math.py 195.0 KB
Newer Older
W
WuHaobo 已提交
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15 16
"""
math functions
"""
17
# TODO: define math functions
18

19
import numpy as np
20

21
import paddle
22 23 24
from paddle import _C_ops, _legacy_C_ops
from paddle.common_ops_import import VarDesc, dygraph_only, dygraph_utils

25 26 27
# TODO: define math functions
from paddle.utils.inplace_utils import inplace_apis_in_dygraph_only

28
from ..common_ops_import import Variable
29 30
from ..fluid.data_feeder import (
    check_dtype,
31 32
    check_type,
    check_variable_and_dtype,
33 34
    convert_dtype,
)
35 36
from ..framework import (
    LayerHelper,
37
    _dygraph_tracer,
38 39 40 41 42 43 44
    convert_np_dtype_to_dtype_,
    core,
    in_dygraph_mode,
)
from .creation import _complex_to_real_dtype
from .layer_function_generator import generate_layer_fn, templatedoc
from .manipulation import cast
45 46
from .ops import abs  # noqa: F401
from .ops import acos  # noqa: F401
47
from .ops import acosh  # noqa: F401
48
from .ops import asin  # noqa: F401
49 50 51
from .ops import asinh  # noqa: F401
from .ops import atan  # noqa: F401
from .ops import atanh  # noqa: F401
52 53 54 55
from .ops import ceil  # noqa: F401
from .ops import ceil_  # noqa: F401
from .ops import cos  # noqa: F401
from .ops import cosh  # noqa: F401
56
from .ops import erf  # noqa: F401
57 58 59 60 61 62 63 64 65 66 67
from .ops import exp  # noqa: F401
from .ops import exp_  # noqa: F401
from .ops import expm1  # noqa: F401
from .ops import floor  # noqa: F401
from .ops import floor_  # noqa: F401
from .ops import reciprocal  # noqa: F401
from .ops import reciprocal_  # noqa: F401
from .ops import round  # noqa: F401
from .ops import round_  # noqa: F401
from .ops import rsqrt  # noqa: F401
from .ops import rsqrt_  # noqa: F401
68 69
from .ops import sigmoid  # noqa: F401
from .ops import sigmoid_  # noqa: F401
70 71
from .ops import sin  # noqa: F401
from .ops import sinh  # noqa: F401
72 73
from .ops import sqrt  # noqa: F401
from .ops import sqrt_  # noqa: F401
74 75
from .ops import square  # noqa: F401
from .ops import tan  # noqa: F401
76

77 78
__all__ = []

79 80 81 82 83 84 85 86 87 88 89 90 91
_supported_int_dtype_ = [
    VarDesc.VarType.UINT8,
    VarDesc.VarType.INT8,
    VarDesc.VarType.INT16,
    VarDesc.VarType.INT32,
    VarDesc.VarType.INT64,
]

_supported_float_dtype_ = [
    VarDesc.VarType.FP32,
    VarDesc.VarType.FP64,
]

92

93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
def _get_reduce_axis(axis, x):
    """
    Internal function for max, min, amax and amin.
    It computes the attribute reduce_all value based on axis.
    """
    if axis is not None and not isinstance(axis, list):
        if isinstance(axis, (tuple, range)):
            axis = list(axis)
        elif isinstance(axis, int):
            axis = [axis]
        else:
            raise TypeError(
                "The type of axis must be int, list or tuple, but received {}".format(
                    type(axis)
                )
            )
    if axis is None:
        axis = []
    if axis == [] or len(axis) == len(x.shape):
        reduce_all = True
    else:
        reduce_all = False
    return reduce_all, axis


def _get_reduce_axis_with_tensor(axis, x):
    if isinstance(axis, Variable):
        if axis.shape[0] == len(x.shape):
            reduce_all = True
        else:
            reduce_all = False
    else:
        reduce_all, axis = _get_reduce_axis(axis, x)
126 127
        if paddle.utils._contain_var(axis):
            axis = paddle.utils._convert_to_tensor_list(axis)
128 129 130
    return reduce_all, axis


131 132
def log(x, name=None):
    r"""
C
Chen Long 已提交
133
    Calculates the natural log of the given input Tensor, element-wise.
134 135 136

    .. math::

137
        Out = \ln(x)
138 139

    Args:
140
        x (Tensor): Input Tensor. Must be one of the following types: float16, float32, float64.
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
        name (str|None): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`


    Returns:
        Tensor: The natural log of the input Tensor computed element-wise.

    Examples:

        .. code-block:: python

            import paddle

            x = [[2,3,4], [7,8,9]]
            x = paddle.to_tensor(x, dtype='float32')
            res = paddle.log(x)
            # [[0.693147, 1.09861, 1.38629], [1.94591, 2.07944, 2.19722]]
    """
    if in_dygraph_mode():
        return _C_ops.log(x)
160
    else:
161 162 163
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], "log"
        )
164 165 166 167 168 169
        inputs = {'X': [x]}
        helper = LayerHelper('log', **locals())
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(dtype)
        helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
        return out
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188


def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
    """
    Scale operator.

    Putting scale and bias to the input Tensor as following:

    ``bias_after_scale`` is True:

    .. math::
                            Out=scale*X+bias

    ``bias_after_scale`` is False:

    .. math::
                            Out=scale*(X+bias)

    Args:
189 190 191 192 193 194
        x (Tensor): Input N-D Tensor of scale operator. Data type can be float32, float64, int8, int16, int32, int64, uint8.
        scale (float|Tensor): The scale factor of the input, it should be a float number or a Tensor with shape [1] and data type as float32.
        bias (float): The bias to be put on the input.
        bias_after_scale (bool): Apply bias addition after or before scaling. It is useful for numeric stability in some circumstances.
        act (str, optional): Activation applied to the output such as tanh, softmax, sigmoid, relu.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
195 196

    Returns:
C
Chen Long 已提交
197
        Tensor: Output Tensor of scale operator, with shape and data type same as input.
198 199 200

    Examples:
        .. code-block:: python
201

202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
            # scale as a float32 number
            import paddle

            data = paddle.randn(shape=[2,3], dtype='float32')
            res = paddle.scale(data, scale=2.0, bias=1.0)

        .. code-block:: python

            # scale with parameter scale as a Tensor
            import paddle

            data = paddle.randn(shape=[2, 3], dtype='float32')
            factor = paddle.to_tensor([2], dtype='float32')
            res = paddle.scale(data, scale=factor, bias=1.0)

