Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
6cfb9a32
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
6cfb9a32
编写于
7月 31, 2017
作者:
D
dangqingqing
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Refine InferShape for recurrent_network_op.
* the tensor only contains shape and does not hold memory when inferring shape.
上级
0973c2c9
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
84 addition
and
112 deletion
+84
-112
paddle/operators/recurrent_network_op.cc
paddle/operators/recurrent_network_op.cc
+60
-87
paddle/operators/recurrent_network_op.h
paddle/operators/recurrent_network_op.h
+10
-6
paddle/operators/recurrent_network_op_test.cc
paddle/operators/recurrent_network_op_test.cc
+14
-19
未找到文件。
paddle/operators/recurrent_network_op.cc
浏览文件 @
6cfb9a32
...
...
@@ -29,7 +29,8 @@ namespace rnn {
void
SegmentInputs
(
std
::
vector
<
std
::
shared_ptr
<
Scope
>>&
step_scopes
,
const
std
::
vector
<
Link
>&
inlinks
,
const
size_t
seq_len
)
{
const
size_t
seq_len
,
bool
infer_shape
)
{
PADDLE_ENFORCE
(
!
inlinks
.
empty
(),
"no in links are provided."
);
for
(
size_t
i
=
0
;
i
<
inlinks
.
size
();
++
i
)
{
Tensor
*
input
=
...
...
@@ -42,7 +43,9 @@ void SegmentInputs(std::vector<std::shared_ptr<Scope>>& step_scopes,
Tensor
*
step_input
=
step_scopes
[
j
]
->
CreateVariable
(
inlinks
[
i
].
internal
)
->
GetMutable
<
Tensor
>
();
*
step_input
=
input
->
Slice
<
float
>
(
j
,
j
+
1
);
if
(
!
infer_shape
)
{
*
step_input
=
input
->
Slice
<
float
>
(
j
,
j
+
1
);
}
step_input
->
Resize
(
step_dims
);
}
}
...
...
@@ -50,20 +53,23 @@ void SegmentInputs(std::vector<std::shared_ptr<Scope>>& step_scopes,
void
ConcatOutputs
(
std
::
vector
<
std
::
shared_ptr
<
Scope
>>&
step_scopes
,
const
std
::
vector
<
Link
>&
outlinks
,
const
size_t
seq_len
)
{
const
size_t
seq_len
,
bool
infer_shape
)
{
for
(
size_t
i
=
0
;
i
<
outlinks
.
size
();
i
++
)
{
Tensor
*
output
=
step_scopes
[
0
]
->
GetVariable
(
outlinks
[
i
].
external
)
->
GetMutable
<
Tensor
>
();
// TODO(qingiqng) remove following code after adding
// InferShape in RecurrentGradientOp
DDim
step_dims
=
step_scopes
[
0
]
->
GetVariable
(
outlinks
[
i
].
internal
)
->
GetMutable
<
Tensor
>
()
->
dims
();
std
::
vector
<
int
>
dims_vec
=
vectorize
(
step_dims
);
dims_vec
.
insert
(
dims_vec
.
begin
(),
seq_len
);
output
->
mutable_data
<
float
>
(
make_ddim
(
dims_vec
),
platform
::
CPUPlace
());
if
(
infer_shape
)
{
DDim
step_dims
=
step_scopes
[
0
]
->
GetVariable
(
outlinks
[
i
].
internal
)
->
GetMutable
<
Tensor
>
()
->
dims
();
std
::
vector
<
int
>
dims_vec
=
vectorize
(
step_dims
);
dims_vec
.
insert
(
dims_vec
.
begin
(),
seq_len
);
output
->
Resize
(
make_ddim
(
dims_vec
));
}
else
{
output
->
mutable_data
<
float
>
(
platform
::
CPUPlace
());
}
for
(
size_t
j
=
0
;
j
<
seq_len
;
j
++
)
{
Tensor
*
step_output
=
step_scopes
[
j
]
...
...
