You need to sign in or sign up before continuing.
recurrent_op.cc 9.1 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

15
#include "paddle/operators/recurrent_op.h"
Y
Yan Chunwei 已提交
16 17 18 19 20 21

#include <glog/logging.h>
#include <cstring>
#include <sstream>

#include "paddle/framework/op_registry.h"
Y
Yan Chunwei 已提交
22
#include "paddle/operators/net_op.h"
Y
Yan Chunwei 已提交
23 24 25 26 27
#include "paddle/platform/enforce.h"

namespace paddle {
namespace operators {

Y
Yu Yang 已提交
28 29
void RecurrentAlgorithm::InferShape(const Scope& scope) const {
  seq_len_ = scope.FindVar((arg_->inlinks[0]).external)
Y
Yan Chunwei 已提交
30 31 32
                 ->GetMutable<Tensor>()
                 ->dims()[0];
  CreateScopes(scope);
33
  auto step_scopes = GetStepScopes(scope);
34 35
  rnn::SegmentInputs(step_scopes, arg_->inlinks, seq_len_,
                     true /*infer_shape_mode*/);
D
dangqingqing 已提交
36
  InitMemories(step_scopes[0], true /*infer_shape_mode*/);
Y
Yu Yang 已提交
37
  Variable* net = scope.FindVar(arg_->step_net);
Y
Yan Chunwei 已提交
38
  PADDLE_ENFORCE(net != nullptr, "failed to get step net");
Y
Yan Chunwei 已提交
39

Y
Yan Chunwei 已提交
40 41
  for (size_t i = 0; i < seq_len_; i++) {
    if (i > 0) {
42 43
      rnn::LinkMemories(step_scopes, arg_->memories, i, -1,
                        true /*infer_shape_mode*/);
Y
Yan Chunwei 已提交
44
    }
Y
Yu Yang 已提交
45
    net->GetMutable<NetOp>()->InferShape(*step_scopes[i]);
Y
Yan Chunwei 已提交
46
  }
47 48
  rnn::ConcatOutputs(step_scopes, arg_->outlinks, seq_len_,
                     true /*infer_shape_mode*/);
Y
Yan Chunwei 已提交
49 50
}

Y
Yu Yang 已提交
51
void RecurrentAlgorithm::Run(const Scope& scope,
Y
Yan Chunwei 已提交
52 53
                             const platform::DeviceContext& dev_ctx) const {
  auto step_scopes = GetStepScopes(scope);
54 55
  rnn::SegmentInputs(step_scopes, arg_->inlinks, seq_len_,
                     false /*infer_shape_mode*/);
D
dangqingqing 已提交
56
  InitMemories(step_scopes[0], false /*infer_shape_mode*/);
Y
Yu Yang 已提交
57
  Variable* net = scope.FindVar(arg_->step_net);
D
dangqingqing 已提交
58

Y
Yan Chunwei 已提交
59
  for (size_t step_id = 0; step_id < seq_len_; step_id++) {
Y
Yan Chunwei 已提交
60
    // create output alias variables
Y
Yan Chunwei 已提交
61
    if (step_id > 0) {
62 63
      rnn::LinkMemories(step_scopes, arg_->memories, step_id, -1,
                        false /*infer_shape_mode*/);
Y
Yan Chunwei 已提交
64
    }
Y
Yu Yang 已提交
65
    net->GetMutable<NetOp>()->Run(*step_scopes[step_id], dev_ctx);
Y
Yan Chunwei 已提交
66
  }
67 68
  rnn::ConcatOutputs(step_scopes, arg_->outlinks, seq_len_,
                     false /*infer_shape_mode*/);
Y
Yan Chunwei 已提交
69 70
}

Y
Yu Yang 已提交
71
void RecurrentAlgorithm::CreateScopes(const Scope& scope) const {
Y
Yan Chunwei 已提交
72
  // TODO(superjom) Only two scopes are needed for inference, this case will be
Y
Yan Chunwei 已提交
73
  // supported later.
Y
Yan Chunwei 已提交
74 75 76 77 78 79 80 81 82 83
  auto step_scopes_var = scope.FindVar(arg_->step_scopes);
  PADDLE_ENFORCE(step_scopes_var != nullptr, "");
  auto step_scopes = step_scopes_var->GetMutable<std::vector<Scope*>>();

  // Now all variables in scope must be created outside of op.
  auto net_var = scope.FindVar(arg_->step_net);
  PADDLE_ENFORCE(net_var != nullptr, "no stepnet called %s in scope",
                 arg_->step_net);
  auto net_op = net_var->GetMutable<NetOp>();
  PADDLE_ENFORCE(!net_op->outputs_.empty(), "net_op has no outputs");
Y
Yan Chunwei 已提交
84 85 86

  if (seq_len_ > step_scopes->size()) {
    for (size_t i = step_scopes->size(); i < seq_len_; ++i) {
Y
Yu Yang 已提交
87
      auto& step_scope = scope.NewScope();
Y
Yan Chunwei 已提交
88