    """

    if in_dygraph_mode():
W
Weilong Wu 已提交
220 221
        if act is None:
            return _C_ops.scale(x, scale, float(bias), bias_after_scale)
W
wanghuancoder 已提交
222 223
        out = _C_ops.scale(x, scale, float(bias), bias_after_scale)
        return dygraph_utils._append_activation_in_dygraph(out, act)
224 225
    else:
        check_variable_and_dtype(
226
            x,
227 228 229 230 231 232 233 234 235 236 237 238 239
            "x",
            [
                'float16',
                'uint16',
                'float32',
                'float64',
                'int8',
                'int16',
                'int32',
                'int64',
                'uint8',
            ],
            "scale",
240
        )
241 242 243 244 245 246 247 248 249 250 251
        inputs = {'X': [x]}
        attrs = {
            'bias': float(bias),
            'bias_after_scale': bias_after_scale,
        }
        if isinstance(scale, Variable):
            inputs['ScaleTensor'] = [scale]
        else:
            attrs['scale'] = float(scale)
        helper = LayerHelper('scale', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
252

253 254 255 256
        helper.append_op(
            type='scale', inputs=inputs, outputs={'Out': out}, attrs=attrs
        )
        return helper.append_activation(out)
257 258 259


def stanh(x, scale_a=0.67, scale_b=1.7159, name=None):
260 261
    r"""

262 263 264 265
    stanh activation.

    .. math::

266
        out = b * \frac{e^{a * x} - e^{-a * x}}{e^{a * x} + e^{-a * x}}
267 268 269 270 271

    Parameters:
        x (Tensor): The input Tensor with data type float32, float64.
        scale_a (float, optional): The scale factor a of the input. Default is 0.67.
        scale_b (float, optional): The scale factor b of the output. Default is 1.7159.
272
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
273 274 275 276 277 278 279 280 281 282 283 284 285 286

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([1.0, 2.0, 3.0, 4.0])
            out = paddle.stanh(x, scale_a=0.67, scale_b=1.72) # [1.00616539, 1.49927628, 1.65933108, 1.70390463]

    """

287
    if in_dygraph_mode():
Z
zyfncg 已提交
288
        return _C_ops.stanh(x, scale_a, scale_b)
289 290 291 292
    else:
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'stanh'
        )
293

294 295 296 297 298 299 300 301 302
        helper = LayerHelper('stanh', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='stanh',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'scale_a': scale_a, 'scale_b': scale_b},
        )
        return out
303

304

305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
def multiplex(inputs, index, name=None):
    """

    Based on the given index parameter, the OP selects a specific row from each input Tensor to construct the output Tensor.

    If the input of this OP contains :math:`m` Tensors, where :math:`I_{i}` means the i-th input Tensor, :math:`i` between :math:`[0,m)` .

    And :math:`O` means the output, where :math:`O[i]` means the i-th row of the output, then the output satisfies that :math:`O[i] = I_{index[i]}[i]` .

    For Example:

            .. code-block:: text

                Given:

                inputs = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
                          [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]],
                          [[2,0,3,4], [2,1,7,8], [2,2,4,2], [2,3,3,4]],
                          [[3,0,3,4], [3,1,7,8], [3,2,4,2], [3,3,3,4]]]

                index = [[3],[0],[1],[2]]

                out = [[3,0,3,4],    # out[0] = inputs[index[0]][0] = inputs[3][0] = [3,0,3,4]
                       [0,1,3,4],    # out[1] = inputs[index[1]][1] = inputs[0][1] = [0,1,3,4]
                       [1,2,4,2],    # out[2] = inputs[index[2]][2] = inputs[1][2] = [1,2,4,2]
                       [2,3,3,4]]    # out[3] = inputs[index[3]][3] = inputs[2][3] = [2,3,3,4]


    Args:
        inputs (list): The input Tensor list. The list elements are N-D Tensors of data types float32, float64, int32, int64. All input Tensor shapes should be the same and rank must be at least 2.
        index (Tensor): Used to select some rows in the input Tensor to construct an index of the output Tensor. It is a 2-D Tensor with data type int32 or int64 and shape [M, 1], where M is the number of input Tensors.
336
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
337

338 339 340 341 342 343 344 345
    Returns:
        Tensor: Output of multiplex OP, with data type being float32, float64, int32, int64.

    Examples:

        .. code-block:: python

            import paddle
346

347 348 349 350
            img1 = paddle.to_tensor([[1, 2], [3, 4]], dtype=paddle.float32)
            img2 = paddle.to_tensor([[5, 6], [7, 8]], dtype=paddle.float32)
            inputs = [img1, img2]
            index = paddle.to_tensor([[1], [0]], dtype=paddle.int32)
351
            res = paddle.multiplex(inputs, index)
352
            print(res) # Tensor([[5., 6.], [3., 4.]], dtype=float32)
353 354

    """
355 356
    if in_dygraph_mode():
        return _C_ops.multiplex(inputs, index)
357 358
    else:
        helper = LayerHelper('multiplex', **locals())
359

360 361 362 363 364 365 366 367 368 369 370 371
        check_type(inputs, 'inputs', (list), 'multiplex')
        if len(inputs) < 2:
            raise ValueError(
                "inputs should be a list object with at least 2 elements."
            )
        for id, x in enumerate(inputs):
            check_variable_and_dtype(
                x,
                'input[' + str(id) + ']',
                ['float32', 'float64', 'int32', 'int64'],
                'multiplex',
            )
372
        check_variable_and_dtype(
373
            index, "index", ['int32', 'int64'], 'multiplex'
374
        )
375

376 377 378 379 380 381 382
        out = helper.create_variable_for_type_inference(inputs[0].dtype)
        helper.append_op(
            type='multiplex',
            inputs={'X': inputs, 'Ids': index},
            outputs={'Out': [out]},
        )
        return out
383

384

385 386 387 388 389 390
@inplace_apis_in_dygraph_only
def scale_(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
    """
    Inplace version of ``scale`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_scale`.
    """
391
    if in_dygraph_mode():
392
        return _C_ops.scale_(x, scale, float(bias), bias_after_scale)
393 394


395
def pow(x, y, name=None):
396
    """
C
Chen Long 已提交
397
    Compute the power of Tensor elements. The equation is:
S
swtkiwi 已提交
398

