未验证 提交 8c48c7da 编写于 作者: Y yukavio 提交者: GitHub

Add new one hot function in nn.functional (#26183)

* add input.py  file

* write input.py

* fix init file

* add unit tests

* fix dygraph and input shape

* Revert "fix dygraph and input shape"

This reverts commit 89ad8664.

* fixed pylint

* fix deprecated

* fix old op

* fix old op

* set check_dygraph=True

* Revert "set check_dygraph=True"

This reverts commit a8e93e33.

* test commit

* fix doc and change test file name
上级 6914a12f
......@@ -17,10 +17,12 @@ import warnings
from .framework import Variable, in_dygraph_mode
from .layer_helper import LayerHelper
from .data_feeder import check_variable_and_dtype, check_dtype
from ..utils import deprecated
__all__ = ['one_hot', 'embedding']
@deprecated(since='2.0.0', update_to='paddle.nn.functional.one_hot')
def one_hot(input, depth, allow_out_of_range=False):
"""
:alias_main: paddle.nn.functional.one_hot
......
......@@ -35,6 +35,7 @@ from . import utils
from .. import unique_name
from functools import reduce
from .. import core
from ...utils import deprecated
from ..data_feeder import convert_dtype, check_variable_and_dtype, check_type, check_dtype
import paddle
from paddle.utils import deprecated
......@@ -5800,6 +5801,7 @@ def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
return loss
@deprecated(since='2.0.0', update_to='paddle.nn.functional.one_hot')
def one_hot(input, depth, allow_out_of_range=False):
"""
......
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
import math
from op_test import OpTest
import paddle.fluid as fluid
import paddle.fluid.core as core
import paddle.nn.functional as functional
import paddle.fluid.framework as framework
from paddle.fluid.framework import Program, program_guard
class TestOneHotOp(OpTest):
def setUp(self):
self.op_type = 'one_hot_v2'
depth = 10
depth_np = np.array(10).astype('int32')
dimension = 12
x_lod = [[4, 1, 3, 3]]
x = [np.random.randint(0, depth - 1) for i in range(sum(x_lod[0]))]
x = np.array(x).astype('int32').reshape([sum(x_lod[0])])
out = np.zeros(shape=(np.product(x.shape), depth)).astype('float32')
for i in range(np.product(x.shape)):
out[i, x[i]] = 1.0
self.inputs = {'X': (x, x_lod), 'depth_tensor': depth_np}
self.attrs = {'dtype': int(core.VarDesc.VarType.FP32)}
self.outputs = {'Out': (out, x_lod)}
def test_check_output(self):
self.check_output(check_dygraph=False)
class TestOneHotOp_attr(OpTest):
def setUp(self):
self.op_type = 'one_hot_v2'
depth = 10
dimension = 12
x_lod = [[4, 1, 3, 3]]
x = [np.random.randint(0, depth - 1) for i in range(sum(x_lod[0]))]
x = np.array(x).astype('int32').reshape([sum(x_lod[0]), 1])
out = np.zeros(shape=(np.product(x.shape[:-1]), 1,
depth)).astype('float32')
for i in range(np.product(x.shape)):
out[i, 0, x[i]] = 1.0
self.inputs = {'X': (x, x_lod)}
self.attrs = {'dtype': int(core.VarDesc.VarType.FP32), 'depth': depth}
self.outputs = {'Out': (out, x_lod)}
def test_check_output(self):
self.check_output(check_dygraph=False)
class TestOneHotOp_default_dtype(OpTest):
def setUp(self):
self.op_type = 'one_hot_v2'
depth = 10
depth_np = np.array(10).astype('int32')
dimension = 12
x_lod = [[4, 1, 3, 3]]
x = [np.random.randint(0, depth - 1) for i in range(sum(x_lod[0]))]
x = np.array(x).astype('int32').reshape([sum(x_lod[0])])
out = np.zeros(shape=(np.product(x.shape), depth)).astype('float32')
for i in range(np.product(x.shape)):
out[i, x[i]] = 1.0
self.inputs = {'X': (x, x_lod), 'depth_tensor': depth_np}
self.attrs = {}
self.outputs = {'Out': (out, x_lod)}
def test_check_output(self):
self.check_output(check_dygraph=False)
class TestOneHotOp_default_dtype_attr(OpTest):
def setUp(self):
self.op_type = 'one_hot_v2'
depth = 10
dimension = 12
x_lod = [[4, 1, 3, 3]]
x = [np.random.randint(0, depth - 1) for i in range(sum(x_lod[0]))]
x = np.array(x).astype('int32').reshape([sum(x_lod[0]), 1])
out = np.zeros(shape=(np.product(x.shape[:-1]), 1,
depth)).astype('float32')
for i in range(np.product(x.shape)):
out[i, 0, x[i]] = 1.0
self.inputs = {'X': (x, x_lod)}
self.attrs = {'depth': depth}
self.outputs = {'Out': (out, x_lod)}
def test_check_output(self):
self.check_output(check_dygraph=False)
class TestOneHotOp_exception(unittest.TestCase):
def setUp(self):
self.op_type = 'one_hot_v2'
self.depth = 10
self.place = core.CPUPlace()
self.dimension = 12
self.x = core.LoDTensor()
x_lod = [[4, 1, 3, 3]]
data = [np.random.randint(11, 20) for i in range(sum(x_lod[0]))]
data = np.array(data).astype('int').reshape([sum(x_lod[0]), 1])
self.x.set(data, self.place)
self.x.set_recursive_sequence_lengths(x_lod)
def test_check_output(self):
program = Program()
with program_guard(program):
x = fluid.layers.data(
