nn.py 28.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16
"""
P
peizhilin 已提交
17
import os
S
sneaxiy 已提交
18
import inspect
19 20 21 22 23
import warnings

import numpy as np

import paddle
Y
Yu Yang 已提交
24
from ..layer_helper import LayerHelper
25
from ..initializer import Normal, Constant
26 27 28 29 30 31 32 33 34 35 36
from ..framework import (
    Variable,
    OpProtoHolder,
    dygraph_only,
    _dygraph_tracer,
    default_main_program,
    _varbase_creator,
    static_only,
    _global_flags,
    in_dygraph_mode,
)
37
from ..framework import _current_expected_place
38
from .. import dygraph_utils
Y
yangyaming 已提交
39
from ..param_attr import ParamAttr
40 41 42 43 44
from .layer_function_generator import (
    autodoc,
    templatedoc,
    _generate_doc_string_,
)
45
from .tensor import concat, assign, fill_constant, zeros
46
from . import utils
F
fengjiayi 已提交
47
from .. import unique_name
48
from .. import core
49
from ...utils import deprecated
50 51 52 53 54 55
from ..data_feeder import (
    convert_dtype,
    check_variable_and_dtype,
    check_type,
    check_dtype,
)
56
from paddle.utils import deprecated
57
from paddle import _C_ops, _legacy_C_ops
58 59
from collections.abc import Iterable

Y
Yu Yang 已提交
60 61

__all__ = [
X
Xin Pan 已提交
62 63
    'embedding',
    'autoincreased_step_counter',
Y
Yu Yang 已提交
64 65
]

66
OP_NAMEMAPPING = {
67 68 69 70 71 72 73 74
    'elementwise_max': 'maximum',
    'elementwise_min': 'minimum',
    'elementwise_pow': 'elementwise_pow',
    'elementwise_floordiv': 'floor_divide',
    'elementwise_add': 'add',
    'elementwise_sub': 'subtract',
    'elementwise_mul': 'multiply',
    'elementwise_div': 'divide',
C
Chen Weihang 已提交
75
    'elementwise_mod': 'remainder',
76 77
}

Y
Yu Yang 已提交
78

79 80
def _get_reduce_dim(dim, input):
    """
81
    Internal function for reduce_sum, reduce_mean, reduce_prod.
82 83 84 85 86 87 88 89 90
    It computes the attribute reduce_all value based on axis.
    """
    if dim is not None and not isinstance(dim, list):
        if isinstance(dim, (tuple, range)):
            dim = list(dim)
        elif isinstance(dim, int):
            dim = [dim]
        else:
            raise TypeError(
91
                "The type of dim must be int, list, tuple or range, but received {}".format(
92
                    type(dim)
93 94
                )
            )
95 96 97 98 99 100 101 102 103 104
    if dim is None:
        dim = []
    if dim == [] or len(dim) == len(input.shape):
        reduce_all = True
    else:
        reduce_all = False

    return reduce_all, dim


105
@dygraph_only
106 107 108
def _elementwise_op_in_dygraph(
    x, y, axis=-1, act=None, use_mkldnn=False, op_name=None
):
109 110 111 112
    def is_inplace(op_name):
        return op_name[-1] == "_"

    if op_name not in OP_NAMEMAPPING.keys() or axis != -1:
113
        op = getattr(_legacy_C_ops, op_name)
114 115 116
        out = op(x, y, 'axis', axis, 'use_mkldnn', use_mkldnn)
    else:
        if in_dygraph_mode():
117 118
            op = getattr(
                _C_ops,
119 120
                OP_NAMEMAPPING[op_name] if not is_inplace(op_name) else op_name,
            )
121
            out = op(x, y)
122 123 124 125 126
    return dygraph_utils._append_activation_in_dygraph(
        out, act, use_mkldnn=use_mkldnn
    )


T
tangwei12 已提交
127
@deprecated(since="2.0.0", update_to="paddle.nn.functional.embedding")
128 129 130 131 132 133 134 135 136
def embedding(
    input,
    size,
    is_sparse=False,
    is_distributed=False,
    padding_idx=None,
    param_attr=None,
    dtype='float32',
):
137
    r"""
138
    :api_attr: Static Graph
139

140 141 142 143 144 145 146 147 148 149 150 151
    **WARING:** This OP will be deprecated in a future release. This OP requires the
    last dimension of Tensor shape must be equal to 1. It is recommended to use
    fluid. :ref:`api_fluid_embedding` .

