InvalidArgument
(
"The ids size: %lu must be equal to "
"the length of embedding size: %lu."
,
ctx
->
Inputs
(
"Ids"
).
size
(),
embedding_size_vec
.
size
()));
auto
all_ids_dim
=
ctx
->
GetInputsDim
(
"Ids"
);
const
size_t
n_ids
=
all_ids_dim
.
size
();
std
::
vector
<
framework
::
DDim
>
outs_dims
;
outs_dims
.
resize
(
n_ids
);
for
(
size_t
i
=
0
;
i
<
n_ids
;
++
i
)
{
int
embedding_size
=
embedding_size_vec
[
i
];
const
auto
ids_dims
=
all_ids_dim
[
i
];
int
ids_rank
=
ids_dims
.
size
();
PADDLE_ENFORCE_EQ
(
ids_dims
[
ids_rank
-
1
],
1
,
platform
::
errors
::
InvalidArgument
(
"Shape error in %lu id, the last dimension of the "
"'Ids' tensor must be 1."
,
i
));
auto
out_dim
=
framework
::
vectorize
(
framework
::
slice_ddim
(
ids_dims
,
0
,
ids_rank
-
1
));
out_dim
.
push_back
(
embedding_size
);
outs_dims
[
i
]
=
framework
::
make_ddim
(
out_dim
);
}
ctx
->
SetOutputsDim
(
"Out"
,
outs_dims
);
for
(
size_t
i
=
0
;
i
<
n_ids
;
++
i
)
{
ctx
->
ShareLoD
(
"Ids"
,
"Out"
,
i
,
i
);
}
}
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
OpKernelType
(
framework
::
proto
::
VarType
::
FP32
,
ctx
.
device_context
());
}
};
class
PullGpuPSSparseOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
override
{
AddInput
(
"W"
,
"(Tensor) The input represents embedding tensors, "
"which is a learnable parameter."
)
.
AsDispensable
();
AddInput
(
"Ids"
,
"Input tensors with type int32 or int64 "
"contains the ids to be looked up in GpuPS. "
"The last dimension size must be 1."
)
.
AsDuplicable
();
AddOutput
(
"Out"
,
"The lookup results tensors."
).
AsDuplicable
();
AddAttr
<
std
::
vector
<
int
>>
(
"size"
,
"(vector<int>, the embedding size of corresponding slot"
)
.
SetDefault
(
std
::
vector
<
int
>
());
AddAttr
<
bool
>
(
"is_sparse"
,
"(boolean, default false) "
"Sparse update."
)
.
SetDefault
(
false
);
AddAttr
<
bool
>
(
"is_distributed"
,
"(boolean, default false) distributed lookup table."
)
.
SetDefault
(
false
);
AddComment
(
R"DOC(
Pull GpuPS Sparse Operator.
This operator is used to perform lookups on the GpuPS,
then concatenated into a dense tensor.
The input Ids can carry the LoD (Level of Details) information,
or not. And the output only shares the LoD information with input Ids.
)DOC"
);
}
};
template
<
typename
T
>
class
PushGpuPSSparseOpMaker
:
public
framework
::
SingleGradOpMaker
<
T
>
{
public:
using
framework
::
SingleGradOpMaker
<
T
>::
SingleGradOpMaker
;
protected:
void
Apply
(
GradOpPtr
<
T
>
op
)
const
override
{
op
->
SetType
(
"push_gpups_sparse"
);
op
->
SetInput
(
"Ids"
,
this
->
Input
(
"Ids"
));
op
->
SetInput
(
framework
::
GradVarName
(
"Out"
),
this
->
OutputGrad
(
"Out"
));
op
->
SetOutput
(
framework
::
GradVarName
(
"Out"
),
this
->
OutputGrad
(
"Out"
));
op
->
SetAttrMap
(
this
->
Attrs
());
}
};
class
PushGpuPSSparseOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{}
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
OpKernelType
(
OperatorWithKernel
::
IndicateVarDataType
(
ctx
,
framework
::
GradVarName
(
"Out"
)),
ctx
.