Y
Yan Chunwei 已提交
89
      // create step net's temp inputs
Y
Yan Chunwei 已提交
90
      for (auto& input : net_op->inputs_) {
91
        // the weight are located in parent scope
Y
Yan Chunwei 已提交
92 93
        if (!step_scope.FindVar(input))
          step_scope.NewVar(input)->GetMutable<Tensor>();
Y
Yan Chunwei 已提交
94
      }
Y
Yan Chunwei 已提交
95 96
      // create stepnet's outputs
      for (const auto& output : net_op->outputs_) {
Y
Yu Yang 已提交
97
        step_scope.NewVar(output);
Y
Yan Chunwei 已提交
98
      }
Y
Yu Yang 已提交
99
      step_scopes->emplace_back(&step_scope);
Y
Yan Chunwei 已提交
100 101 102 103
    }
  }
}

D
dangqingqing 已提交
104
void RecurrentAlgorithm::InitMemories(Scope* step_scope,
D
dangqingqing 已提交
105
                                      bool infer_shape_mode) const {
Y
Yan Chunwei 已提交
106
  for (auto& attr : arg_->memories) {
107
    Tensor* pre_mem = step_scope->NewVar(attr.pre_var)->GetMutable<Tensor>();
Y
Yu Yang 已提交
108
    PADDLE_ENFORCE(step_scope->FindVar(attr.boot_var) != nullptr,
109
                   "memory [%s]'s boot variable [%s] not exists", attr.var,
Y
Yan Chunwei 已提交
110
                   attr.boot_var);
111
    Tensor* boot_mem = step_scope->FindVar(attr.boot_var)->GetMutable<Tensor>();
D
dangqingqing 已提交
112
    if (infer_shape_mode) {
113
      pre_mem->Resize(boot_mem->dims());
Y
Yan Chunwei 已提交
114
      PADDLE_ENFORCE_EQ(pre_mem->dims().size(), 2);
115 116 117
    } else {
      pre_mem->ShareDataWith<float>(*boot_mem);
    }
Y
Yan Chunwei 已提交
118 119 120
  }
}

121 122 123 124 125 126 127 128 129
const rnn::ArgumentName RecurrentOp::kArgName{
    "step_net", "step_scopes",  "inlinks",
    "outlinks", "inlink_alias", "outlink_alias",
    "memories", "pre_memories", "boot_memories"};

const rnn::ArgumentName RecurrentGradientOp::kArgName{
    "step_net",    "step_scopes",  "outlink@grad",
    "inlink@grad", "inlink_alias", "outlink_alias",
    "memories",    "pre_memories", "boot_memories@grad"};
Y
Yan Chunwei 已提交
130 131 132 133 134 135 136 137 138

void RecurrentOp::Init() {
  OperatorBase::Init();
  std::unique_ptr<rnn::Argument> arg(new rnn::Argument());
  rnn::InitArgument(kArgName, arg.get(), *this);
  alg_.Init(std::move(arg));
}

class RecurrentAlgorithmProtoAndCheckerMaker : public OpProtoAndCheckerMaker {
139
 public:
Y
Yan Chunwei 已提交
140 141 142 143 144
  RecurrentAlgorithmProtoAndCheckerMaker(OpProto* proto,
                                         OpAttrChecker* op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    const auto& name = RecurrentOp::kArgName;
    // inputs and outputs stored in proto
D
dangqingqing 已提交
145 146
    AddInput(name.inlinks,
             "the inputs that need to be segmented for each step.")
Y
Yu Yang 已提交
147 148 149
        .SetMultiple();
    AddInput(name.boot_memories, "variables to initialize memories.")
        .SetMultiple();
Y
Yan Chunwei 已提交
150 151
    AddInput(name.step_net, "network shared by all steps.");

D
dangqingqing 已提交
152
    AddOutput(name.outlinks, "the outputs that need to concated for all steps.")
Y
Yu Yang 已提交
153
        .SetMultiple();
Y
Yan Chunwei 已提交
154 155 156 157 158 159 160 161 162 163 164 165 166 167
    AddOutput(name.step_scopes, "step scopes");

    // Attributes stored in AttributeMap
    AddAttr<std::vector<std::string>>(name.inlink_alias, "alias of inlinks");
    AddAttr<std::vector<std::string>>(name.outlink_alias, "alias of outlinks");
    AddAttr<std::vector<std::string>>(name.pre_memories,
                                      "names of pre-memories");
    AddAttr<std::vector<std::string>>(name.memories, "names of memories");