    The operator is used to lookup embeddings vector of ids provided by :attr:`input` .
    It automatically constructs a 2D embedding matrix based on the
    input :attr:`size` (vocab_size, emb_size) and :attr:`dtype` .

    This OP requires the last dimension of Tensor shape must be equal to 1. The shape
    of output Tensor is generated by replacing the last dimension of the input Tensor shape
    with emb_size.

152
    **Note:** The id in :attr:`input` must satisfy :math:`0 =< id < size[0]` ,
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
    otherwise the program will throw an exception and exit.

    .. code-block:: text

        Case 1:

        input is a Tensor. padding_idx = -1
            input.data = [[[1], [3]], [[2], [4]], [[4], [127]]]
            input.shape = [3, 2, 1]
        Given size = [128, 16]
        output is a Tensor:
            out.shape = [3, 2, 16]
            out.data = [[[0.129435295, 0.244512452, ..., 0.436322452],
                        [0.345421456, 0.524563927, ..., 0.144534654]],

                        [[0.345249859, 0.124939536, ..., 0.194353745],
                        [0.945345345, 0.435394634, ..., 0.435345365]],
170

171 172 173 174
                        [[0.945345345, 0.435394634, ..., 0.435345365],
                        [0.0,         0.0,         ..., 0.0        ]]]  # padding data
        The input padding_idx is less than 0, it is automatically converted to padding_idx = -1 + 128 = 127
        It will pad all-zero data when ids is 127.
175

176
        Case 2:
177

178 179 180 181 182 183 184 185 186 187 188 189 190 191
        input is a LoDTensor with 1-level LoD. padding_idx = 0
            input.lod = [[2, 3]]
            input.data = [[1], [3], [2], [4], [0]]
            input.shape = [5, 1]
        Given size = [128, 16]
        output is a LoDTensor:
            out.lod = [[2, 3]]
            out.shape = [5, 16]
            out.data = [[0.129435295, 0.244512452, ..., 0.436322452],
                        [0.345421456, 0.524563927, ..., 0.144534654],
                        [0.345249859, 0.124939536, ..., 0.194353745],
                        [0.945345345, 0.435394634, ..., 0.435345365],
                        [0.0,         0.0,         ..., 0.0        ]]  # padding data
        It will pad all-zero data when ids is 0.
Y
Yu Yang 已提交
192 193

    Args:
194 195 196 197 198 199
        input(Variable): A Tensor or LoDTensor with type int64, which contains the id information.
            The last dimension of Tensor shape must be equal to 1. The value of the input id should
            satisfy :math:`0<= id < size[0]` .
        size(tuple|list): The shape of lookup table parameter. It should have two elements which
            indicates the size of the dictionary of embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update. This parameter only
200
            affects the performance of the backwards gradient update. It is recommended to set
201
            True because sparse update is faster. But some optimizer does not support sparse update,
202
            such as :ref:`api_fluid_optimizer_AdadeltaOptimizer` , :ref:`api_fluid_optimizer_AdamaxOptimizer` ,
203 204 205 206 207
            :ref:`api_fluid_optimizer_DecayedAdagradOptimizer` , :ref:`api_fluid_optimizer_FtrlOptimizer` ,
            :ref:`api_fluid_optimizer_LambOptimizer` and :ref:`api_fluid_optimizer_LarsMomentumOptimizer` .
            In these case, is_sparse must be False. Default: False.
        is_distributed(bool): Whether to store the embedding matrix in a distributed manner. Only used
            in multi-machine distributed CPU training. Default: False.
208
        padding_idx(int|long|None): padding_idx needs to be in the interval [-vocab_size, vocab_size).
209 210 211 212 213 214
            If :math:`padding\_idx < 0`, the :math:`padding\_idx` will automatically be converted
            to :math:`vocab\_size + padding\_idx` . It will output all-zero padding data whenever lookup
            encounters :math:`padding\_idx` in id. And the padding data will not be updated while training.
            If set None, it makes no effect to output. Default: None.
        param_attr(ParamAttr): To specify the weight parameter property. Default: None, which means the
            default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` . In addition,
215
            user-defined or pre-trained word vectors can be loaded with the :attr:`param_attr` parameter.
216
            The local word vector needs to be transformed into numpy format, and the shape of local word
T
tianshuo78520a 已提交
217
            vector should be consistent with :attr:`size` . Then :ref:`api_fluid_initializer_NumpyArrayInitializer`
218 219 220
            is used to load custom or pre-trained word vectors. See code example 2 for details.
        dtype(str|core.VarDesc.VarType): It refers to the data type of output Tensor.
            It must be float32 or float64. Default: float32.
Y
Yu Yang 已提交
221