device_context
());
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
pull_gpups_sparse
,
ops
::
PullGpuPSSparseOp
,
ops
::
PullGpuPSSparseOpMaker
,
ops
::
PushGpuPSSparseOpMaker
<
paddle
::
framework
::
OpDesc
>
,
ops
::
PushGpuPSSparseOpMaker
<
paddle
::
imperative
::
OpBase
>
);
REGISTER_OPERATOR
(
push_gpups_sparse
,
ops
::
PushGpuPSSparseOp
);
REGISTER_OP_CPU_KERNEL
(
pull_gpups_sparse
,
ops
::
PullGpuPSSparseCPUKernel
<
float
>
,
ops
::
PullGpuPSSparseCPUKernel
<
double
>
)
REGISTER_OP_CPU_KERNEL
(
push_gpups_sparse
,
ops
::
PushGpuPSSparseCPUKernel
<
float
>
,
ops
::
PushGpuPSSparseCPUKernel
<
double
>
)
\ No newline at end of file
paddle/fluid/operators/pull_gpups_sparse_op.cu
0 → 100644
浏览文件 @
572b3e90
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/operators/pull_gpups_sparse_op.h"
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
#include "paddle/fluid/platform/device/gpu/gpu_primitives.h"
namespace
paddle
{
namespace
operators
{
using
platform
::
PADDLE_CUDA_NUM_THREADS
;
using
LoDTensor
=
framework
::
LoDTensor
;
template
<
typename
T
>
class
PullGpuPSSparseCUDAKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
PullGpuPSSparseFunctor
<
T
>
(
ctx
);
}
};
template
<
typename
T
>
class
PushGpuPSSparseCUDAKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
PushGpuPSSparseFunctor
<
T
>
(
ctx
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_CUDA_KERNEL
(
pull_gpups_sparse
,
ops
::
PullGpuPSSparseCUDAKernel
<
float
>
,
ops
::
PullGpuPSSparseCUDAKernel
<
double
>
)
REGISTER_OP_CUDA_KERNEL
(
push_gpups_sparse
,
ops
::
PushGpuPSSparseCUDAKernel
<
float
>
,
ops
::
PushGpuPSSparseCUDAKernel
<
double
>
)
\ No newline at end of file
paddle/fluid/operators/pull_gpups_sparse_op.h
0 → 100644
浏览文件 @
572b3e90
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <memory>
#include <vector>
#include "paddle/fluid/framework/fleet/ps_gpu_wrapper.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/tensor.h"
namespace
paddle
{
namespace
operators
{
template
<
typename
T
>
static
void
PullGpuPSSparseFunctor
(
const
framework
::
ExecutionContext
&
ctx
)
{
auto
inputs
=
ctx
.
MultiInput
<
framework
::
Tensor
>
(
"Ids"
);
auto
outputs
=
ctx
.
MultiOutput
<
framework
::
Tensor
>
(
"Out"
);
const
auto
slot_size
=
inputs
.
size
();
std
::
vector
<
const
uint64_t
*>
all_keys
(
slot_size
);
// GpuPSPS only supports float now
std
::
vector
<
float
*>
all_values
(
slot_size
);
std
::
vector
<
int64_t
>
slot_lengths
(
slot_size
);
for
(
size_t
i
=
0
;
i
<
slot_size
;
i
++
)
{
const
auto
*
slot
=
inputs
[
i
];
const
uint64_t
*
single_slot_keys
=
reinterpret_cast
<
const
uint64_t
*>
(
slot
->
data
<
int64_t
>
());
all_keys
[
i
]
=
single_slot_keys
;
slot_lengths
[
i
]
=
slot
->
numel
();
auto
*
output
=
outputs
[
i
]
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
// double type is not fully supported now
all_values
[
i
]
=
reinterpret_cast
<
float
*>
(
output
);
}
#ifdef PADDLE_WITH_HETERPS
auto
gpu_ps_ptr
=
paddle
::
framework
::
PSGPUWrapper
::
GetInstance
();
gpu_ps_ptr
->
PullSparse
(
ctx
.