399
    .. math::
400
        out = x^{y}
401

402
    Note:
I
Infinity_lee 已提交
403 404 405
        ``paddle.pow`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensors
406 407


408
    Args:
409
        x (Tensor): An N-D Tensor, the data type is float16, float32, float64, int32 or int64.
410
        y (float|int|Tensor): If it is an N-D Tensor, its data type should be the same as `x`.
411
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
412

413
    Returns:
414
        N-D Tensor. A location into which the result is stored. Its dimension and data type are the same as `x`.
415 416 417

    Examples:

418
        ..  code-block:: python
419 420 421

            import paddle

422 423 424 425 426 427 428 429 430 431 432 433
            x = paddle.to_tensor([1, 2, 3], dtype='float32')

            # example 1: y is a float or int
            res = paddle.pow(x, 2)
            print(res)
            # Tensor(shape=[3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [1., 4., 9.])
            res = paddle.pow(x, 2.5)
            print(res)
            # Tensor(shape=[3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [1.         , 5.65685415 , 15.58845711])

434
            # example 2: y is a Tensor
435
            y = paddle.to_tensor([2], dtype='float32')
436
            res = paddle.pow(x, y)
437 438 439
            print(res)
            # Tensor(shape=[3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [1., 4., 9.])
440 441

    """
442
    # in dynamic graph mode
443
    if in_dygraph_mode():
444
        if isinstance(y, (int, float)):
445
            return _C_ops.pow(x, y)
446
        elif isinstance(y, (paddle.Tensor, Variable)):
447
            return _C_ops.elementwise_pow(x, y)
448
        else:
449
            raise TypeError(
450 451
                'y must be scalar or tensor type, but received: %s ' % (y.dtype)
            )
452 453
    else:
        # in static graph mode
454
        if isinstance(y, (int, float)):
455 456 457 458 459 460
            helper = LayerHelper('pow', **locals())
            inputs = {'X': x}
            attrs = {'factor': y}
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
            helper.append_op(
                type='pow', inputs=inputs, outputs={'Out': out}, attrs=attrs
461
            )
462 463 464 465 466 467
            return out
        elif isinstance(y, (paddle.Tensor, Variable)):
            # TODO A potential speed improvement is supporting different types in C++ and removing the cast ops here
            helper = LayerHelper('elementwise_pow', **locals())
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
            return _elementwise_op(LayerHelper('elementwise_pow', **locals()))
468
        else:
469
            raise TypeError(
470
                'y must be scalar or tensor type, but received: %s ' % (type(y))
471
            )
472 473


474
OP_NAMEMAPPING = {
475 476 477 478 479 480 481 482
    'elementwise_max': 'maximum',
    'elementwise_min': 'minimum',
    'elementwise_pow': 'elementwise_pow',
    'elementwise_floordiv': 'floor_divide',
    'elementwise_add': 'add',
    'elementwise_sub': 'subtract',
    'elementwise_mul': 'multiply',
    'elementwise_div': 'divide',
C
Chen Weihang 已提交
483
    'elementwise_mod': 'remainder',
484
}
485

486

487 488 489 490 491 492
def _elementwise_op(helper):
    op_type = helper.layer_type
    original_op_type = helper.kwargs.get('original_op_type', op_type)
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)

493 494
    out = helper.kwargs.get('out', None)

495 496
    assert x is not None, f'x cannot be None in {original_op_type}'
    assert y is not None, f'y cannot be None in {original_op_type}'
497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
    bf16_and_complex_supported_ops = [
        "elementwise_add",
        "elementwise_sub",
        "elementwise_mul",
        "elementwise_div",
    ]
    if original_op_type in bf16_and_complex_supported_ops:
        data_type = [
            'uint16',
            'float16',
            'float32',
            'float64',
            'int32',
            'int64',
            'bool',
            'complex64',
            'complex128',
        ]
    else:
        data_type = ['float16', 'float32', 'float64', 'int32', 'int64', 'bool']
517
    check_variable_and_dtype(
518 519
        x,
        'x',
520
        data_type,
521 522
        original_op_type,
    )
523
    check_variable_and_dtype(
524 525
        y,
        'y',
526
        data_type,
527 528
        original_op_type,
    )
529 530 531 532

    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
    name = helper.kwargs.get('name', None)
533 534 535 536 537

    if out is None:
        if name is None:
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
        else:
538 539 540 541 542 543 544 545 546 547
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False
            )

    helper.append_op(
        type=op_type,
        inputs={'X': x, 'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis, 'use_mkldnn': use_mkldnn},
    )
548 549 550
    return helper.append_activation(out)


Y
Yang Zhang 已提交
551
def add(x, y, name=None):
552
    """
553 554 555 556 557 558 559 560
    Elementwise Add Operator.
    Add two tensors element-wise
    The equation is:

    ..  math::

        Out=X+Y

561 562
    $X$ the tensor of any dimension.
    $Y$ the tensor whose dimensions must be less than or equal to the dimensions of $X$.
563 564

    There are two cases for this operator:
565 566 567 568

    1. The shape of $Y$ is the same with $X$.
    2. The shape of $Y$ is a continuous subsequence of $X$.

569
    For case 2:
570 571

    1. Broadcast $Y$ to match the shape of $X$, where axis is the start dimension index for broadcasting $Y$ onto $X$.
H
HongyuJia 已提交
572
    2. If $axis$ is -1 (default), $axis$=rank($X$)-rank($Y$).
573
    3. The trailing dimensions of size 1 for $Y$ will be ignored for the consideration of subsequence, such as shape($Y$) = (2, 1) => (2).
574 575 576 577

        For example:

        ..  code-block:: python
578

579 580 581 582 583 584
            shape(X) = (2, 3, 4, 5), shape(Y) = (,)
            shape(X) = (2, 3, 4, 5), shape(Y) = (5,)
            shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5), with axis=-1(default) or axis=2
            shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
            shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
            shape(X) = (2, 3, 4, 5), shape(Y) = (2, 1), with axis=0
585

586
    Args:
587 588 589
        x (Tensor): Tensor or LoDTensor of any dimensions. Its dtype should be int32, int64, float32, float64.
        y (Tensor): Tensor or LoDTensor of any dimensions. Its dtype should be int32, int64, float32, float64.
        name (string, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
590 591

    Returns:
H
HongyuJia 已提交
592
        N-D Tensor. A location into which the result is stored. It's dimension equals with x.
593 594 595 596