222
    Returns:
223
        Variable: Embedding Tensor or LoDTensor mapped by input. The data type is the same as :attr:`dtype` .
Y
Yu Yang 已提交
224

225 226
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
227

B
bdzhuxiaoning 已提交
228
          import paddle.fluid as fluid
229
          import numpy as np
230 231
          import paddle
          paddle.enable_static()
232

233 234
          data = fluid.data(name='x', shape=[None, 1], dtype='int64')

T
tianshuo78520a 已提交
235
          # example 1
236 237 238 239 240 241 242 243 244
          emb_1 = fluid.embedding(input=data, size=[128, 64])

          # example 2: load custom or pre-trained word vectors
          weight_data = np.random.random(size=(128, 100))  # word vectors with numpy format
          w_param_attrs = fluid.ParamAttr(
              name="emb_weight",
              learning_rate=0.5,
              initializer=fluid.initializer.NumpyArrayInitializer(weight_data),
              trainable=True)
245
          emb_2 = fluid.layers.embedding(input=data, size=(128, 100), param_attr=w_param_attrs, dtype='float32')
Y
Yu Yang 已提交
246 247 248
    """

    helper = LayerHelper('embedding', **locals())
249 250 251 252 253 254 255 256 257
    check_variable_and_dtype(
        input, 'input', ['int64'], 'fluid.layers.embedding'
    )
    check_dtype(
        dtype,
        'dtype',
        ['uint16', 'float16', 'float32', 'float64'],
        'fluid.layers.embedding',
    )
258 259 260 261 262 263 264 265 266

    if is_distributed:
        is_distributed = False
        warnings.warn(
            "is_distributed is go out of use, `fluid.contrib.layers.sparse_embedding` is your needed"
        )

    remote_prefetch = True if is_sparse else False

267 268 269
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False
    )
X
Xin Pan 已提交
270
    tmp = helper.create_variable_for_type_inference(dtype)
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
    padding_idx = (
        -1
        if padding_idx is None
        else padding_idx
        if padding_idx >= 0
        else (size[0] + padding_idx)
    )
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input, 'W': w},
        outputs={'Out': tmp},
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
            'remote_prefetch': remote_prefetch,
            'padding_idx': padding_idx,
        },
    )
Y
Yu Yang 已提交
289 290 291
    return tmp


292 293 294 295 296 297 298 299 300 301 302
def _pull_sparse(
    input,
    size,
    table_id,
    accessor_class,
    name="embedding",
    ctr_label_name="",
    padding_id=0,
    dtype='float32',
    scale_sparse_grad=True,
):
303
    r"""
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
    **Pull Fleet Sparse Layer**

    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
    Fleet lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.

    Args:
        input(Variable|list of Variable): Input is a Tensor<int64> Variable, which
            contains the IDs information.
        size(int): The embedding size parameter, which indicates the size of
            each embedding vector respectively.
        table_id(int): the fleet table id of this embedding.
        accessor_class(str): the pslib accessor of the table, default is DownpourCtrAccessor.
        ctr_label_name(str): the layer name of click.
        padding_id(int): the padding id during lookup, default is 0.
        dtype(str): The dtype refers to the data type of output tensor. Only supports
            float32 now.
        scale_sparse_grad(bool): whether to scale sparse gradient with batch size. default
            is True.