GetPlace
(),
0
,
all_keys
,
all_values
,
slot_lengths
,
0
);
#endif
}
template
<
typename
T
>
static
void
PushGpuPSSparseFunctor
(
const
framework
::
ExecutionContext
&
ctx
)
{
auto
inputs
=
ctx
.
MultiInput
<
framework
::
LoDTensor
>
(
"Ids"
);
auto
d_output
=
ctx
.
MultiInput
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
const
auto
slot_size
=
inputs
.
size
();
std
::
vector
<
const
uint64_t
*>
all_keys
(
slot_size
);
std
::
vector
<
const
float
*>
all_grad_values
(
slot_size
);
std
::
vector
<
int64_t
>
slot_lengths
(
slot_size
);
int
batch_size
=
-
1
;
for
(
size_t
i
=
0
;
i
<
slot_size
;
i
++
)
{
const
auto
*
slot
=
inputs
[
i
];
const
uint64_t
*
single_slot_keys
=
reinterpret_cast
<
const
uint64_t
*>
(
slot
->
data
<
int64_t
>
());
all_keys
[
i
]
=
single_slot_keys
;
slot_lengths
[
i
]
=
slot
->
numel
();
int
cur_batch_size
=
slot
->
lod
().
size
()
?
slot
->
lod
()[
0
].
size
()
-
1
:
slot
->
dims
()[
0
];
if
(
batch_size
==
-
1
)
{
batch_size
=
cur_batch_size
;
}
else
{
PADDLE_ENFORCE_EQ
(
batch_size
,
cur_batch_size
,
platform
::
errors
::
PreconditionNotMet
(
"The batch size of all input slots should be same, "
"please cheack"
));
}
const
float
*
grad_value
=
d_output
[
i
]
->
data
<
float
>
();
all_grad_values
[
i
]
=
grad_value
;
}
#ifdef PADDLE_WITH_HETERPS
auto
gpu_ps_ptr
=
paddle
::
framework
::
PSGPUWrapper
::
GetInstance
();
gpu_ps_ptr
->
PushSparseGrad
(
ctx
.
GetPlace
(),
0
,
all_keys
,
all_grad_values
,
slot_lengths
,
0
,
batch_size
);
#endif
}
using
LoDTensor
=
framework
::
LoDTensor
;
template
<
typename
T
>
class
PullGpuPSSparseCPUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
PullGpuPSSparseFunctor
<
T
>
(
ctx
);
}
};
template
<
typename
T
>
class
PushGpuPSSparseCPUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
PushGpuPSSparseFunctor
<
T
>
(
ctx
);
}
};
}
// namespace operators
}
// namespace paddle
python/paddle/fluid/incubate/fleet/parameter_server/pslib/optimizer_factory.py
浏览文件 @
572b3e90
...
...
@@ -94,7 +94,8 @@ class DistributedAdam(DistributedOptimizerImplBase):
".batch_size@GRAD"
,
".batch_square_sum@GRAD"
,
".batch_sum@GRAD"
]
self
.
supported_embedding_types
=
[
"lookup_table"
,
"pull_sparse"
,
"pull_sparse_v2"
,
"pull_box_sparse"
"lookup_table"
,
"pull_sparse"
,
"pull_sparse_v2"
,
"pull_box_sparse"
,
"pull_gpups_sparse"
]
self
.
supported_embedding_grad_types
=
[
"lookup_table_grad"
,
"push_sparse"
,
"push_sparse_v2"
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
572b3e90
...
...