    Examples:

        ..  code-block:: python
597

598
            import paddle
599

600 601 602 603
            x = paddle.to_tensor([2, 3, 4], 'float64')
            y = paddle.to_tensor([1, 5, 2], 'float64')
            z = paddle.add(x, y)
            print(z)  # [3., 8., 6. ]
604
    """
605

J
Jiabin Yang 已提交
606
    if in_dygraph_mode():
607
        return _C_ops.add(x, y)
J
Jiabin Yang 已提交
608
    else:
609
        return _elementwise_op(LayerHelper('elementwise_add', **locals()))
610 611


612 613 614 615 616 617 618 619 620
@inplace_apis_in_dygraph_only
def add_(x, y, name=None):
    """
    Inplace version of ``add`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_add`.
    """

    out_shape = broadcast_shape(x.shape, y.shape)
    if out_shape != x.shape:
621
        raise ValueError(
622 623 624 625
            "The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation.".format(
                out_shape, x.shape
            )
        )
626

627
    return _C_ops.add_(x, y)
628 629


630 631
def subtract(x, y, name=None):
    """
W
Wei Shengyu 已提交
632
    Substract two tensors element-wise. The equation is:
633 634 635 636

    .. math::
        out = x - y

637
    Note:
I
Infinity_lee 已提交
638 639 640
        ``paddle.subtract`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
641 642 643 644 645 646 647 648 649 650 651 652

    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python
W
Wei Shengyu 已提交
653

654 655 656 657 658 659
            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[5, 6], [3, 4]])
            res = paddle.subtract(x, y)
            print(res)
660 661 662
            # Tensor(shape=[2, 2], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[-4, -4],
            #         [ 4,  4]])
663 664 665 666 667

            x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
            y = paddle.to_tensor([1, 0, 4])
            res = paddle.subtract(x, y)
            print(res)
668 669 670
            # Tensor(shape=[1, 2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[[ 0,  2, -1],
            #          [ 0,  2, -1]]])
671

672 673
            x = paddle.to_tensor([2, float('nan'), 5], dtype='float32')
            y = paddle.to_tensor([1, 4, float('nan')], dtype='float32')
674 675
            res = paddle.subtract(x, y)
            print(res)
676 677
            # Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [1. , nan, nan])
678

679
            x = paddle.to_tensor([5, float('inf'), -float('inf')], dtype='float64')
680 681 682
            y = paddle.to_tensor([1, 4, 5], dtype='float64')
            res = paddle.subtract(x, y)
            print(res)
683 684
            # Tensor(shape=[3], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        [ 4.  ,  inf., -inf.])
685
    """
J
Jiabin Yang 已提交
686
    if in_dygraph_mode():
687
        return _C_ops.subtract(x, y)
J
Jiabin Yang 已提交
688
    else:
689
        return _elementwise_op(LayerHelper('elementwise_sub', **locals()))
690 691


692 693 694 695 696 697 698 699 700
@inplace_apis_in_dygraph_only
def subtract_(x, y, name=None):
    """
    Inplace version of ``subtract`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_subtract`.
    """

    out_shape = broadcast_shape(x.shape, y.shape)
    if out_shape != x.shape:
701
        raise ValueError(
702 703 704 705
            "The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation.".format(
                out_shape, x.shape
            )
        )
706

707
    return _C_ops.subtract_(x, y)
708 709


710
def divide(x, y, name=None):
711
    """
712
    Divide two tensors element-wise. The equation is:
713

714 715
    .. math::
        out = x / y
716

717
    Note:
I
Infinity_lee 已提交
718 719 720
        ``paddle.divide`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
721

722 723 724 725
    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
726

727
    Returns:
728
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.
729

730
    Examples:
731

732
        ..  code-block:: python
733

734
            import paddle
735

736 737
            x = paddle.to_tensor([2, 3, 4], dtype='float64')
            y = paddle.to_tensor([1, 5, 2], dtype='float64')
738
            z = paddle.divide(x, y)
739
            print(z)  # [2., 0.6, 2.]
740

741
    """
J
Jiabin Yang 已提交
742
    if in_dygraph_mode():
743
        return _C_ops.divide(x, y)
J
Jiabin Yang 已提交
744
    else:
745
        return _elementwise_op(LayerHelper('elementwise_div', **locals()))
746 747


748 749
def floor_divide(x, y, name=None):
    """
L
Lin Manhui 已提交
750
    Floor divide two tensors element-wise and rounds the quotinents to the nearest integer toward zero. The equation is:
751

752
    .. math::
L
Lin Manhui 已提交
753
        out = trunc(x / y)
754

H
hg-1099255210 已提交
755 756 757
    - :math:`x`: Multidimensional Tensor.
    - :math:`y`: Multidimensional Tensor.

758
    Note:
I
Infinity_lee 已提交
759 760 761 762
        ``paddle.floor_divide`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor

L
Lin Manhui 已提交
763
        Also note that the name ``floor_divide`` can be misleading, as the quotinents are actually rounded toward zero, not toward negative infinite.
764

765 766 767 768
    Args:
        x (Tensor): the input tensor, it's data type should be int32, int64.
        y (Tensor): the input tensor, it's data type should be int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
769

770 771
    Returns:
        N-D Tensor. A location into which the result is stored. It's dimension equals with $x$.
772

773
    Examples:
774

775
        ..  code-block:: python
776

777
            import paddle
778

779 780
            x = paddle.to_tensor([2, 3, 8, 7])
            y = paddle.to_tensor([1, 5, 3, 3])
781
            z = paddle.floor_divide(x, y)
782
            print(z)  # [2, 0, 2, 2]
783

784
    """
785 786
    if in_dygraph_mode():
        return _C_ops.floor_divide(x, y)
787
    else:
788
        return _elementwise_op(LayerHelper('elementwise_floordiv', **locals()))
789 790


791
def remainder(x, y, name=None):
792
    r"""
793 794 795
    Mod two tensors element-wise. The equation is:

    .. math::
796

797 798
        out = x \% y

799
    Note:
I
Infinity_lee 已提交
800 801 802
        ``paddle.remainder`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
803 804

    Args:
805 806
        x (Tensor): the input tensor, it's data type should be float16, float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float16, float32, float64, int32, int64.
807 808 809
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
810
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.
811 812 813 814 815 816 817

    Examples:

