recurrent_op.cc 8.9 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

15
#include "paddle/operators/recurrent_op.h"
Y
Yan Chunwei 已提交
16 17 18 19 20

#include <cstring>
#include <sstream>

#include "paddle/framework/op_registry.h"
Y
Yan Chunwei 已提交
21
#include "paddle/operators/net_op.h"
Y
Yan Chunwei 已提交
22 23 24 25

namespace paddle {
namespace operators {

D
dongzhihong 已提交
26 27 28
using Scope = framework::Scope;
using Variable = framework::Variable;
using Tensor = framework::Tensor;
29
using LoDTensor = framework::LoDTensor;
D
dongzhihong 已提交
30

Y
Yu Yang 已提交
31
void RecurrentAlgorithm::InferShape(const Scope& scope) const {
Y
Yan Chunwei 已提交
32 33 34 35 36
  auto* input0 = scope.FindVar(arg_->inlinks[0]);
  PADDLE_ENFORCE_NOT_NULL(input0);
  seq_len_ = input0->GetMutable<LoDTensor>()->dims()[0];
  PADDLE_ENFORCE_GT(seq_len_, 0);

Y
Yan Chunwei 已提交
37
  CreateScopes(scope);
38
  auto step_scopes = GetStepScopes(scope);
39 40
  rnn::SegmentInputs(step_scopes, arg_->inlinks, seq_len_,
                     true /*infer_shape_mode*/);
D
dangqingqing 已提交
41
  InitMemories(step_scopes[0], true /*infer_shape_mode*/);
Y
Yan Chunwei 已提交
42

Y
Yan Chunwei 已提交
43 44
  for (size_t i = 0; i < seq_len_; i++) {
    if (i > 0) {
45 46
      rnn::LinkMemories(step_scopes, arg_->memories, i, -1,
                        true /*infer_shape_mode*/);
Y
Yan Chunwei 已提交
47
    }
Y
Yan Chunwei 已提交
48
    (*stepnet_)->InferShape(*step_scopes[i]);
Y
Yan Chunwei 已提交
49
  }
50 51
  rnn::ConcatOutputs(step_scopes, arg_->outlinks, seq_len_,
                     true /*infer_shape_mode*/);
Y
Yan Chunwei 已提交
52 53
}

Y
Yu Yang 已提交
54
void RecurrentAlgorithm::Run(const Scope& scope,
Y
Yan Chunwei 已提交
55 56
                             const platform::DeviceContext& dev_ctx) const {
  auto step_scopes = GetStepScopes(scope);
57 58
  rnn::SegmentInputs(step_scopes, arg_->inlinks, seq_len_,
                     false /*infer_shape_mode*/);
D
dangqingqing 已提交
59
  InitMemories(step_scopes[0], false /*infer_shape_mode*/);
D
dangqingqing 已提交
60

Y
Yan Chunwei 已提交
61
  for (size_t step_id = 0; step_id < seq_len_; step_id++) {
Y
Yan Chunwei 已提交
62
    // create output alias variables
Y
Yan Chunwei 已提交
63
    if (step_id > 0) {
64 65
      rnn::LinkMemories(step_scopes, arg_->memories, step_id, -1,
                        false /*infer_shape_mode*/);
Y
Yan Chunwei 已提交
66
    }
Y
Yan Chunwei 已提交
67
    (*stepnet_)->Run(*step_scopes[step_id], dev_ctx);
Y
Yan Chunwei 已提交
68
  }
69 70
  rnn::ConcatOutputs(step_scopes, arg_->outlinks, seq_len_,
                     false /*infer_shape_mode*/);
Y
Yan Chunwei 已提交
71 72
}

Y
Yu Yang 已提交
73
void RecurrentAlgorithm::CreateScopes(const Scope& scope) const {
Y
Yan Chunwei 已提交
74
  // TODO(superjom) Only two scopes are needed for inference, this case will be
Y
Yan Chunwei 已提交
75
  // supported later.
Y
Yan Chunwei 已提交
76 77 78 79 80
  auto step_scopes_var = scope.FindVar(arg_->step_scopes);
  PADDLE_ENFORCE(step_scopes_var != nullptr, "");
  auto step_scopes = step_scopes_var->GetMutable<std::vector<Scope*>>();

  // Now all variables in scope must be created outside of op.
Y
Yan Chunwei 已提交
81 82 83
  PADDLE_ENFORCE_NOT_NULL(stepnet_);
  PADDLE_ENFORCE(!(*stepnet_)->Outputs().empty(), "stepnet_ op has no outputs");
  PADDLE_ENFORCE(!(*stepnet_)->Outputs().empty(), "net_op has no outputs");
Y
Yan Chunwei 已提交
84 85 86

  if (seq_len_ > step_scopes->size()) {
    for (size_t i = step_scopes->size(); i < seq_len_; ++i) {
Y
Yu Yang 已提交
87
      auto& step_scope = scope.NewScope();
Y
Yan Chunwei 已提交
88