@@ -665,6 +665,69 @@ def _pull_sparse_v2(input,
return outs
def _pull_gpups_sparse(input,
size,
dtype='float32',
is_distributed=False,
is_sparse=False):
r"""
**Pull GpuPS Sparse Layer**
This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
GpuPS lookup table. The result of this lookup is the embedding of each ID in the
:attr:`input`.
Args:
input(Variable|list of Variable): Input is a Tensor<int64> Variable, which
contains the IDs information.
size(int|list of int): The embedding size parameter of each input, which indicates the size of
each embedding vector respectively.
dtype(str): The dtype refers to the data type of output tensor. Only supports
float32 now.
Returns:
Variable|list of Variable: The tensor variable storing the embeddings of the \
supplied inputs, whose size are indicated by size respectively.
Examples:
.. code-block:: python
import paddle.fluid as fluid
slots = []
data_1 = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
slots.append(data_1)
data_2 = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
slots.append(data_2)
embs = fluid.layers.pull_gpups_sparse(input=slots, size=[11, 35])
"""
helper = LayerHelper('pull_gpups_sparse', **locals())
if dtype != 'float32':
raise ValueError(
"GpuPS only support float type embedding now, and your type is: " +
dtype)
helper.input_dtype()
inputs = helper.multiple_input()
outs = [
helper.create_variable_for_type_inference(dtype)
for i in range(len(inputs))
]
w = helper.create_parameter(
attr=helper.param_attr, shape=[11], dtype=dtype, is_bias=False)
helper.append_op(
type='pull_gpups_sparse',
inputs={'Ids': inputs,
'W': w},
outputs={'Out': outs},
attrs={
'size': size,
'is_distributed': is_distributed,
'is_sparse': is_sparse
})
if len(outs) == 1:
return outs[0]
return outs
def _pull_box_sparse(input,
size,
dtype='float32',
...
...
python/paddle/fluid/tests/unittests/test_pull_gpups_sparse_op.py
0 → 100644
浏览文件 @
572b3e90
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.core
as
core
from
paddle.fluid
import
Program
,
program_guard
from
paddle.fluid.layers.nn
import
_pull_gpups_sparse
paddle
.
enable_static
()
class
TestPullGpupsSparse
(
unittest
.
TestCase
):
"""Test PullGpupsSparse op."""
def
test_static_graph
(
self
):
startup_program
=
fluid
.
Program
()
train_program
=
fluid
.
Program
()
slots
=
[]
with
fluid
.
program_guard
(
train_program
,
startup_program
):
l
=
fluid
.
layers
.
data
(
name
=
'input'
,
shape
=
[
1
],
dtype
=
"int64"
,
lod_level
=
1
)
slots
.
append
(
l
)
output
=
_pull_gpups_sparse
(
slots
,
size
=
[
11
],
is_distributed
=
True
,
is_sparse
=
True
)
cost
=
paddle
.
fluid
.
layers
.
mean
(
output
)
sgd_optimizer
=
fluid
.
optimizer
.
SGD
(
learning_rate
=
0.001
)
sgd_optimizer
.
minimize
(
cost
,
train_program
)
block
=
train_program
.
global_block
()
place
=
fluid
.
CPUPlace
()
if
fluid
.
core
.
is_compiled_with_cuda
():
place
=
fluid
.
CUDAPlace
(
0
)
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
startup_program
)
img
=
np
.
array
([
1
]).
astype
(
np
.
int64
)
res
=
exe
.
run
(
train_program
,
feed
=
{
'input'
:
img
},
fetch_list
=
[
output
])
if
__name__
==
"__main__"
:
unittest
.
main
()
tools/static_mode_white_list.py
浏览文件 @
572b3e90
...
...
@@ -728,4 +728,5 @@ STATIC_MODE_TESTING_LIST = [
'test_fill_diagonal_tensor_op'
,
'test_fill_any_op'
,
'test_margin_cross_entropy_op'
,
'test_pull_gpups_sparse_op'
,
]
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录