    Returns:
        Variable|list of Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          data = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
          emb = fluid.layers.nn._pull_sparse(
              input=data, size=11, table_id=0, accessor_class="DownpourCtrAccessor")
    """
    helper = LayerHelper(name, **locals())
    inputs = helper.multiple_input()
    outs = [helper.create_variable_for_type_inference(dtype)]
    input_names = [i.name for i in inputs]
    attrs = {
        'EmbeddingDim': size,
        'TableId': table_id,
        'AccessorClass': accessor_class,
        'CtrLabelName': ctr_label_name,
        'PaddingId': padding_id,
        'ScaleSparseGrad': scale_sparse_grad,
        'InputNames': input_names,
        # this is only for compatible with embedding op
349
        'is_distributed': True,
350 351
    }
    # this is only for compatible with embedding op
352 353 354 355 356 357 358 359 360
    w, _ = helper.create_or_get_global_variable(
        name=name, shape=[size], dtype=dtype, is_bias=False, persistable=True
    )
    helper.append_op(
        type='pull_sparse',
        inputs={'Ids': inputs, 'W': w},
        outputs={'Out': outs},
        attrs=attrs,
    )
361 362 363 364 365
    if len(outs) == 1:
        return outs[0]
    return outs


366 367 368 369 370 371 372 373 374 375 376
def _pull_sparse_v2(
    input,
    size,
    table_id,
    accessor_class,
    name="embedding",
    ctr_label_name="",
    padding_id=0,
    dtype='float32',
    scale_sparse_grad=True,
):
377
    r"""
378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
    **Pull Fleet Sparse Layer**

    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
    Fleet lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.

    Args:
        input(Variable|list of Variable): Input is a Tensor<int64> Variable, which
            contains the IDs information.
        size(int): The embedding size parameter, which indicates the size of
            each embedding vector respectively.
        table_id(int): the pslib table id of this embedding.
        accessor_class(str): the fleet accessor of the table, default is DownpourCtrAccessor.
        ctr_label_name(str): the layer name of click.
        padding_id(int): the padding id during lookup, default is 0.
        dtype(str): The dtype refers to the data type of output tensor. Only supports
            float32 now.
        scale_sparse_grad(bool): whether to scale sparse gradient with batch size. default
            is True.

    Returns:
        Variable|list of Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          data = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
          emb = fluid.layers.nn._pull_sparse_v2(
              input=data, size=11, table_id=0, accessor_class="DownpourCtrAccessor")
    """
    helper = LayerHelper(name, **locals())
    inputs = helper.multiple_input()
    outs = [helper.create_variable_for_type_inference(dtype)]
    input_names = [i.name for i in inputs]
    attrs = {
        'EmbeddingDim': size,
        'TableId': table_id,
        'AccessorClass': accessor_class,
        'CtrLabelName': ctr_label_name,
        'PaddingId': padding_id,
        'ScaleSparseGrad': scale_sparse_grad,
        'InputNames': input_names,
        # this is only for compatible with embedding op
423
        'is_distributed': True,
424 425
    }
    # this is only for compatible with embedding op
426 427 428 429 430 431 432 433 434
    w, _ = helper.create_or_get_global_variable(
        name=name, shape=[size], dtype=dtype, is_bias=False, persistable=True
    )
    helper.append_op(
        type='pull_sparse_v2',
        inputs={'Ids': inputs, 'W': w},
        outputs={'Out': outs},
        attrs=attrs,
    )
435
    if len(outs) == 1:
Y
yaoxuefeng 已提交
436 437 438 439
        return outs[0]
    return outs


440 441 442
def _pull_gpups_sparse(
    input, size, dtype='float32', is_distributed=False, is_sparse=False
):
Y
yaoxuefeng 已提交
443 444 445 446 447 448 449 450 451 452 453 454 455
    r"""
    **Pull GpuPS Sparse Layer**

    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
    GpuPS lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.

