recurrent_op.cc 9.1 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

15
#include "paddle/operators/recurrent_op.h"
Y
Yan Chunwei 已提交
16 17 18 19 20

#include <cstring>
#include <sstream>

#include "paddle/framework/op_registry.h"
Y
Yan Chunwei 已提交
21
#include "paddle/operators/net_op.h"
Y
Yan Chunwei 已提交
22 23 24 25

namespace paddle {
namespace operators {

D
dongzhihong 已提交
26 27 28 29
using Scope = framework::Scope;
using Variable = framework::Variable;
using Tensor = framework::Tensor;

Y
Yu Yang 已提交
30 31
void RecurrentAlgorithm::InferShape(const Scope& scope) const {
  seq_len_ = scope.FindVar((arg_->inlinks[0]).external)
Y
Yan Chunwei 已提交
32 33 34
                 ->GetMutable<Tensor>()
                 ->dims()[0];
  CreateScopes(scope);
35
  auto step_scopes = GetStepScopes(scope);
36 37
  rnn::SegmentInputs(step_scopes, arg_->inlinks, seq_len_,
                     true /*infer_shape_mode*/);
D
dangqingqing 已提交
38
  InitMemories(step_scopes[0], true /*infer_shape_mode*/);
Y
Yan Chunwei 已提交
39

Y
Yan Chunwei 已提交
40 41
  for (size_t i = 0; i < seq_len_; i++) {
    if (i > 0) {
42 43
      rnn::LinkMemories(step_scopes, arg_->memories, i, -1,
                        true /*infer_shape_mode*/);
Y
Yan Chunwei 已提交
44
    }
Y
Yan Chunwei 已提交
45
    (*stepnet_)->InferShape(*step_scopes[i]);
Y
Yan Chunwei 已提交
46
  }
47 48
  rnn::ConcatOutputs(step_scopes, arg_->outlinks, seq_len_,
                     true /*infer_shape_mode*/);
Y
Yan Chunwei 已提交
49 50
}

Y
Yu Yang 已提交
51
void RecurrentAlgorithm::Run(const Scope& scope,
Y
Yan Chunwei 已提交
52 53
                             const platform::DeviceContext& dev_ctx) const {
  auto step_scopes = GetStepScopes(scope);
54 55
  rnn::SegmentInputs(step_scopes, arg_->inlinks, seq_len_,
                     false /*infer_shape_mode*/);
D
dangqingqing 已提交
56
  InitMemories(step_scopes[0], false /*infer_shape_mode*/);
D
dangqingqing 已提交
57

Y
Yan Chunwei 已提交
58
  for (size_t step_id = 0; step_id < seq_len_; step_id++) {
Y
Yan Chunwei 已提交
59
    // create output alias variables
Y
Yan Chunwei 已提交
60
    if (step_id > 0) {
61 62
      rnn::LinkMemories(step_scopes, arg_->memories, step_id, -1,
                        false /*infer_shape_mode*/);
Y
Yan Chunwei 已提交
63
    }
Y
Yan Chunwei 已提交
64
    (*stepnet_)->Run(*step_scopes[step_id], dev_ctx);
Y
Yan Chunwei 已提交
65
  }
66 67
  rnn::ConcatOutputs(step_scopes, arg_->outlinks, seq_len_,
                     false /*infer_shape_mode*/);
Y
Yan Chunwei 已提交
68 69
}

Y
Yu Yang 已提交
70
void RecurrentAlgorithm::CreateScopes(const Scope& scope) const {
Y
Yan Chunwei 已提交
71
  // TODO(superjom) Only two scopes are needed for inference, this case will be
Y
Yan Chunwei 已提交
72
  // supported later.
Y
Yan Chunwei 已提交
73 74 75 76 77
  auto step_scopes_var = scope.FindVar(arg_->step_scopes);
  PADDLE_ENFORCE(step_scopes_var != nullptr, "");
  auto step_scopes = step_scopes_var->GetMutable<std::vector<Scope*>>();

  // Now all variables in scope must be created outside of op.
Y
Yan Chunwei 已提交
78 79 80
  PADDLE_ENFORCE_NOT_NULL(stepnet_);
  PADDLE_ENFORCE(!(*stepnet_)->Outputs().empty(), "stepnet_ op has no outputs");
  PADDLE_ENFORCE(!(*stepnet_)->Outputs().empty(), "net_op has no outputs");
Y
Yan Chunwei 已提交
81 82 83

  if (seq_len_ > step_scopes->size()) {
    for (size_t i = step_scopes->size(); i < seq_len_; ++i) {
Y
Yu Yang 已提交
84
      auto& step_scope = scope.NewScope();
Y
Yan Chunwei 已提交
85