Y
Yan Chunwei 已提交
89
      // create step net's temp inputs
Y
Yan Chunwei 已提交
90
      for (auto& input : (*stepnet_)->Inputs()) {
91
        // the weight are located in parent scope
Y
Yu Yang 已提交
92 93
        for (auto& var_name : input.second) {
          if (!step_scope.FindVar(var_name)) {
94
            step_scope.NewVar(var_name)->GetMutable<LoDTensor>();
Y
Yu Yang 已提交
95 96
          }
        }
Y
Yan Chunwei 已提交
97
      }
Y
Yan Chunwei 已提交
98
      // create stepnet's outputs
Y
Yan Chunwei 已提交
99
      for (const auto& output : (*stepnet_)->Outputs()) {
Y
Yu Yang 已提交
100 101 102
        for (auto& var_name : output.second) {
          step_scope.NewVar(var_name);
        }
Y
Yan Chunwei 已提交
103
      }
Y
Yu Yang 已提交
104
      step_scopes->emplace_back(&step_scope);
Y
Yan Chunwei 已提交
105 106 107 108
    }
  }
}

D
dangqingqing 已提交
109
void RecurrentAlgorithm::InitMemories(Scope* step_scope,
D
dangqingqing 已提交
110
                                      bool infer_shape_mode) const {
Y
Yan Chunwei 已提交
111
  for (auto& attr : arg_->memories) {
112
    auto* pre_mem = step_scope->NewVar(attr.pre_var)->GetMutable<LoDTensor>();
Y
Yu Yang 已提交
113
    PADDLE_ENFORCE(step_scope->FindVar(attr.boot_var) != nullptr,
114
                   "memory [%s]'s boot variable [%s] not exists", attr.var,
Y
Yan Chunwei 已提交
115
                   attr.boot_var);
116 117
    auto* boot_mem =
        step_scope->FindVar(attr.boot_var)->GetMutable<LoDTensor>();
D
dangqingqing 已提交
118
    if (infer_shape_mode) {
119
      pre_mem->Resize(boot_mem->dims());
Y
Yan Chunwei 已提交
120
      PADDLE_ENFORCE_EQ(pre_mem->dims().size(), 2);
121 122 123
    } else {
      pre_mem->ShareDataWith<float>(*boot_mem);
    }
Y
Yan Chunwei 已提交
124 125 126
  }
}

127
const rnn::ArgumentName RecurrentOp::kArgName{
Y
Yan Chunwei 已提交
128
    "step_net", "step_scopes",  "inlinks",      "outlinks",
129 130 131
    "memories", "pre_memories", "boot_memories"};

const rnn::ArgumentName RecurrentGradientOp::kArgName{
Y
Yan Chunwei 已提交
132 133
    "step_net", "step_scopes",  "outlink@grad",      "inlink@grad",
    "memories", "pre_memories", "boot_memories@grad"};
Y
Yan Chunwei 已提交
134

Y
Yu Yang 已提交
135
RecurrentOp::RecurrentOp(const std::string& type,
Y
Yu Yang 已提交
136 137
                         const framework::VariableNameMap& inputs,
                         const framework::VariableNameMap& outputs,
Y
Yu Yang 已提交
138 139
                         const framework::AttributeMap& attrs)
    : OperatorBase(type, inputs, outputs, attrs) {
Y
Yan Chunwei 已提交
140 141
  rnn::InitArgument(kArgName, &arg_, *this);
  alg_.Init(&arg_, &stepnet_);
Y
Yan Chunwei 已提交
142 143
}

D
dongzhihong 已提交
144 145
class RecurrentAlgorithmProtoAndCheckerMaker
    : public framework::OpProtoAndCheckerMaker {
146
 public:
D
dongzhihong 已提交
147 148
  RecurrentAlgorithmProtoAndCheckerMaker(framework::OpProto* proto,
                                         framework::OpAttrChecker* op_checker)
Y
Yan Chunwei 已提交
149 150 151
      : OpProtoAndCheckerMaker(proto, op_checker) {
    const auto& name = RecurrentOp::kArgName;
    // inputs and outputs stored in proto
D
dangqingqing 已提交
152 153
    AddInput(name.inlinks,
             "the inputs that need to be segmented for each step.")
Y
Yu Yang 已提交
154
        .AsDuplicable();
Y
Yu Yang 已提交
155
    AddInput(name.boot_memories, "variables to initialize memories.")
Y
Yu Yang 已提交
156
        .AsDuplicable();
Y
Yan Chunwei 已提交
157

D
dangqingqing 已提交
158
    AddOutput(name.outlinks, "the outputs that need to concated for all steps.")
Y
Yu Yang 已提交
159
        .AsDuplicable();
Y
Yan Chunwei 已提交
160 161 162 163 164 165 166 167 168 169 170 171
    AddOutput(name.step_scopes, "step scopes");

    // Attributes stored in AttributeMap
    AddAttr<std::vector<std::string>>(name.pre_memories,
                                      "names of pre-memories");
    AddAttr<std::vector<std::string>>(name.memories, "names of memories");