    Args:
        input(Variable|list of Variable): Input is a Tensor<int64> Variable, which
            contains the IDs information.
        size(int|list of int): The embedding size parameter of each input, which indicates the size of
            each embedding vector respectively.
        dtype(str): The dtype refers to the data type of output tensor. Only supports
456
        float32 now.
Y
yaoxuefeng 已提交
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475

    Returns:
        Variable|list of Variable: The tensor variable storing the embeddings of the \
                  supplied inputs, whose size are indicated by size respectively.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          slots = []
          data_1 = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
          slots.append(data_1)
          data_2 = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
          slots.append(data_2)
          embs = fluid.layers.pull_gpups_sparse(input=slots, size=[11, 35])
    """
    helper = LayerHelper('pull_gpups_sparse', **locals())
    if dtype != 'float32':
        raise ValueError(
476 477 478
            "GpuPS only support float type embedding now, and your type is: "
            + dtype
        )
Y
yaoxuefeng 已提交
479 480 481 482 483 484
    helper.input_dtype()
    inputs = helper.multiple_input()
    outs = [
        helper.create_variable_for_type_inference(dtype)
        for i in range(len(inputs))
    ]
485 486 487 488 489 490 491 492 493 494 495 496 497
    w = helper.create_parameter(
        attr=helper.param_attr, shape=[size[0]], dtype=dtype, is_bias=False
    )
    helper.append_op(
        type='pull_gpups_sparse',
        inputs={'Ids': inputs, 'W': w},
        outputs={'Out': outs},
        attrs={
            'size': size,
            'is_distributed': is_distributed,
            'is_sparse': is_sparse,
        },
    )
Y
yaoxuefeng 已提交
498
    if len(outs) == 1:
499 500 501 502
        return outs[0]
    return outs


503 504 505
def _pull_box_sparse(
    input, size, dtype='float32', is_distributed=False, is_sparse=False
):
506
    r"""
H
hutuxian 已提交
507 508 509 510 511 512 513
    **Pull Box Sparse Layer**

    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
    BoxPS lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.

    Args:
514
        input(Variable|list of Variable): Input is a Tensor<int64> Variable, which
H
hutuxian 已提交
515
            contains the IDs information.
516
        size(int): The embedding size parameter, which indicates the size of
H
hutuxian 已提交
517
            each embedding vector respectively.
518
        dtype(str): The dtype refers to the data type of output tensor. Only supports
519
        float32 now.
H
hutuxian 已提交
520 521 522 523 524 525 526 527 528 529

    Returns:
        Variable|list of Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          data = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
530
          emb = fluid.layers.pull_box_sparse(input=data, size=[11])
H
hutuxian 已提交
531 532 533 534
    """
    helper = LayerHelper('pull_box_sparse', **locals())
    if dtype != 'float32':
        raise ValueError(
535 536 537
            "BoxPS only support float type embedding now, and your type is: "
            + dtype
        )
H
hutuxian 已提交
538 539 540 541 542 543
    helper.input_dtype()
    inputs = helper.multiple_input()
    outs = [
        helper.create_variable_for_type_inference(dtype)
        for i in range(len(inputs))
    ]
544 545 546 547 548 549 550 551 552 553 554 555 556
    w = helper.create_parameter(
        attr=helper.param_attr, shape=[size], dtype=dtype, is_bias=False
    )
    helper.append_op(
        type='pull_box_sparse',
        inputs={'Ids': inputs, 'W': w},
        outputs={'Out': outs},
        attrs={
            'size': size,
            'is_distributed': is_distributed,
            'is_sparse': is_sparse,
        },
    )
H
hutuxian 已提交
557 558 559 560 561
    if len(outs) == 1:
        return outs[0]
    return outs


C
caoying03 已提交
562
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
563
    """
564

Y
yangyaming 已提交
565
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
566 567

    Args:
568 569 570
        input (Variable): The input variable which is a Tensor, the data type is float32,
            float64, int32, int64.
        dim (list|int, optional): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
571 572
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
573 574
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
575
        keep_dim (bool, optional): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
576
            output Tensor. The result tensor will have one fewer dimension
577 578 579 580
            than the :attr:`input` unless :attr:`keep_dim` is true, default
            value is False.
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
G
guosheng 已提交
581 582

    Returns:
583 584
        Variable: Tensor, results of summation operation on the specified dim of input tensor,
        it's data type is the same as input's Tensor.
F
fengjiayi 已提交
585