Y
Yan Chunwei 已提交
86
      // create step net's temp inputs
Y
Yan Chunwei 已提交
87
      for (auto& input : (*stepnet_)->Inputs()) {
88
        // the weight are located in parent scope
Y
Yu Yang 已提交
89 90 91 92 93
        for (auto& var_name : input.second) {
          if (!step_scope.FindVar(var_name)) {
            step_scope.NewVar(var_name)->GetMutable<Tensor>();
          }
        }
Y
Yan Chunwei 已提交
94
      }
Y
Yan Chunwei 已提交
95
      // create stepnet's outputs
Y
Yan Chunwei 已提交
96
      for (const auto& output : (*stepnet_)->Outputs()) {
Y
Yu Yang 已提交
97 98 99
        for (auto& var_name : output.second) {
          step_scope.NewVar(var_name);
        }
Y
Yan Chunwei 已提交
100
      }
Y
Yu Yang 已提交
101
      step_scopes->emplace_back(&step_scope);
Y
Yan Chunwei 已提交
102 103 104 105
    }
  }
}

D
dangqingqing 已提交
106
void RecurrentAlgorithm::InitMemories(Scope* step_scope,
D
dangqingqing 已提交
107
                                      bool infer_shape_mode) const {
Y
Yan Chunwei 已提交
108
  for (auto& attr : arg_->memories) {
109
    Tensor* pre_mem = step_scope->NewVar(attr.pre_var)->GetMutable<Tensor>();
Y
Yu Yang 已提交
110
    PADDLE_ENFORCE(step_scope->FindVar(attr.boot_var) != nullptr,
111
                   "memory [%s]'s boot variable [%s] not exists", attr.var,
Y
Yan Chunwei 已提交
112
                   attr.boot_var);
113
    Tensor* boot_mem = step_scope->FindVar(attr.boot_var)->GetMutable<Tensor>();
D
dangqingqing 已提交
114
    if (infer_shape_mode) {
115
      pre_mem->Resize(boot_mem->dims());
Y
Yan Chunwei 已提交
116
      PADDLE_ENFORCE_EQ(pre_mem->dims().size(), 2);
117 118 119
    } else {
      pre_mem->ShareDataWith<float>(*boot_mem);
    }
Y
Yan Chunwei 已提交
120 121 122
  }
}

123 124 125 126 127 128 129 130 131
const rnn::ArgumentName RecurrentOp::kArgName{
    "step_net", "step_scopes",  "inlinks",
    "outlinks", "inlink_alias", "outlink_alias",
    "memories", "pre_memories", "boot_memories"};

const rnn::ArgumentName RecurrentGradientOp::kArgName{
    "step_net",    "step_scopes",  "outlink@grad",
    "inlink@grad", "inlink_alias", "outlink_alias",
    "memories",    "pre_memories", "boot_memories@grad"};
Y
Yan Chunwei 已提交
132

Y
Yu Yang 已提交
133 134 135 136 137
RecurrentOp::RecurrentOp(const std::string& type,
                         const framework::OperatorBase::VarNameMap& inputs,
                         const framework::OperatorBase::VarNameMap& outputs,
                         const framework::AttributeMap& attrs)
    : OperatorBase(type, inputs, outputs, attrs) {
Y
Yan Chunwei 已提交
138 139
  rnn::InitArgument(kArgName, &arg_, *this);
  alg_.Init(&arg_, &stepnet_);
Y
Yan Chunwei 已提交
140 141
}

D
dongzhihong 已提交
142 143
class RecurrentAlgorithmProtoAndCheckerMaker
    : public framework::OpProtoAndCheckerMaker {
144
 public:
D
dongzhihong 已提交
145 146
  RecurrentAlgorithmProtoAndCheckerMaker(framework::OpProto* proto,
                                         framework::OpAttrChecker* op_checker)
Y
Yan Chunwei 已提交
147 148 149
      : OpProtoAndCheckerMaker(proto, op_checker) {
    const auto& name = RecurrentOp::kArgName;
    // inputs and outputs stored in proto
D
dangqingqing 已提交
150 151
    AddInput(name.inlinks,
             "the inputs that need to be segmented for each step.")
Y
Yu Yang 已提交
152
        .AsDuplicable();
Y
Yu Yang 已提交
153
    AddInput(name.boot_memories, "variables to initialize memories.")
Y
Yu Yang 已提交
154
        .AsDuplicable();
Y
Yan Chunwei 已提交
155

D
dangqingqing 已提交
156
    AddOutput(name.outlinks, "the outputs that need to concated for all steps.")
Y
Yu Yang 已提交
157
        .AsDuplicable();
Y
Yan Chunwei 已提交
158 159 160 161 162 163 164 165 166 167 168 169 170 171
    AddOutput(name.step_scopes, "step scopes");

    // Attributes stored in AttributeMap
    AddAttr<std::vector<std::string>>(name.inlink_alias, "alias of inlinks");
    AddAttr<std::vector<std::string>>(name.outlink_alias, "alias of outlinks");
    AddAttr<std::vector<std::string>>(name.pre_memories,
                                      "names of pre-memories");
    AddAttr<std::vector<std::string>>(name.memories, "names of memories");