@@ -79,8 +85,9 @@ void ConcatOutputs(std::vector<std::shared_ptr<Scope>>& step_scopes,
void
LinkMemories
(
std
::
vector
<
std
::
shared_ptr
<
Scope
>>&
scopes
,
const
std
::
vector
<
rnn
::
MemoryAttr
>&
memories
,
size_t
step_id
,
int
offset
)
{
const
size_t
step_id
,
const
int
offset
,
bool
infer_shape
)
{
PADDLE_ENFORCE
(
step_id
<
scopes
.
size
(),
"step [%d] is out of range of step scopes' size [%d]"
,
step_id
,
...
...
@@ -97,18 +104,14 @@ void LinkMemories(std::vector<std::shared_ptr<Scope>>& scopes,
std
::
shared_ptr
<
Scope
>
scope
=
scopes
[
step_id
];
std
::
shared_ptr
<
Scope
>
linked_scope
=
scopes
[
step_id
+
offset
];
for
(
auto
&
attr
:
memories
)
{
auto
mem
=
scope
->
Create
Variable
(
attr
.
pre_var
)
->
GetMutable
<
Tensor
>
();
auto
mem
=
scope
->
Get
Variable
(
attr
.
pre_var
)
->
GetMutable
<
Tensor
>
();
// maybe share variable is better?
auto
linked_mem
=
linked_scope
->
GetVariable
(
attr
.
var
)
->
GetMutable
<
Tensor
>
();
mem
->
ShareDataWith
<
float
>
(
*
linked_mem
);
// TODO(qingqing) remove following code
// the memory of current step should be allocated in step net
auto
m
=
scope
->
CreateVariable
(
attr
.
var
)
->
GetMutable
<
Tensor
>
();
// for unit test, as addOp and mulOp are null currently, if not
// mutable_data, mem.data() in output will be error. We will
// remove this line after merge the correct addOp and mulOp.
m
->
mutable_data
<
float
>
(
mem
->
dims
(),
platform
::
CPUPlace
());
if
(
infer_shape
)
{
mem
->
Resize
(
linked_mem
->
dims
());
}
else
{
mem
->
ShareDataWith
<
float
>
(
*
linked_mem
);
}
}
}
...
...
@@ -176,61 +179,43 @@ void RecurrentAlgorithm::InferShape(const std::shared_ptr<Scope>& scope) const {
->
GetMutable
<
Tensor
>
()
->
dims
()[
0
];
CreateScopes
(
scope
);
auto
step_scopes
=
GetStepScopes
(
scope
);
// SegmentInputs is called in InferShape. The input must hold memory in
// SegmentInputs. But the other op only set dimension for the output in
// InferShape. That's a problem. Wether the RNN op needs InferShape or not?
// Wether the following functions (SegmentInputs, InitMemories, ...) need
// to rewrite for RNN op?
rnn
::
SegmentInputs
(
step_scopes
,
arg_
->
inlinks
,
seq_len_
);
auto
step_scopes
=
GetStepScopes
(
scope
);
rnn
::
SegmentInputs
(
step_scopes
,
arg_
->
inlinks
,
seq_len_
,
true
);
InitMemories
(
step_scopes
[
0
]);
InitMemories
(
step_scopes
[
0
]
,
true
);
PADDLE_ENFORCE
(
scope
->
HasVariable
(
arg_
->
step_net
),
"stepnet [%s] is not in scope."
,
arg_
->
step_net
);
Variable
*
net
=
scope
->
GetVariable
(
arg_
->
step_net
);
PADDLE_ENFORCE
(
net
!=
nullptr
,
"failed to get step net"
);
// If the InferShape is called in OperatorBase's run function,
// the rnn op only needs to do InferShape for the first time step
for
(
size_t
i
=
0
;
i
<
seq_len_
;
i
++
)
{
if
(
i
>
0
)
{
rnn
::
LinkMemories
(
step_scopes
,
arg_
->
memories
,
i
,
-
1
);
rnn
::
LinkMemories
(
step_scopes
,
arg_
->
memories
,
i
,
-
1
,
true
);
}
net
->
GetMutable
<
NetOp
>
()
->
InferShape
(
step_scopes
[
i
]);
}
auto
outlinks
=
arg_
->
outlinks
;
for
(
size_t
i
=
0
;
i
<
outlinks
.
