提交 e2fd2bd0 编写于 作者: Y Yu Yang

Follow comments and merge develop

上级 80baf861
......@@ -31,88 +31,74 @@ static bool AllInSet(const std::vector<std::string>& names,
return true;
}
static std::vector<size_t> InSetIdx(
const std::vector<std::string>& names, const std::string& suffix,
const std::unordered_set<std::string>& set) {
std::vector<size_t> ret_val;
ret_val.reserve(names.size());
for (size_t i = 0; i < names.size(); ++i) {
if (set.find(names[i] + suffix) != set.end()) {
ret_val.push_back(i);
}
}
return ret_val;
}
static std::shared_ptr<OperatorBase> EmptyOp() {
static std::shared_ptr<OperatorBase> NOP() {
auto net_op = std::make_shared<NetOp>();
net_op->type_ = "@EMPTY_OP@";
net_op->type_ = "@NOP@";
net_op->CompleteAddOp();
return net_op;
}
/**
* @brief Backward an operator, implementation
* @param forwardOp the forward operator
* @param no_grad_names variable names not calculate for gradient. Like X@GRAD
* is not needed.
* @param uniq_id a unique index used inside BackwardImpl, it will be shared
* through recursive invoke.
* @return The backward operator. For simple situation, it is a simple operator.
* For complex situation, it is a NetOp.
*
* See Backward.h for details
*/
static std::shared_ptr<OperatorBase> BackwardImpl(
// Get backward operator from a forward operator, recursively implementation.
//
// no_grad_names the gradient variable names without gradient calculating.
//
// uniq_id is a unique index used inside recursively calling BackwardRecursive.
// use `uid = uniq_id++;` to get the unique index, and pass `uniq_id` through
// recursive calling.
//
// returns The backward operator. For simple situation, it is a simple
// operator. For complex situation, it is a NetOp.
//
// See Backward.h for details
static std::shared_ptr<OperatorBase> BackwardRecursive(
const OperatorBase& forwardOp,
std::unordered_set<std::string>& no_grad_names, size_t& uniq_id);
std::shared_ptr<OperatorBase> BackwardRecursive(
const OperatorBase& forwardOp,
std::unordered_set<std::string>& no_grad_names, size_t& uniq_id) {
/**
* If all input gradients of forwarding operator do not need to calculate,
* just return an EmptyOp. Not return null ptr because EmptyOp does not take
* too much time for calculation, but it is useful for simplifying logic.
*/
// If all input gradients of forwarding operator do not need to calculate,
// just return an NOP. Not return null ptr because NOP does not take
// too much time for calculation, but it is useful for simplifying logic.
if (AllInSet(forwardOp.inputs_, OperatorBase::GRAD_VAR_SUFFIX(),
no_grad_names)) {
return EmptyOp();
return NOP();
}
/**
* All output gradients of forwarding operator do not need to calculate. Then
* all input gradients cannot be computed at all, and we put them into
* `no_grad_names` set. Return an EmptyOp.
*/
// All output gradients of forwarding operator do not need to calculate. Then
// all input gradients cannot be computed at all, and we put them into
// `no_grad_names` set. Return an NOP.
if (AllInSet(forwardOp.outputs_, OperatorBase::GRAD_VAR_SUFFIX(),
no_grad_names)) {
for (auto& name : forwardOp.inputs_) {
/// Mark all input is not need
// Mark all input is not need
no_grad_names.insert(name + OperatorBase::GRAD_VAR_SUFFIX());
}
return EmptyOp();
return NOP();
}
//! Returned gradient network
// Returned gradient network
auto net = std::make_shared<NetOp>();
if (forwardOp.IsNetOp()) {
/// Because forwardOp is a net op, it can static_cast.
// Because forwardOp is a net op, it can static_cast.
auto& forwardNet = static_cast<const NetOp&>(forwardOp);
//! Map from output gradient variable name to operator's indices in backward
//! net. That operator generates that variable.
// Map from output gradient variable name to operator's indices in backward
// net. That operator generates that variable.
std::unordered_map<std::string, std::vector<size_t>> dup_output_ops;
size_t local_op_id = 0;
/// reversely travel forwardNet
// reversely travel forwardNet
for (auto it = forwardNet.ops_.rbegin(); it != forwardNet.ops_.rend();
++it, ++local_op_id) {
auto fwd = *it;
auto bwd = BackwardImpl(*fwd, no_grad_names, uniq_id);
auto bwd = BackwardRecursive(*fwd, no_grad_names, uniq_id);
net->AddOp(bwd);
for (auto& out : bwd->outputs_) {
dup_output_ops[out].emplace_back(local_op_id);
}
}
/// Get unique ID for this method.