        ..  code-block:: python

            import paddle

818 819
            x = paddle.to_tensor([2, 3, 8, 7])
            y = paddle.to_tensor([1, 5, 3, 3])
820
            z = paddle.remainder(x, y)
W
WangXi 已提交
821
            print(z)  # [0, 3, 2, 1]
822 823

    """
824 825
    if in_dygraph_mode():
        return _C_ops.remainder(x, y)
826
    else:
827
        return _elementwise_op(LayerHelper('elementwise_mod', **locals()))
828 829


830 831 832 833 834 835 836 837 838
@inplace_apis_in_dygraph_only
def remainder_(x, y, name=None):
    r"""
    Inplace version of ``remainder`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_remainder`.
    """
    out_shape = broadcast_shape(x.shape, y.shape)
    if out_shape != x.shape:
        raise ValueError(
839 840 841 842
            "The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation.".format(
                out_shape, x.shape
            )
        )
843
    return _C_ops.remainder_(x, y)
844 845


846 847
mod = remainder  # noqa: F841
floor_mod = remainder  # noqa: F841
848 849


850
def multiply(x, y, name=None):
851
    """
852
    multiply two tensors element-wise. The equation is:
853

854 855
    .. math::
        out = x * y
856

857
    Note:
I
Infinity_lee 已提交
858 859 860
        ``paddle.multiply`` supports broadcasting. If you would like to know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
861

862
    Args:
W
will-jl944 已提交
863 864
        x (Tensor): the input tensor, its data type should be one of float32, float64, int32, int64, bool.
        y (Tensor): the input tensor, its data type should be one of float32, float64, int32, int64, bool.
865
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
866

867
    Returns:
868
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.
869

870 871 872 873 874 875
    Examples:

        ..  code-block:: python

            import paddle

876 877
            x = paddle.to_tensor([[1, 2], [3, 4]])
            y = paddle.to_tensor([[5, 6], [7, 8]])
878
            res = paddle.multiply(x, y)
879
            print(res) # [[5, 12], [21, 32]]
880

881
            x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
882 883 884
            y = paddle.to_tensor([2])
            res = paddle.multiply(x, y)
            print(res) # [[[2, 4, 6], [2, 4, 6]]]
885 886

    """
J
Jiabin Yang 已提交
887
    if in_dygraph_mode():
888
        return _C_ops.multiply(x, y)
J
Jiabin Yang 已提交
889
    else:
890 891 892 893
        if x.dtype != y.dtype:
            raise TypeError(
                'Input tensors must be same type, but received type of x: %s, type of y: %s '
                % (x.dtype, y.dtype)
894
            )
895

896
        return _elementwise_op(LayerHelper('elementwise_mul', **locals()))
897

898

899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920
@inplace_apis_in_dygraph_only
def multiply_(x, y, name=None):
    """
    Inplace version of ``multiply`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_multiply`.
    """

    assert (
        _dygraph_tracer()._has_grad is False
    ), "The current inplace version of multiply_ needs to be used in the context of paddle.no_grad() since inplace multiply_grad is not yet supported."

    out_shape = broadcast_shape(x.shape, y.shape)
    if out_shape != x.shape:
        raise ValueError(
            "The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation.".format(
                out_shape, x.shape
            )
        )

    return _C_ops.multiply_(x, y)


921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951
@dygraph_only
def _elementwise_op_with_axis_in_dygraph(
    x, y, axis=-1, name=None, op_type="Undifined"
):
    assert (
        in_dygraph_mode()
    ), "You can only call `_elementwise_op_with_axis_in_dygraph` function within in_dygraph_mode"
    assert op_type in ["add", "subtract", "multiply", "divide"], (
        "op_name input error! _elementwise_op_with_axis is an inner function to replace elementwise_add/sub/mul/div. Input op_name=%s, Expect op_name=[add|subtract|multiply|divide]\n"
        % op_type
    )
    op = getattr(_C_ops, op_type)
    x_shape = list(x.shape)
    y_shape = list(y.shape)
    if axis == -1 or len(x_shape) == len(y_shape):
        return op(x, y)
    if len(x_shape) > len(y_shape):
        padding = len(x_shape) - len(y_shape) - axis
        y = paddle.reshape(y, [1] * axis + y_shape + [1] * padding)
    else:
        padding = len(y_shape) - len(x_shape) - axis
        x = paddle.reshape(x, [1] * axis + y_shape + [1] * padding)
    return op(x, y)


def _add_with_axis(x, y, axis=-1, name=None):
    # opt performance, only dynamic mode needs reshape
    if in_dygraph_mode():
        return _elementwise_op_with_axis_in_dygraph(x, y, axis, name, "add")
    else:
        op_type = 'elementwise_add'
952
        return _elementwise_op(LayerHelper(op_type, **locals()))
953 954 955 956 957 958 959 960 961 962


def _subtract_with_axis(x, y, axis=-1, name=None):
    # opt performance, only dynamic mode needs reshape
    if in_dygraph_mode():
        return _elementwise_op_with_axis_in_dygraph(
            x, y, axis, name, "subtract"
        )
    else:
        op_type = 'elementwise_sub'
963
        return _elementwise_op(LayerHelper(op_type, **locals()))
964 965 966 967 968 969 970 971 972 973


def _multiply_with_axis(x, y, axis=-1, name=None):
    # opt performance, only dynamic mode needs reshape
    if in_dygraph_mode():
        return _elementwise_op_with_axis_in_dygraph(
            x, y, axis, name, "multiply"
        )
    else:
        op_type = 'elementwise_mul'
974
        return _elementwise_op(LayerHelper(op_type, **locals()))
975 976 977 978 979 980 981 982


def _divide_with_axis(x, y, axis=-1, name=None):
    # opt performance, only dynamic mode needs reshape
    if in_dygraph_mode():
        return _elementwise_op_with_axis_in_dygraph(x, y, axis, name, "divide")
    else:
        op_type = 'elementwise_div'
983
        return _elementwise_op(LayerHelper(op_type, **locals()))
984 985


986
def maximum(x, y, name=None):
987
    """
W
Wei Shengyu 已提交
988
    Compare two tensors and returns a new tensor containing the element-wise maxima. The equation is:
989

990 991
    .. math::
        out = max(x, y)
992

993
    Note:
I
Infinity_lee 已提交
994 995 996
        ``paddle.maximum`` supports broadcasting. If you want know more about broadcasting, please refer to  `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015