size
();
i
++
)
{
DDim
step_dims
=
step_scopes
[
0
]
->
GetVariable
(
outlinks
[
i
].
internal
)
->
GetMutable
<
Tensor
>
()
->
dims
();
std
::
vector
<
int
>
dims_vec
=
vectorize
(
step_dims
);
// now only support fixed length
dims_vec
.
insert
(
dims_vec
.
begin
(),
seq_len_
);
Tensor
*
output
=
step_scopes
[
0
]
->
GetVariable
(
outlinks
[
i
].
external
)
->
GetMutable
<
Tensor
>
();
output
->
Resize
(
make_ddim
(
dims_vec
));
}
rnn
::
ConcatOutputs
(
step_scopes
,
arg_
->
outlinks
,
seq_len_
,
true
);
}
void
RecurrentAlgorithm
::
Run
(
const
std
::
shared_ptr
<
Scope
>&
scope
,
const
platform
::
DeviceContext
&
dev_ctx
)
const
{
auto
step_scopes
=
GetStepScopes
(
scope
);
rnn
::
SegmentInputs
(
step_scopes
,
arg_
->
inlinks
,
seq_len_
,
false
);
InitMemories
(
step_scopes
[
0
],
false
);
Variable
*
net
=
scope
->
GetVariable
(
arg_
->
step_net
);
for
(
size_t
step_id
=
0
;
step_id
<
seq_len_
;
step_id
++
)
{
// the link memory is done in InferShape
// maybe remove following code after testing
if
(
step_id
>
0
)
{
rnn
::
LinkMemories
(
step_scopes
,
arg_
->
memories
,
step_id
,
-
1
);
rnn
::
LinkMemories
(
step_scopes
,
arg_
->
memories
,
step_id
,
-
1
,
false
);
}
net
->
GetMutable
<
NetOp
>
()
->
Run
(
step_scopes
[
step_id
],
dev_ctx
);
}
rnn
::
ConcatOutputs
(
step_scopes
,
arg_
->
outlinks
,
seq_len_
);
rnn
::
ConcatOutputs
(
step_scopes
,
arg_
->
outlinks
,
seq_len_
,
false
);
}
void
RecurrentAlgorithm
::
CreateScopes
(
std
::
shared_ptr
<
Scope
>
scope
)
const
{
...
...
@@ -246,6 +231,7 @@ void RecurrentAlgorithm::CreateScopes(std::shared_ptr<Scope> scope) const {
// Now all variables in scope must be created outside of op.
auto
net_op
=
scope
->
GetVariable
(
arg_
->
step_net
)
->
GetMutable
<
NetOp
>
();
for
(
auto
&
input
:
net_op
->
inputs_
)
{
// the weight are located in parent scope
step_scope
->
CreateVariable
(
input
);
}
for
(
auto
&
output
:
net_op
->
outputs_
)
{
...
...
@@ -257,7 +243,8 @@ void RecurrentAlgorithm::CreateScopes(std::shared_ptr<Scope> scope) const {
}
}
void
RecurrentAlgorithm
::
InitMemories
(
std
::
shared_ptr
<
Scope
>
step_scope
)
const
{
void
RecurrentAlgorithm
::
InitMemories
(
std
::
shared_ptr
<
Scope
>
step_scope
,
bool
infer_shape
)
const
{
for
(
auto
&
attr
:
arg_
->
memories
)
{
Tensor
*
pre_mem
=
step_scope
->
CreateVariable
(
attr
.
pre_var
)
->
GetMutable
<
Tensor
>
();
...
...