name='x', shape=[self.dimension], dtype='float32', lod_level=1)
block = program.current_block()
one_hot_out = block.create_var(
name="one_hot_out",
type=core.VarDesc.VarType.LOD_TENSOR,
dtype='float32')
block.append_op(
type='one_hot',
inputs={'X': x},
attrs={'depth': self.depth},
outputs={'Out': one_hot_out})
exe = fluid.Executor(self.place)
def run():
exe.run(feed={'x': self.x},
fetch_list=[one_hot_out],
return_numpy=False)
self.assertRaises(core.EnforceNotMet, run)
class TestOneHotOpApi(unittest.TestCase):
def test_api(self):
num_classes = 10
self._run(num_classes)
def test_api_with_depthTensor(self):
num_classes = fluid.layers.assign(input=np.array([10], dtype=np.int32))
self._run(num_classes)
def test_api_with_dygraph(self):
num_classes = 10
label = np.array(
[np.random.randint(0, num_classes - 1)
for i in range(6)]).reshape([6, 1])
with fluid.dygraph.guard():
one_hot_label = functional.one_hot(
x=fluid.dygraph.to_variable(label), num_classes=num_classes)
def _run(self, num_classes):
label = fluid.layers.data(name="label", shape=[1], dtype="int64")
one_hot_label = functional.one_hot(x=label, num_classes=num_classes)
place = fluid.CPUPlace()
label_data = np.array([np.random.randint(0, 10 - 1)
for i in range(6)]).reshape([6, 1])
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
ret = exe.run(feed={'label': label_data, },
fetch_list=[one_hot_label],
return_numpy=False)
class BadInputTestOnehotV2(unittest.TestCase):
def test_error(self):
with fluid.program_guard(fluid.Program()):
def test_bad_x():
label = fluid.layers.data(
name="label",
shape=[4],
append_batch_size=False,
dtype="float32")
one_hot_label = functional.one_hot(x=label, num_classes=4)
self.assertRaises(TypeError, test_bad_x)
if __name__ == '__main__':
unittest.main()
......@@ -198,3 +198,4 @@ from .vision import shuffle_channel #DEFINE_ALIAS
from .vision import space_to_depth #DEFINE_ALIAS
from .vision import yolo_box #DEFINE_ALIAS
from .vision import yolov3_loss #DEFINE_ALIAS
from .input import one_hot #DEFINE_ALIAS
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import warnings
from ...fluid.framework import Variable, in_dygraph_mode
from ...fluid.layer_helper import LayerHelper
from ...fluid.layers import core
from ...fluid.data_feeder import check_variable_and_dtype, check_dtype
__all__ = ['one_hot']
def one_hot(x, num_classes, name=None):
"""
The operator converts each id in the input 'x' to an one-hot vector with a
num_classes length. The value in the vector dimension corresponding to the id
is 1, and the value in the remaining dimension is 0.
The shape of output Tensor is generated by appending num_classes dimension
behind the last dimension of the 'x' shape.
.. code-block:: text
Example 1:
input:
x.shape = [4]
x.data = [1, 1, 3, 0]
num_classes = 4
output:
Out.shape = [4, 4]
Out.data = [[0., 1., 0., 0.],
[0., 1., 0., 0.],
[0., 0., 0., 1.],
[1., 0., 0., 0.]]
Example 2:
input:
x.shape = [4]
x.data = [1, 1, 5, 0]
num_classes = 4
output: Throw an exception for Illegal value
The second dimension in X is 5, which is greater than num_classes,
so it throws an exception.
Args:
x(Tensor): Tensor with shape :math:`[N_1, N_2, ..., N_k]` ,
which contains at least one dimension. The data type is int32 or int64.
num_classes(int): An integer defining the num_classes of the one hot dimension. If input 'x'
is word id, num_classes is generally the dictionary size.
Returns:
Tensor: The one-hot representations of 'x'. A Tensor with type float32.
Examples:
.. code-block:: python
import paddle.fluid as fluid
# Correspond to the first example above, where label.shape is 4 and one_hot_label.shape is [4, 4].
label = fluid.data(name="label", shape=[4, 1], dtype="int64")
# label.shape = [4]
# label.data = [1, 1, 3, 0]
one_hot_label = fluid.one_hot(x=label, num_classes=4)
# one_hot_label.shape = [4, 4]
# one_hot_label.data = [[0., 1., 0., 0.],
[0., 1., 0., 0.],
[0., 0., 0., 1.],
[1., 0., 0., 0.]]
"""
if in_dygraph_mode():
return core.ops.one_hot_v2(x, 'depth', num_classes,
'allow_out_of_range', False)
else:
check_variable_and_dtype(x, 'input', ['int32', 'int64'], 'one_hot_v2')
helper = LayerHelper("one_hot_v2", **locals())
one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
if not isinstance(num_classes, Variable):
# user attribute
inputs = {'X': x}
attrs = {'depth': num_classes, 'allow_out_of_range': False}
else:
num_classes.stop_gradient = True
inputs = {'X': x, 'depth_tensor': num_classes}
attrs = {'allow_out_of_range': False}
helper.append_op(
type="one_hot_v2",
inputs=inputs,
attrs=attrs,
outputs={'Out': one_hot_out},
stop_gradient=True)
return one_hot_out
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册