    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[3, 4], [5, 6]])
            res = paddle.maximum(x, y)
            print(res)
1016 1017 1018
            # Tensor(shape=[2, 2], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[3, 4],
            #         [7, 8]])
1019 1020 1021 1022 1023

            x = paddle.to_tensor([[1, 2, 3], [1, 2, 3]])
            y = paddle.to_tensor([3, 0, 4])
            res = paddle.maximum(x, y)
            print(res)
1024 1025 1026
            # Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[3, 2, 4],
            #         [3, 2, 4]])
1027 1028

            x = paddle.to_tensor([2, 3, 5], dtype='float32')
1029
            y = paddle.to_tensor([1, float("nan"), float("nan")], dtype='float32')
1030 1031
            res = paddle.maximum(x, y)
            print(res)
1032 1033
            # Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [2. , nan, nan])
1034

1035 1036
            x = paddle.to_tensor([5, 3, float("inf")], dtype='float32')
            y = paddle.to_tensor([1, -float("inf"), 5], dtype='float32')
1037 1038
            res = paddle.maximum(x, y)
            print(res)
1039 1040
            # Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [5.  , 3.  , inf.])
1041
    """
1042 1043
    if in_dygraph_mode():
        return _C_ops.maximum(x, y)
1044
    else:
1045
        return _elementwise_op(LayerHelper('elementwise_max', **locals()))
1046

1047

1048
def minimum(x, y, name=None):
1049
    """
C
Chen Long 已提交
1050
    Compare two tensors and return a new tensor containing the element-wise minima. The equation is:
1051

1052 1053
    .. math::
        out = min(x, y)
1054

1055
    Note:
I
Infinity_lee 已提交
1056 1057 1058
        ``paddle.minimum`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
1059 1060 1061 1062 1063 1064 1065

    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
C
Chen Long 已提交
1066
        Tensor. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[3, 4], [5, 6]])
            res = paddle.minimum(x, y)
            print(res)
1078 1079 1080
            # Tensor(shape=[2, 2], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1, 2],
            #         [5, 6]])
1081 1082 1083 1084 1085

            x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
            y = paddle.to_tensor([3, 0, 4])
            res = paddle.minimum(x, y)
            print(res)
1086 1087 1088
            # Tensor(shape=[1, 2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[[1, 0, 3],
            #          [1, 0, 3]]])
1089 1090

            x = paddle.to_tensor([2, 3, 5], dtype='float32')
1091
            y = paddle.to_tensor([1, float("nan"), float("nan")], dtype='float32')
1092 1093
            res = paddle.minimum(x, y)
            print(res)
1094 1095
            # Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [1. , nan, nan])
1096

1097 1098
            x = paddle.to_tensor([5, 3, float("inf")], dtype='float64')
            y = paddle.to_tensor([1, -float("inf"), 5], dtype='float64')
1099 1100
            res = paddle.minimum(x, y)
            print(res)
1101 1102
            # Tensor(shape=[3], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        [ 1.  , -inf.,  5.  ])
1103
    """
1104 1105
    if in_dygraph_mode():
        return _C_ops.minimum(x, y)
1106
    else:
1107
        return _elementwise_op(LayerHelper('elementwise_min', **locals()))
1108

1109

L
LJQ❤️ 已提交
1110 1111 1112 1113 1114 1115 1116 1117 1118
def fmax(x, y, name=None):
    """
    Compares the elements at the corresponding positions of the two tensors and returns a new tensor containing the maximum value of the element.
    If one of them is a nan value, the other value is directly returned, if both are nan values, then the first nan value is returned.
    The equation is:

    .. math::
        out = fmax(x, y)

1119
    Note:
I
Infinity_lee 已提交
1120 1121 1122
        ``paddle.fmax`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
L
LJQ❤️ 已提交
1123 1124

    Args:
1125 1126
        x (Tensor): the input tensor, it's data type should be float16, float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float16, float32, float64, int32, int64.
L
LJQ❤️ 已提交
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[3, 4], [5, 6]])
            res = paddle.fmax(x, y)
            print(res)
1142 1143 1144
            # Tensor(shape=[2, 2], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[3, 4],
            #         [7, 8]])
L
LJQ❤️ 已提交
1145 1146 1147 1148 1149

            x = paddle.to_tensor([[1, 2, 3], [1, 2, 3]])
            y = paddle.to_tensor([3, 0, 4])
            res = paddle.fmax(x, y)
            print(res)
1150 1151 1152
            # Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[3, 2, 4],
            #         [3, 2, 4]])
L
LJQ❤️ 已提交
1153 1154

            x = paddle.to_tensor([2, 3, 5], dtype='float32')
1155
            y = paddle.to_tensor([1, float("nan"), float("nan")], dtype='float32')
L
LJQ❤️ 已提交
1156 1157
            res = paddle.fmax(x, y)
            print(res)
1158 1159
            # Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [2., 3., 5.])
L
LJQ❤️ 已提交
1160

1161 1162
            x = paddle.to_tensor([5, 3, float("inf")], dtype='float32')
            y = paddle.to_tensor([1, -float("inf"), 5], dtype='float32')
L
LJQ❤️ 已提交
1163 1164
            res = paddle.fmax(x, y)
            print(res)
1165 1166
            # Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [5.  , 3.  , inf.])
L
LJQ❤️ 已提交
1167
    """
1168
    if in_dygraph_mode():
1169
        return _C_ops.fmax(x, y)
1170
    else:
1171
        return _elementwise_op(LayerHelper('elementwise_fmax', **locals()))
L
LJQ❤️ 已提交
1172

1173

L
LJQ❤️ 已提交
1174 1175 1176 1177 1178 1179 1180 1181 1182
def fmin(x, y, name=None):
    """
    Compares the elements at the corresponding positions of the two tensors and returns a new tensor containing the minimum value of the element.
    If one of them is a nan value, the other value is directly returned, if both are nan values, then the first nan value is returned.
    The equation is:

    .. math::
        out = fmin(x, y)

1183
    Note:
I
Infinity_lee 已提交
1184 1185 1186
        ``paddle.fmin`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
L
LJQ❤️ 已提交
1187 1188