@@ -267,14 +254,11 @@ void RecurrentAlgorithm::InitMemories(std::shared_ptr<Scope> step_scope) const {
attr
.
boot_var
);
Tensor
*
boot_mem
=
step_scope
->
GetVariable
(
attr
.
boot_var
)
->
GetMutable
<
Tensor
>
();
pre_mem
->
ShareDataWith
<
float
>
(
*
boot_mem
);
// TODO(qingqing) remove following code
// the memory of current step should be allocated in step net
// here for unit test
auto
cur_step_mem
=
step_scope
->
CreateVariable
(
attr
.
var
)
->
GetMutable
<
Tensor
>
();
cur_step_mem
->
mutable_data
<
float
>
(
boot_mem
->
dims
(),
platform
::
CPUPlace
());
if
(
infer_shape
)
{
pre_mem
->
Resize
(
boot_mem
->
dims
());
}
else
{
pre_mem
->
ShareDataWith
<
float
>
(
*
boot_mem
);
}
}
}
...
...
@@ -336,35 +320,37 @@ void RecurrentGradientAlgorithm::Run(
const
std
::
shared_ptr
<
Scope
>&
scope
,
const
platform
::
DeviceContext
&
dev_ctx
)
const
{
auto
step_scopes
=
GetStepScopes
(
scope
);
rnn
::
SegmentInputs
(
step_scopes
,
arg_
->
inlinks
,
seq_len_
);
rnn
::
SegmentInputs
(
step_scopes
,
arg_
->
inlinks
,
seq_len_
,
false
);
PADDLE_ENFORCE
(
scope
->
HasVariable
(
arg_
->
step_net
),
"step net is not in scope."
);
Variable
*
net
=
scope
->
GetVariable
(
arg_
->
step_net
);
PADDLE_ENFORCE
(
net
!=
nullptr
,
"failed to get step net"
);
for
(
int
step_id
=
seq_len_
-
1
;
step_id
>=
0
;
--
step_id
)
{
if
(
static_cast
<
size_t
>
(
step_id
)
!=
seq_len_
-
1
)
{
rnn
::
LinkMemories
(
step_scopes
,
arg_
->
memories
,
step_id
,
1
);
rnn
::
LinkMemories
(
step_scopes
,
arg_
->
memories
,
step_id
,
1
,
false
);
}
net
->
GetMutable
<
NetOp
>
()
->
Run
(
step_scopes
[
step_id
],
dev_ctx
);
}
LinkBootMemoryGradients
(
step_scopes
[
0
]);
rnn
::
ConcatOutputs
(
step_scopes
,
arg_
->
outlinks
,
seq_len_
);
LinkBootMemoryGradients
(
step_scopes
[
0
]
,
false
);
rnn
::
ConcatOutputs
(
step_scopes
,
arg_
->
outlinks
,
seq_len_
,
false
);
}
void
RecurrentGradientAlgorithm
::
LinkBootMemoryGradients
(
std
::
shared_ptr
<
Scope
>
step_scope
)
const
{
std
::
shared_ptr
<
Scope
>
step_scope
,
bool
infer_shape
)
const
{
for
(
auto
&
attr
:
arg_
->
memories
)
{
Tensor
*
mem_grad
=
step_scope
->
CreateVariable
(
attr
.
var
)
->
GetMutable
<
Tensor
>
();
PADDLE_ENFORCE
(
mem_grad
!=
nullptr
,
"boot_tensor should be retrieved before"
);
PADDLE_ENFORCE
(
step_scope
->
HasVariable
(
attr
.
boot_var
),
"memory [%s]'s boot variable [%s] not exists"
,
attr
.
var
,
attr
.
boot_var
);
Tensor
*
boot_mem_grad
=
step_scope
->
CreateVariable
(
attr
.
boot_var
)
->
GetMutable
<
Tensor
>
();
boot_mem_grad
->
ShareDataWith
<
float
>
(
*
mem_grad
);
if
(
infer_shape
)
{
boot_mem_grad
->
Resize
(
mem_grad
->
dims
());
}
else
{
boot_mem_grad
->
ShareDataWith
<
float
>
(
*
mem_grad
);
}
}
}
...
...