586 587
    Raises:
        TypeError, if out data type is different with the input data type.
588

G
guosheng 已提交
589 590 591
    Examples:
        .. code-block:: python

592
            import paddle.fluid as fluid
593 594
            import paddle
            paddle.enable_static()
G
guosheng 已提交
595 596 597
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
598
            # Each example is followed by the corresponding output tensor.
599
            x = fluid.data(name='x', shape=[2, 4], dtype='float32')
G
guosheng 已提交
600 601 602 603
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
604

605
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
606 607
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
608
            # Each example is followed by the corresponding output tensor.
609
            y = fluid.data(name='y', shape=[2, 2, 2], dtype='float32')
610 611
            fluid.layers.reduce_sum(y, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(y, dim=[0, 1]) # [16, 20]
W
whs 已提交
612

G
guosheng 已提交
613
    """
614 615
    reduce_all, dim = _get_reduce_dim(dim, input)

616
    if in_dygraph_mode():
617
        return _C_ops.sum(input, dim, None, keep_dim)
姜永久 已提交
618 619 620 621 622 623 624
    else:
        attrs = {'dim': dim, 'keep_dim': keep_dim, 'reduce_all': reduce_all}
        check_variable_and_dtype(
            input,
            'input',
            ['float16', 'float32', 'float64', 'int32', 'int64'],
            'reduce_sum',
625
        )
姜永久 已提交
626 627 628 629 630 631 632 633 634 635 636
        helper = LayerHelper('reduce_sum', **locals())
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype()
        )
        helper.append_op(
            type='reduce_sum',
            inputs={'X': input},
            outputs={'Out': out},
            attrs=attrs,
        )
        return out
G
guosheng 已提交
637 638


Y
Yu Yang 已提交
639
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
640
    """
641 642
    :api_attr: Static Graph

643 644
    Create an auto-increase variable. which will be automatically increased
    by 1 in every iteration. By default, the first return of this counter is 1,
Y
Yibing Liu 已提交
645
    and the step size is 1.
Y
Yu Yang 已提交
646 647

    Args:
Y
Yibing Liu 已提交
648 649 650
        counter_name(str, optional): The counter name. Default '@STEP_COUNTER@'.
        begin(int, optional): The first return value of this counter. Default 1.
        step(int, optional): The step size. Default 1.
Y
Yu Yang 已提交
651

652
    Returns:
Y
Yibing Liu 已提交
653
        Variable: The auto-increased Variable with data type int64.
Y
yi.wu 已提交
654 655 656 657

    Examples:
        .. code-block:: python

658
           import paddle.fluid as fluid
659 660
           import paddle
           paddle.enable_static()
Y
yi.wu 已提交
661
           global_step = fluid.layers.autoincreased_step_counter(
Y
Yibing Liu 已提交
662
               counter_name='@LR_DECAY_COUNTER@', begin=0, step=1)
Y
Yu Yang 已提交
663 664
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
665 666
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
667
    counter, is_new_var = helper.create_or_get_global_variable(
H
hong 已提交
668 669 670 671
        name=counter_name,
        dtype='int64',
        shape=[1],
        persistable=True,
672 673
        belong_to_optimizer=True,
    )
Y
Yu Yang 已提交
674
    if is_new_var:
675 676 677
        helper.set_variable_initializer(
            counter, initializer=Constant(value=begin - 1, force_cpu=True)
        )
W
Wu Yi 已提交
678
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
679 680
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
681
            outputs={'Out': [counter]},
682 683
            attrs={'step': float(step)},
        )
Y
Yu Yang 已提交
684 685 686
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
687 688


689
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
690
    """
691
    Insert single-dimensional entries to the shape of a Tensor. Takes one
M
minqiyang 已提交
692 693
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
694

M
minqiyang 已提交
695
    For example:
H
haowang101779990 已提交
696 697 698

    .. code-block:: text

M
minqiyang 已提交
699
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
700
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
701