    AddComment("This is a recurrent group operator.");
  }
};

void RecurrentGradientAlgorithm::Run(
Y
Yu Yang 已提交
172
    const Scope& scope, const platform::DeviceContext& dev_ctx) const {
Y
Yan Chunwei 已提交
173
  auto step_scopes = GetStepScopes(scope);
174 175
  rnn::SegmentInputs(step_scopes, arg_->inlinks, seq_len_,
                     false /*infer_shape_mode*/);
Y
Yan Chunwei 已提交
176 177
  for (int step_id = seq_len_ - 1; step_id >= 0; --step_id) {
    if (static_cast<size_t>(step_id) != seq_len_ - 1) {
178 179
      rnn::LinkMemories(step_scopes, arg_->memories, step_id, 1,
                        false /*infer_shape_mode*/);
Y
Yan Chunwei 已提交
180
    }
Y
Yan Chunwei 已提交
181
    (*stepnet_)->Run(*step_scopes[step_id], dev_ctx);
Y
Yan Chunwei 已提交
182
  }
183
  LinkBootMemoryGradients(step_scopes[0], false);
184 185
  rnn::ConcatOutputs(step_scopes, arg_->outlinks, seq_len_,
                     false /*infer_shape_mode*/);
Y
Yan Chunwei 已提交
186 187 188
}

void RecurrentGradientAlgorithm::LinkBootMemoryGradients(
D
dangqingqing 已提交
189
    Scope* step_scope, bool infer_shape_mode) const {
Y
Yan Chunwei 已提交
190
  for (auto& attr : arg_->memories) {
D
dangqingqing 已提交
191
    PADDLE_ENFORCE(step_scope->FindVar(attr.var) != nullptr,
192
                   "memory variable [%s] does not exists", attr.var);
Y
Yu Yang 已提交
193
    PADDLE_ENFORCE(step_scope->FindVar(attr.boot_var) != nullptr,
194
                   "boot variable [%s] does not exists", attr.boot_var);
195 196 197
    auto* mem_grad = step_scope->NewVar(attr.var)->GetMutable<LoDTensor>();
    auto* boot_mem_grad =
        step_scope->NewVar(attr.boot_var)->GetMutable<LoDTensor>();
D
dangqingqing 已提交
198
    if (infer_shape_mode) {
199 200 201 202
      boot_mem_grad->Resize(mem_grad->dims());
    } else {
      boot_mem_grad->ShareDataWith<float>(*mem_grad);
    }
Y
Yan Chunwei 已提交
203 204 205
  }
}

Y
Yu Yang 已提交
206
void RecurrentGradientAlgorithm::InferShape(const Scope& scope) const {
Y
Yan Chunwei 已提交
207 208
  seq_len_ =
      scope.FindVar(arg_->inlinks[0])->GetMutable<LoDTensor>()->dims()[0];
Y
Yan Chunwei 已提交
209
  auto step_scopes = GetStepScopes(scope);
210 211
  rnn::SegmentInputs(step_scopes, arg_->inlinks, seq_len_,
                     true /*infer_shape_mode*/);
Y
Yan Chunwei 已提交
212 213
  for (int step_id = seq_len_ - 1; step_id >= 0; --step_id) {
    if (static_cast<size_t>(step_id) != seq_len_ - 1) {
214 215
      rnn::LinkMemories(step_scopes, arg_->memories, step_id, 1,
                        true /*infer_shape_mode*/);
Y
Yan Chunwei 已提交
216
    }
Y
Yan Chunwei 已提交
217
    (*stepnet_)->InferShape(*step_scopes[step_id]);
Y
Yan Chunwei 已提交
218
  }
219 220
  rnn::ConcatOutputs(step_scopes, arg_->outlinks, seq_len_,
                     true /*infer_shape_mode*/);
D
dangqingqing 已提交
221
  LinkBootMemoryGradients(step_scopes[0], true /*infer_shape_mode*/);
Y
Yan Chunwei 已提交
222 223
}

Y
Yu Yang 已提交
224
RecurrentGradientOp::RecurrentGradientOp(
Y
Yu Yang 已提交
225 226
    const std::string& type, const framework::VariableNameMap& inputs,
    const framework::VariableNameMap& outputs,
Y
Yu Yang 已提交
227 228
    const framework::AttributeMap& attrs)
    : OperatorBase(type, inputs, outputs, attrs) {
Y
Yan Chunwei 已提交
229 230
  rnn::InitArgument(kArgName, &arg_, *this);
  alg_.Init(&arg_, &stepnet_);
Y
Yan Chunwei 已提交
231 232 233 234 235
}

}  // namespace operators
}  // namespace paddle

F
fengjiayi 已提交
236
REGISTER_OP_WITHOUT_GRADIENT(
237
    recurrent, paddle::operators::RecurrentOp,
F
fengjiayi 已提交
238
    paddle::operators::RecurrentAlgorithmProtoAndCheckerMaker);