@@ -374,7 +360,7 @@ void RecurrentGradientAlgorithm::InferShape(
->
GetMutable
<
Tensor
>
()
->
dims
()[
0
];
auto
step_scopes
=
GetStepScopes
(
scope
);
rnn
::
SegmentInputs
(
step_scopes
,
arg_
->
inlinks
,
seq_len_
);
rnn
::
SegmentInputs
(
step_scopes
,
arg_
->
inlinks
,
seq_len_
,
true
);
PADDLE_ENFORCE
(
scope
->
HasVariable
(
arg_
->
step_net
),
"step net is not in scope."
);
...
...
@@ -383,25 +369,12 @@ void RecurrentGradientAlgorithm::InferShape(
for
(
int
step_id
=
seq_len_
-
1
;
step_id
>=
0
;
--
step_id
)
{
if
(
static_cast
<
size_t
>
(
step_id
)
!=
seq_len_
-
1
)
{
rnn
::
LinkMemories
(
step_scopes
,
arg_
->
memories
,
step_id
,
1
);
rnn
::
LinkMemories
(
step_scopes
,
arg_
->
memories
,
step_id
,
1
,
true
);
}
net
->
GetMutable
<
NetOp
>
()
->
InferShape
(
step_scopes
[
step_id
]);
}
auto
outlinks
=
arg_
->
outlinks
;
for
(
size_t
i
=
0
;
i
<
outlinks
.
size
();
i
++
)
{
DDim
step_dims
=
step_scopes
[
0
]
->
GetVariable
(
outlinks
[
i
].
internal
)
->
GetMutable
<
Tensor
>
()
->
dims
();
std
::
vector
<
int
>
dims_vec
=
vectorize
(
step_dims
);
// now only support fixed length
dims_vec
.
insert
(
dims_vec
.
begin
(),
seq_len_
);
Tensor
*
output
=
step_scopes
[
0
]
->
GetVariable
(
outlinks
[
i
].
external
)
->
GetMutable
<
Tensor
>
();
output
->
Resize
(
make_ddim
(
dims_vec
));
}
LinkBootMemoryGradients
(
step_scopes
[
0
]);
rnn
::
ConcatOutputs
(
step_scopes
,
arg_
->
outlinks
,
seq_len_
,
true
);
LinkBootMemoryGradients
(
step_scopes
[
0
],
true
);
}
void
RecurrentGradientOp
::
Init
()
{
...
...
paddle/operators/recurrent_network_op.h
浏览文件 @
6cfb9a32
...
...
@@ -72,19 +72,22 @@ struct ArgumentName {
*/
void
SegmentInputs
(
std
::
vector
<
std
::
shared_ptr
<
Scope
>>&
step_scopes
,
const
std
::
vector
<
Link
>&
inlinks
,
const
size_t
seq_len
);
const
size_t
seq_len
,
bool
infer_shape
);
/**
* Process outputs of step nets and merge to variables.
*/
void
ConcatOutputs
(
std
::
vector
<
std
::
shared_ptr
<
Scope
>>&
step_scopes
,
const
std
::
vector
<
Link
>&
outlinks
,
const
size_t
seq_len
);
const
size_t
seq_len
,
bool
infer_shape
);
void
LinkMemories
(
std
::
vector
<
std
::
shared_ptr
<
Scope
>>&
step_scopes
,
const
std
::
vector
<
MemoryAttr
>&
memories
,
size_t
step_id
,
int
offset
);
const
size_t
step_id
,
const
int
offset
,
bool
infer_shape
);
void
InitArgument
(
const
ArgumentName
&
name
,
Argument
*
arg
);
...
...
@@ -125,7 +128,7 @@ protected:
->
GetMutable
<
std
::
vector
<
std
::
shared_ptr
<
Scope
>>>
();
}
void
InitMemories
(
std
::
shared_ptr
<
Scope
>
step_scopes
)
const
;
void
InitMemories
(
std
::
shared_ptr
<
Scope
>
step_scopes
,
bool
infer_shape
)
const
;
private:
std
::
unique_ptr
<
rnn
::
Argument
>
arg_
;
...