    Args:
1189 1190
        x (Tensor): the input tensor, it's data type should be float16, float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float16, float32, float64, int32, int64.
L
LJQ❤️ 已提交
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[3, 4], [5, 6]])
            res = paddle.fmin(x, y)
            print(res)
1206 1207 1208
            # Tensor(shape=[2, 2], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1, 2],
            #         [5, 6]])
L
LJQ❤️ 已提交
1209 1210 1211 1212 1213

            x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
            y = paddle.to_tensor([3, 0, 4])
            res = paddle.fmin(x, y)
            print(res)
1214 1215 1216
            # Tensor(shape=[1, 2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[[1, 0, 3],
            #          [1, 0, 3]]])
L
LJQ❤️ 已提交
1217 1218

            x = paddle.to_tensor([2, 3, 5], dtype='float32')
1219
            y = paddle.to_tensor([1, float("nan"), float("nan")], dtype='float32')
L
LJQ❤️ 已提交
1220 1221
            res = paddle.fmin(x, y)
            print(res)
1222 1223
            # Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [1., 3., 5.])
L
LJQ❤️ 已提交
1224

1225 1226
            x = paddle.to_tensor([5, 3, float("inf")], dtype='float64')
            y = paddle.to_tensor([1, -float("inf"), 5], dtype='float64')
L
LJQ❤️ 已提交
1227 1228
            res = paddle.fmin(x, y)
            print(res)
1229 1230
            # Tensor(shape=[3], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        [ 1.  , -inf.,  5.  ])
L
LJQ❤️ 已提交
1231
    """
1232
    if in_dygraph_mode():
1233
        return _C_ops.fmin(x, y)
1234
    else:
1235
        return _elementwise_op(LayerHelper('elementwise_fmin', **locals()))
L
LJQ❤️ 已提交
1236

Y
Yang Zhang 已提交
1237

1238
def sum(x, axis=None, dtype=None, keepdim=False, name=None):
1239 1240 1241 1242
    """
    Computes the sum of tensor elements over the given dimension.

    Args:
1243
        x (Tensor): An N-D Tensor, the data type is bool, float16, float32, float64, int32 or int64.
1244 1245
        axis (int|list|tuple, optional): The dimensions along which the sum is performed. If
            :attr:`None`, sum all elements of :attr:`x` and return a
N
Noel 已提交
1246
            Tensor with a single element, otherwise must be in the
1247 1248 1249 1250 1251 1252 1253
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        dtype (str, optional): The dtype of output Tensor. The default value is None, the dtype
            of output is the same as input Tensor `x`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
1254
            value is False.
1255
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1256 1257

    Returns:
1258
        Tensor: Results of summation operation on the specified axis of input Tensor `x`,
1259
        if `x.dtype='bool'`, `x.dtype='int32'`, it's data type is `'int64'`,
1260
        otherwise it's data type is the same as `x`.
1261 1262 1263 1264 1265

    Examples:
        .. code-block:: python

            import paddle
1266

1267
            # x is a Tensor with following elements:
1268 1269 1270
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the corresponding output tensor.
1271 1272
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
                                  [0.1, 0.2, 0.6, 0.7]])
1273
            out1 = paddle.sum(x)  # [3.5]
1274 1275 1276
            out2 = paddle.sum(x, axis=0)  # [0.3, 0.5, 1.1, 1.6]
            out3 = paddle.sum(x, axis=-1)  # [1.9, 1.6]
            out4 = paddle.sum(x, axis=1, keepdim=True)  # [[1.9], [1.6]]
1277

1278
            # y is a Tensor with shape [2, 2, 2] and elements as below:
1279 1280 1281
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
            # Each example is followed by the corresponding output tensor.
1282
            y = paddle.to_tensor([[[1, 2], [3, 4]],
1283
                                  [[5, 6], [7, 8]]])
1284 1285
            out5 = paddle.sum(y, axis=[1, 2]) # [10, 26]
            out6 = paddle.sum(y, axis=[0, 1]) # [16, 20]
1286

1287 1288 1289 1290 1291 1292 1293 1294 1295
            # x is a Tensor with following elements:
            #    [[True, True, True, True]
            #     [False, False, False, False]]
            # Each example is followed by the corresponding output tensor.
            x = paddle.to_tensor([[True, True, True, True],
                                  [False, False, False, False]])
            out7 = paddle.sum(x)  # [4]
            out8 = paddle.sum(x, axis=0)  # [1, 1, 1, 1]
            out9 = paddle.sum(x, axis=1)  # [4, 0]
1296
    """
1297

1298 1299 1300 1301
    dtype_flag = False
    if dtype is not None:
        dtype_flag = True
        dtype = convert_np_dtype_to_dtype_(dtype)
F
From00 已提交
1302 1303

    if in_dygraph_mode():
1304
        return _C_ops.sum(x, axis, dtype, keepdim)
1305 1306 1307
    else:
        reduce_all, axis = _get_reduce_axis_with_tensor(axis, x)
        attrs = {'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all}
F
From00 已提交
1308

1309
        if dtype_flag:
1310
            attrs.update({'in_dtype': x.dtype, 'out_dtype': dtype})
W
wanghuancoder 已提交
1311

1312 1313 1314 1315 1316
        check_variable_and_dtype(
            x,
            'x',
            [
                'bool',
1317
                'uint16',
1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328
                'float16',
                'float32',
                'float64',
                'int16',
                'int32',
                'int64',
                'complex64',
                'complex128',
            ],
            'sum',
        )
1329

1330 1331 1332
        check_type(
            axis, 'axis', (int, list, tuple, type(None), Variable), 'sum'
        )
1333

1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
        helper = LayerHelper('sum', **locals())
        if dtype_flag:
            out = helper.create_variable_for_type_inference(dtype=dtype)
        else:
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='reduce_sum',
            inputs={'X': x},
            outputs={'Out': out},
            attrs=attrs,
        )
        return out
1346

1347

1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
def nan_to_num(x, nan=0.0, posinf=None, neginf=None, name=None):
    """
    Replaces NaN, positive infinity, and negative infinity values in input tensor.