    AddComment("This is a recurrent group operator.");
  }
};

void RecurrentGradientAlgorithm::Run(
Y
Yu Yang 已提交
168
    const Scope& scope, const platform::DeviceContext& dev_ctx) const {
Y
Yan Chunwei 已提交
169
  auto step_scopes = GetStepScopes(scope);
170 171
  rnn::SegmentInputs(step_scopes, arg_->inlinks, seq_len_,
                     false /*infer_shape_mode*/);
Y
Yu Yang 已提交
172
  Variable* net = scope.FindVar(arg_->step_net);
Y
Yan Chunwei 已提交
173 174 175
  PADDLE_ENFORCE(net != nullptr, "failed to get step net");
  for (int step_id = seq_len_ - 1; step_id >= 0; --step_id) {
    if (static_cast<size_t>(step_id) != seq_len_ - 1) {
176 177
      rnn::LinkMemories(step_scopes, arg_->memories, step_id, 1,
                        false /*infer_shape_mode*/);
Y
Yan Chunwei 已提交
178
    }
Y
Yu Yang 已提交
179
    net->GetMutable<NetOp>()->Run(*step_scopes[step_id], dev_ctx);
Y
Yan Chunwei 已提交
180
  }
181
  LinkBootMemoryGradients(step_scopes[0], false);
182 183
  rnn::ConcatOutputs(step_scopes, arg_->outlinks, seq_len_,
                     false /*infer_shape_mode*/);
Y
Yan Chunwei 已提交
184 185 186
}

void RecurrentGradientAlgorithm::LinkBootMemoryGradients(
D
dangqingqing 已提交
187
    Scope* step_scope, bool infer_shape_mode) const {
Y
Yan Chunwei 已提交
188
  for (auto& attr : arg_->memories) {
D
dangqingqing 已提交
189
    PADDLE_ENFORCE(step_scope->FindVar(attr.var) != nullptr,
190
                   "memory variable [%s] does not exists", attr.var);
Y
Yu Yang 已提交
191
    PADDLE_ENFORCE(step_scope->FindVar(attr.boot_var) != nullptr,
192
                   "boot variable [%s] does not exists", attr.boot_var);
D
dangqingqing 已提交
193
    Tensor* mem_grad = step_scope->NewVar(attr.var)->GetMutable<Tensor>();
Y
Yan Chunwei 已提交
194
    Tensor* boot_mem_grad =
195
        step_scope->NewVar(attr.boot_var)->GetMutable<Tensor>();
D
dangqingqing 已提交
196
    if (infer_shape_mode) {
197 198 199 200
      boot_mem_grad->Resize(mem_grad->dims());
    } else {
      boot_mem_grad->ShareDataWith<float>(*mem_grad);
    }
Y
Yan Chunwei 已提交
201 202 203
  }
}

Y
Yu Yang 已提交
204 205
void RecurrentGradientAlgorithm::InferShape(const Scope& scope) const {
  seq_len_ = scope.FindVar((arg_->inlinks[0]).external)
Y
Yan Chunwei 已提交
206 207 208
                 ->GetMutable<Tensor>()
                 ->dims()[0];
  auto step_scopes = GetStepScopes(scope);
209 210
  rnn::SegmentInputs(step_scopes, arg_->inlinks, seq_len_,
                     true /*infer_shape_mode*/);
Y
Yu Yang 已提交
211
  Variable* net = scope.FindVar(arg_->step_net);
Y
Yan Chunwei 已提交
212 213 214
  PADDLE_ENFORCE(net != nullptr, "failed to get step net");
  for (int step_id = seq_len_ - 1; step_id >= 0; --step_id) {
    if (static_cast<size_t>(step_id) != seq_len_ - 1) {
215 216
      rnn::LinkMemories(step_scopes, arg_->memories, step_id, 1,
                        true /*infer_shape_mode*/);
Y
Yan Chunwei 已提交
217
    }
Y
Yu Yang 已提交
218
    net->GetMutable<NetOp>()->InferShape(*step_scopes[step_id]);
Y
Yan Chunwei 已提交
219
  }
220 221
  rnn::ConcatOutputs(step_scopes, arg_->outlinks, seq_len_,
                     true /*infer_shape_mode*/);
D
dangqingqing 已提交
222
  LinkBootMemoryGradients(step_scopes[0], true /*infer_shape_mode*/);
Y
Yan Chunwei 已提交
223 224 225 226 227 228 229 230 231 232 233 234
}

void RecurrentGradientOp::Init() {
  OperatorBase::Init();
  std::unique_ptr<rnn::Argument> arg(new rnn::Argument());
  rnn::InitArgument(kArgName, arg.get(), *this);
  alg_.Init(std::move(arg));
}

}  // namespace operators
}  // namespace paddle

235
REGISTER_OP(recurrent_op, paddle::operators::RecurrentOp,
Y
Yan Chunwei 已提交
236
            paddle::operators::RecurrentAlgorithmProtoAndCheckerMaker);