// Get unique ID for this method.
auto uid = uniq_id++;
// TODO(dzh): more comment
using Pos = std::pair<size_t, std::shared_ptr<OperatorBase>>;
......@@ -145,13 +131,15 @@ static std::shared_ptr<OperatorBase> BackwardImpl(
}
} else {
//! TODO(fjy)
std::shared_ptr<OperatorBase> grad_op = OpRegistry::CreateGradOp(forwardOp);
for (std::string& grad_input : grad_op->inputs_) {
if (no_grad_names.count(grad_input)) {
std::string prefix = grad_input.substr(
0, grad_input.size() - OperatorBase::GRAD_VAR_SUFFIX().size());
grad_input = prefix + OperatorBase::ZERO_VAR_SUFFIX();
// If part of input gradient of that operator is not calculated, fill
// zero variables to that input gradient.
net->AddOp(OpRegistry::CreateOp("fill_zeros_like", {prefix},
{grad_input}, {}));
}
......@@ -173,8 +161,8 @@ static std::shared_ptr<OperatorBase> BackwardImpl(
return net;
}
//! See header for comments
extern std::shared_ptr<OperatorBase> Backward(
// See header for comments
std::shared_ptr<OperatorBase> Backward(
const OperatorBase& forwardOp,
const std::unordered_set<std::string>& no_grad_vars) {
std::unordered_set<std::string> no_grad_names;
......@@ -184,7 +172,7 @@ extern std::shared_ptr<OperatorBase> Backward(
no_grad_names.insert(name + OperatorBase::GRAD_VAR_SUFFIX());
}
size_t uid = 0;
return BackwardImpl(forwardOp, no_grad_names, uid);
return BackwardRecursive(forwardOp, no_grad_names, uid);
}
} // namespace framework
} // namespace paddle
......@@ -18,12 +18,8 @@
namespace paddle {
namespace framework {
/**
* @brief
* @param forwardOp
* @param no_grad_vars ignored input name of forward
* @return
*/
// Create the backward operator from a forward operator.
// TODO(yuyang18): Add more API reference comment.
extern std::shared_ptr<OperatorBase> Backward(
const OperatorBase& forwardOp,
const std::unordered_set<std::string>& no_grad_vars);
......
......@@ -169,7 +169,6 @@ TEST(Backward, simple_op_grad) {
ASSERT_EQ("X" + f::OperatorBase::GRAD_VAR_SUFFIX(),
gop->Output("X" + f::OperatorBase::GRAD_VAR_SUFFIX()));
// LOG(INFO) << gop->Output("X" + "@GRAD");
}
TEST(Backward, simple_op_not_need_grad) {
......
......@@ -21,15 +21,17 @@ namespace operators {
class FillZerosLikeOp : public framework::OperatorWithKernel {
protected:
void InferShape(
const std::vector<const framework::Tensor *> &inputs,
const std::vector<framework::Tensor *> &outputs) const override {
PADDLE_ENFORCE(inputs.size() == 1,
void InferShape(const framework::InferShapeContext &ctx) const override {
PADDLE_ENFORCE(ctx.InputSize() == 1UL,
"Input size of FillZerosLikeOp must be one.");
PADDLE_ENFORCE(outputs.size() == 1, "Output size of AddOp must be one.");
PADDLE_ENFORCE(inputs[0] != nullptr && outputs[0] != nullptr,
"Outputs of FillZerosLikeOp must all be set.");
outputs[0]->Resize(inputs[0]->dims());
PADDLE_ENFORCE(ctx.OutputSize() == 1UL,
"Output size of AddOp must be one.");
PADDLE_ENFORCE(ctx.InputVar(0) != nullptr,
"Input of FillZerosLikeOp must be set.");
PADDLE_ENFORCE(ctx.OutputVar(0) != nullptr,
"Output of FillZerosLikeOp must be set.");
ctx.Output<framework::Tensor>(0)->Resize(
ctx.Input<framework::Tensor>(0)->dims());
}
};
......
......@@ -23,8 +23,8 @@ namespace operators {
template <typename Place, typename T>
class FillZerosLikeKernel : public framework::OpKernel {
public:
void Compute(const framework::KernelContext& context) const override {
auto* output = context.Output(0)->GetMutable<framework::Tensor>();
void Compute(const framework::ExecutionContext& context) const override {
auto* output = context.Output<framework::Tensor>(0);
output->mutable_data<T>(context.GetPlace());
framework::EigenVector<T>::Flatten(*output).setZero();
}
......
......@@ -312,13 +312,14 @@ public:
: OpProtoAndCheckerMaker(proto, op_checker) {
const auto& name = RecurrentOp::kArgName;
// inputs and outputs stored in proto
AddInputs(name.inlinks,
"the input that need to be segmented for each step.");
AddInputs(name.boot_memories, "variables to initialize memories.");
AddInput(name.inlinks, "the input that need to be segmented for each step.")
.SetMultiple();
AddInput(name.boot_memories, "variables to initialize memories.")
.SetMultiple();
AddInput(name.step_net, "network shared by all steps.");
AddOutputs(name.outlinks,
"the output that need to concated for all steps.");
AddOutput(name.outlinks, "the output that need to concated for all steps.")
.SetMultiple();
AddOutput(name.step_scopes, "step scopes");
// Attributes stored in AttributeMap
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册