...
@@ -149,7 +152,8 @@ public:
void
Run
(
const
std
::
shared_ptr
<
Scope
>&
scope
,
const
platform
::
DeviceContext
&
dev_ctx
)
const
;
void
LinkBootMemoryGradients
(
std
::
shared_ptr
<
Scope
>
step_scopes
)
const
;
void
LinkBootMemoryGradients
(
std
::
shared_ptr
<
Scope
>
step_scopes
,
bool
infer_shape
)
const
;
/**
* InferShape must be called before Run.
...
...
paddle/operators/recurrent_network_op_test.cc
浏览文件 @
6cfb9a32
...
...
@@ -56,7 +56,7 @@ protected:
w
->
GetMutable
<
Tensor
>
()
->
mutable_data
<
float
>
(
make_ddim
(
std
::
vector
<
int
>
{
30
,
30
}),
platform
::
CPUPlace
());
for
(
auto
boot
:
std
::
vector
<
std
::
string
>
{
"
x_boot"
,
"
h_boot"
})
{
for
(
auto
boot
:
std
::
vector
<
std
::
string
>
{
"h_boot"
})
{
LOG
(
INFO
)
<<
"create global variable "
<<
boot
;
Variable
*
h_boot
=
scope_
->
CreateVariable
(
boot
);
h_boot
->
GetMutable
<
Tensor
>
()
->
mutable_data
<
float
>
(
...
...
@@ -80,7 +80,6 @@ protected:
op_desc
.
add_inputs
(
"x0"
);
op_desc
.
add_inputs
(
"x1"
);
// boot_memories 3
op_desc
.
add_inputs
(
"x_boot"
);
op_desc
.
add_inputs
(
"h_boot"
);
// step net 5
op_desc
.
add_inputs
(
"step_net"
);
...
...
@@ -92,7 +91,7 @@ protected:
auto
_input_format
=
std
::
vector
<
int
>
{
0
,
// in_link
3
,
// memories
5
// step_net
4
// step_net
};
auto
input_format
=
op_desc
.
add_attrs
();
input_format
->
set_name
(
"input_format"
);
...
...
@@ -130,12 +129,11 @@ protected:
inlink_alias
->
add_strings
(
item
);
}
// pre memories
for
(
const
auto
&
item
:
std
::
vector
<
std
::
string
>
{
"rnn/x@pre"
,
"rnn/h@pre"
})
{
for
(
const
auto
&
item
:
std
::
vector
<
std
::
string
>
{
"rnn/h@pre"
})
{
pre_memories
->
add_strings
(
item
);
}
// memories
for
(
const
auto
&
item
:
std
::
vector
<
std
::
string
>
{
"rnn/
x"
,
"rnn/
h"
})
{
for
(
const
auto
&
item
:
std
::
vector
<
std
::
string
>
{
"rnn/h"
})
{
memories
->
add_strings
(
item
);
}
// output alias
...
...
@@ -152,14 +150,11 @@ protected:
LOG
(
INFO
)
<<
"create variable step_net"
;
Variable
*
var
=
scope_
->
CreateVariable
(
"step_net"
);
auto
net
=
var
->
GetMutable
<
NetOp
>
();
// rnn/s is net's input or output?
net
->
inputs_
=
{
"rnn/h@pre"
,
"rnn/w"
,
"rnn/x"
};
net
->
inputs_
=
{
"rnn/s"
,
"rnn/h"
};
net
->
AddOp
(
OpRegistry
::
CreateOp
(
"mul"
,
{
"rnn/h@pre"
,
"rnn/w"
},
{
"rnn/s"
},
{}));
net
->
AddOp
(
OpRegistry
::
CreateOp
(
"add_two"
,
{
"
rnn/x
"
,
"rnn/s"
},
{
"rnn/h"
},
{}));
OpRegistry
::
CreateOp
(
"add_two"
,
{
"
x@alias
"
,
"rnn/s"
},
{
"rnn/h"
},
{}));
net
->
CompleteAddOp
();
}
...
...