    AddComment("This is a recurrent group operator.");
  }
};

void RecurrentGradientAlgorithm::Run(
Y
Yu Yang 已提交
172
    const Scope& scope, const platform::DeviceContext& dev_ctx) const {
Y
Yan Chunwei 已提交
173
  auto step_scopes = GetStepScopes(scope);
174 175
  rnn::SegmentInputs(step_scopes, arg_->inlinks, seq_len_,
                     false /*infer_shape_mode*/);
Y
Yan Chunwei 已提交
176 177
  for (int step_id = seq_len_ - 1; step_id >= 0; --step_id) {
    if (static_cast<size_t>(step_id) != seq_len_ - 1) {
178 179
      rnn::LinkMemories(step_scopes, arg_->memories, step_id, 1,
                        false /*infer_shape_mode*/);
Y
Yan Chunwei 已提交
180
    }
Y
Yan Chunwei 已提交
181
    (*stepnet_)->Run(*step_scopes[step_id], dev_ctx);
Y
Yan Chunwei 已提交
182
  }
183
  LinkBootMemoryGradients(step_scopes[0], false);
184 185
  rnn::ConcatOutputs(step_scopes, arg_->outlinks, seq_len_,
                     false /*infer_shape_mode*/);
Y
Yan Chunwei 已提交
186 187 188
}

void RecurrentGradientAlgorithm::LinkBootMemoryGradients(
D
dangqingqing 已提交
189
    Scope* step_scope, bool infer_shape_mode) const {
Y
Yan Chunwei 已提交
190
  for (auto& attr : arg_->memories) {
D
dangqingqing 已提交
191
    PADDLE_ENFORCE(step_scope->FindVar(attr.var) != nullptr,
192
                   "memory variable [%s] does not exists", attr.var);
Y
Yu Yang 已提交
193
    PADDLE_ENFORCE(step_scope->FindVar(attr.boot_var) != nullptr,
194
                   "boot variable [%s] does not exists", attr.boot_var);
D
dangqingqing 已提交
195
    Tensor* mem_grad = step_scope->NewVar(attr.var)->GetMutable<Tensor>();
Y
Yan Chunwei 已提交
196
    Tensor* boot_mem_grad =
197
        step_scope->NewVar(attr.boot_var)->GetMutable<Tensor>();
D
dangqingqing 已提交
198
    if (infer_shape_mode) {
199 200 201 202
      boot_mem_grad->Resize(mem_grad->dims());
    } else {
      boot_mem_grad->ShareDataWith<float>(*mem_grad);
    }
Y
Yan Chunwei 已提交
203 204 205
  }
}

Y
Yu Yang 已提交
206 207
void RecurrentGradientAlgorithm::InferShape(const Scope& scope) const {
  seq_len_ = scope.FindVar((arg_->inlinks[0]).external)
Y
Yan Chunwei 已提交
208 209 210
                 ->GetMutable<Tensor>()
                 ->dims()[0];
  auto step_scopes = GetStepScopes(scope);
211 212
  rnn::SegmentInputs(step_scopes, arg_->inlinks, seq_len_,
                     true /*infer_shape_mode*/);
Y
Yan Chunwei 已提交
213 214
  for (int step_id = seq_len_ - 1; step_id >= 0; --step_id) {
    if (static_cast<size_t>(step_id) != seq_len_ - 1) {
215 216
      rnn::LinkMemories(step_scopes, arg_->memories, step_id, 1,
                        true /*infer_shape_mode*/);
Y
Yan Chunwei 已提交
217
    }
Y
Yan Chunwei 已提交
218
    (*stepnet_)->InferShape(*step_scopes[step_id]);
Y
Yan Chunwei 已提交
219
  }
220 221
  rnn::ConcatOutputs(step_scopes, arg_->outlinks, seq_len_,
                     true /*infer_shape_mode*/);
D
dangqingqing 已提交
222
  LinkBootMemoryGradients(step_scopes[0], true /*infer_shape_mode*/);
Y
Yan Chunwei 已提交
223 224
}

Y
Yu Yang 已提交
225 226 227 228 229
RecurrentGradientOp::RecurrentGradientOp(
    const std::string& type, const framework::OperatorBase::VarNameMap& inputs,
    const framework::OperatorBase::VarNameMap& outputs,
    const framework::AttributeMap& attrs)
    : OperatorBase(type, inputs, outputs, attrs) {
Y
Yan Chunwei 已提交
230 231
  rnn::InitArgument(kArgName, &arg_, *this);
  alg_.Init(&arg_, &stepnet_);
Y
Yan Chunwei 已提交
232 233 234 235 236
}

}  // namespace operators
}  // namespace paddle

F
fengjiayi 已提交
237 238 239
REGISTER_OP_WITHOUT_GRADIENT(
    recurrent_op, paddle::operators::RecurrentOp,
    paddle::operators::RecurrentAlgorithmProtoAndCheckerMaker);