Y
Yibing Liu 已提交
702
    Args:
703
        input (Variable): The input Tensor to be unsqueezed. Supported data type: float32, float64, bool, int8, int32, int64.
704
        axes (int|list|tuple|Variable): Indicates the dimensions to be inserted. The data type is ``int32`` . If ``axes`` is a list or tuple, the elements of it should be integers or Tensors with shape [1]. If ``axes`` is an Variable, it should be an 1-D Tensor .
705
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
706 707

    Returns:
708
        Variable: Unsqueezed Tensor, with the same data type as input.
Y
Yibing Liu 已提交
709 710 711 712

    Examples:
        .. code-block:: python

713 714 715
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[5, 10])
            y = fluid.layers.unsqueeze(input=x, axes=[1])
716

Y
Yibing Liu 已提交
717
    """
姜永久 已提交
718
    if in_dygraph_mode():
L
Leo Chen 已提交
719 720 721
        if isinstance(axes, int):
            axes = [axes]
        elif isinstance(axes, Variable):
722
            axes = axes.numpy().tolist()
L
Leo Chen 已提交
723 724 725 726 727
        elif isinstance(axes, (list, tuple)):
            axes = [
                item.numpy().item(0) if isinstance(item, Variable) else item
                for item in axes
            ]
728
        return _C_ops.unsqueeze(input, axes)
姜永久 已提交
729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750
    else:
        check_type(axes, 'axis/axes', (int, list, tuple, Variable), 'unsqueeze')
        check_variable_and_dtype(
            input,
            'input',
            [
                'float16',
                'float32',
                'float64',
                'bool',
                'int8',
                'int16',
                'int32',
                'int64',
                'complex64',
                'complex128',
            ],
            'unsqueeze',
        )
        helper = LayerHelper("unsqueeze2", **locals())
        inputs = {"X": input}
        attrs = {}
751

姜永久 已提交
752 753 754 755 756 757 758 759 760 761
        if isinstance(axes, int):
            axes = [axes]
        if isinstance(axes, Variable):
            axes.stop_gradient = True
            inputs["AxesTensor"] = axes
        elif isinstance(axes, (list, tuple)):
            if utils._contain_var(axes):
                inputs["AxesTensorList"] = utils._convert_to_tensor_list(axes)
            else:
                attrs["axes"] = axes
762

姜永久 已提交
763 764 765 766 767 768 769 770
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
        x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
        helper.append_op(
            type="unsqueeze2",
            inputs=inputs,
            attrs=attrs,
            outputs={"Out": out, "XShape": x_shape},
        )
Y
Yibing Liu 已提交
771

姜永久 已提交
772
        return out
773

774

775
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
姜永久 已提交
776
    if in_dygraph_mode():
777
        op = getattr(_legacy_C_ops, op_name)
778 779 780 781
        if binary_op:
            return op(x, y)
        else:
            return op(x)
姜永久 已提交
782
    else:
783
        check_variable_and_dtype(
姜永久 已提交
784 785
            x,
            "x",
786
            ["bool", "int8", "int16", "int32", "int64", "float32", "float64"],
787 788
            op_name,
        )
姜永久 已提交
789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805
        if y is not None:
            check_variable_and_dtype(
                y,
                "y",
                [
                    "bool",
                    "int8",
                    "int16",
                    "int32",
                    "int64",
                    "float32",
                    "float64",
                ],
                op_name,
            )
        if out is not None:
            check_type(out, "out", Variable, op_name)
806

姜永久 已提交
807
        helper = LayerHelper(op_name, **locals())
M
minqiyang 已提交
808

姜永久 已提交
809 810 811 812 813
        if binary_op and x.dtype != y.dtype:
            raise ValueError(
                "(InvalidArgument) The DataType of %s Op's Variable must be consistent, but received %s and %s."
                % (op_name, x.dtype, y.dtype)
            )
M
minqiyang 已提交
814

姜永久 已提交
815 816
        if out is None:
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
817

姜永久 已提交
818 819 820 821 822 823 824 825
        if binary_op:
            helper.append_op(
                type=op_name, inputs={"X": x, "Y": y}, outputs={"Out": out}
            )
        else:
            helper.append_op(
                type=op_name, inputs={"X": x}, outputs={"Out": out}
            )
M
minqiyang 已提交
826

姜永久 已提交
827
        return out