@@ -303,7 +298,7 @@ protected:
std
::
vector
<
std
::
shared_ptr
<
Scope
>>*
step_scopes
=
scope_
->
GetVariable
(
"step_scopes"
)
->
GetMutable
<
std
::
vector
<
std
::
shared_ptr
<
Scope
>>>
();
rnn
::
SegmentInputs
(
*
step_scopes
,
std
::
vector
<
rnn
::
Link
>
{
inlink
},
10
);
rnn
::
SegmentInputs
(
*
step_scopes
,
std
::
vector
<
rnn
::
Link
>
{
inlink
},
10
,
true
);
}
void
LinkeMemories
()
{
...
...
@@ -318,7 +313,7 @@ protected:
scope_
->
GetVariable
(
"step_scopes"
)
->
GetMutable
<
std
::
vector
<
std
::
shared_ptr
<
Scope
>>>
();
for
(
int
i
=
1
;
i
<
10
;
++
i
)
{
rnn
::
LinkMemories
(
*
step_scopes
,
memories
,
i
,
-
1
);
rnn
::
LinkMemories
(
*
step_scopes
,
memories
,
i
,
-
1
,
true
);
}
}
...
...
@@ -347,7 +342,7 @@ TEST(RecurrentOp, LinkMemories) {
scope
->
CreateVariable
(
"pre_h"
);
auto
tensor
=
scope
->
CreateVariable
(
"h"
)
->
GetMutable
<
Tensor
>
();
float
*
data
=
tensor
->
mutable_data
<
float
>
(
make_ddim
({
15
,
20
}),
CPUPlace
());
for
(
int
i
=
0
;
i
<
15
*
20
;
++
i
)
{
for
(
int
j
=
0
;
j
<
15
*
20
;
++
j
)
{
data
[
i
]
=
rand
()
*
(
1.
/
(
double
)
RAND_MAX
);
}
step_scopes
.
push_back
(
scope
);
...
...
@@ -362,7 +357,7 @@ TEST(RecurrentOp, LinkMemories) {
memories
.
push_back
(
mem_attr
);
for
(
int
i
=
1
;
i
<
len
;
++
i
)
{
rnn
::
LinkMemories
(
step_scopes
,
memories
,
i
,
-
1
);
rnn
::
LinkMemories
(
step_scopes
,
memories
,
i
,
-
1
,
false
);
}
// check
for
(
int
i
=
0
;
i
<
len
-
1
;
++
i
)
{
...
...
@@ -372,13 +367,13 @@ TEST(RecurrentOp, LinkMemories) {
->
GetVariable
(
"pre_h"
)
->
GetMutable
<
Tensor
>
()
->
data
<
float
>
();
for
(
size_t
i
=
0
;
i
<
15
*
20
;
++
i
)
{
ASSERT_FLOAT_EQ
(
a
[
i
],
b
[
i
]);
for
(
size_t
j
=
0
;
j
<
15
*
20
;
++
j
)
{
ASSERT_FLOAT_EQ
(
a
[
j
],
b
[
j
]);
}
}
for
(
int
i
=
len
-
2
;
i
>=
0
;
--
i
)
{
rnn
::
LinkMemories
(
step_scopes
,
memories
,
i
,
1
);
rnn
::
LinkMemories
(
step_scopes
,
memories
,
i
,
1
,
false
);
}
// check
for
(
int
i
=
len
-
2
;
i
>=
0
;
--
i
)
{
...
...
@@ -390,8 +385,8 @@ TEST(RecurrentOp, LinkMemories) {
->
GetVariable
(
"h"
)
->
GetMutable
<
Tensor
>
()
->
data
<
float
>
();
for
(
size_t
i
=
0
;
i
<
15
*
20
;
++
i
)
{
ASSERT_FLOAT_EQ
(
a
[
i
],
b
[
i
]);
for
(
size_t
j
=
0
;
j
<
15
*
20
;
++
j
)
{
ASSERT_FLOAT_EQ
(
a
[
j
],
b
[
j
]);
}
}
}
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录