    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64.
        nan (float, optional): the value to replace NaNs with. Default is 0.
        posinf (float, optional): if a Number, the value to replace positive infinity values with. If None, positive infinity values are replaced with the greatest finite value representable by input’s dtype. Default is None.
        neginf (float, optional): if a Number, the value to replace negative infinity values with. If None, negative infinity values are replaced with the lowest finite value representable by input’s dtype. Default is None.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: Results of nan_to_num operation input Tensor ``x``.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([float('nan'), 0.3, float('+inf'), float('-inf')], dtype='float32')
            out1 = paddle.nan_to_num(x)  # [0, 0.3, 3.4028235e+38, -3.4028235e+38]
            out2 = paddle.nan_to_num(x, nan=1)  # [1, 0.3, 3.4028235e+38, -3.4028235e+38]
            out3 = paddle.nan_to_num(x, posinf=5)  # [0, 0.3, 5, -3.4028235e+38]
            out4 = paddle.nan_to_num(x, nan=10, neginf=-99)  # [10, 0.3, 3.4028235e+38, -99]
    """
    # NOTE(tiancaishaonvjituizi): it seems that paddle handles the dtype of python float number
    # incorrectly, so we have to explicitly contruct tensors here
    posinf_value = paddle.full_like(x, float("+inf"))
    neginf_value = paddle.full_like(x, float("-inf"))
    nan = paddle.full_like(x, nan)
    assert x.dtype in [paddle.float32, paddle.float64]
    is_float32 = x.dtype == paddle.float32
    if posinf is None:
        posinf = (
            np.finfo(np.float32).max if is_float32 else np.finfo(np.float64).max
        )
    posinf = paddle.full_like(x, posinf)
    if neginf is None:
        neginf = (
            np.finfo(np.float32).min if is_float32 else np.finfo(np.float64).min
        )
    neginf = paddle.full_like(x, neginf)
    x = paddle.where(paddle.isnan(x), nan, x)
    x = paddle.where(x == posinf_value, posinf, x)
    x = paddle.where(x == neginf_value, neginf, x)
    return x


W
wangguanqun 已提交
1396 1397 1398 1399 1400
def nansum(x, axis=None, dtype=None, keepdim=False, name=None):
    """
    Computes the sum of tensor elements over the given axis, treating Not a Numbers (NaNs) as zero.

    Args:
1401
        x (Tensor): An N-D Tensor, the data type is float16, float32, float64, int32 or int64.
W
wangguanqun 已提交
1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
        axis (int|list|tuple, optional): The dimensions along which the nansum is performed. If
            :attr:`None`, nansum all elements of :attr:`x` and return a
            Tensor with a single element, otherwise must be in the
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        dtype (str, optional): The dtype of output Tensor. The default value is None, the dtype
            of output is the same as input Tensor `x`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
1413
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
W
wangguanqun 已提交
1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426

    Returns:
        Tensor: Results of summation operation on the specified axis of input Tensor `x`,

    Examples:
        .. code-block:: python

            import paddle

            # x is a Tensor with following elements:
            #    [[nan, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, -nan, 0.7]]
            # Each example is followed by the corresponding output tensor.
1427 1428
            x = paddle.to_tensor([[float('nan'), 0.3, 0.5, 0.9],
                            [0.1, 0.2, float('-nan'), 0.7]],dtype="float32")
W
wangguanqun 已提交
1429 1430 1431 1432 1433 1434 1435 1436 1437
            out1 = paddle.nansum(x)  # [2.7]
            out2 = paddle.nansum(x, axis=0)  # [0.1, 0.5, 0.5, 1.6]
            out3 = paddle.nansum(x, axis=-1)  # [1.7, 1.0]
            out4 = paddle.nansum(x, axis=1, keepdim=True)  # [[1.7], [1.0]]

            # y is a Tensor with shape [2, 2, 2] and elements as below:
            #      [[[1, nan], [3, 4]],
            #      [[5, 6], [-nan, 8]]]
            # Each example is followed by the corresponding output tensor.
1438
            y = paddle.to_tensor([[[1, float('nan')], [3, 4]],
W
wangguanqun 已提交
1439 1440 1441 1442
                            [[5, 6], [float('-nan'), 8]]])
            out5 = paddle.nansum(y, axis=[1, 2]) # [8, 19]
            out6 = paddle.nansum(y, axis=[0, 1]) # [9, 18]
    """
1443
    check_variable_and_dtype(
1444
        x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'nansum'
1445
    )
W
wangguanqun 已提交
1446 1447 1448 1449 1450 1451 1452
    check_type(axis, 'axis', (int, list, tuple, type(None)), 'nansum')

    zero_tensor = paddle.zeros_like(x)
    tmp_tensor = paddle.where(isnan(x), zero_tensor, x)
    return sum(tmp_tensor, axis, dtype, keepdim, name)


1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
def nanmean(x, axis=None, keepdim=False, name=None):
    r"""
    Compute the arithmetic mean along the specified axis, ignoring NaNs.

    Args:
        x (Tensor): The input Tensor with data type uint16, float16, float32, float64.
        axis (int|list|tuple, optional):The axis along which to perform nanmean
            calculations. ``axis`` should be int, list(int) or tuple(int). If
            ``axis`` is a list/tuple of dimension(s), nanmean is calculated along
            all element(s) of ``axis`` . ``axis`` or element(s) of ``axis``
            should be in range [-D, D), where D is the dimensions of ``x`` . If
            ``axis`` or element(s) of ``axis`` is less than 0, it works the
            same way as :math:`axis + D` . If ``axis`` is None, nanmean is
            calculated over all elements of ``x``. Default is None.
        keepdim (bool, optional): Whether to reserve the reduced dimension(s)
            in the output Tensor. If ``keepdim`` is True, the dimensions of
            the output Tensor is the same as ``x`` except in the reduced
            dimensions(it is of size 1 in this case). Otherwise, the shape of
            the output Tensor is squeezed in ``axis`` . Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, results of arithmetic mean along ``axis`` of ``x``, with the same data
        type as ``x``.

    Examples:

        .. code-block:: python
            :name: code-example1

            import paddle
            # x is a 2-D Tensor:
            x = paddle.to_tensor([[float('nan'), 0.3, 0.5, 0.9],
                                  [0.1, 0.2, float('-nan'), 0.7]])
            out1 = paddle.nanmean(x)
            # [0.44999996]
            out2 = paddle.nanmean(x, axis=0)
            # [0.1, 0.25, 0.5, 0.79999995]
            out3 = paddle.nanmean(x, axis=0, keepdim=True)
            # [[0.1, 0.25, 0.5, 0.79999995]]
            out4 = paddle.nanmean(x, axis=1)
            # [0.56666666 0.33333334]
            out5 = paddle.nanmean(x, axis=1, keepdim=True)
            # [[0.56666666]
            #  [0.33333334]]

            # y is a 3-D Tensor:
            y = paddle.to_tensor([[[1, float('nan')], [3, 4]],
                                   [[5, 6], [float('-nan'), 8]]])
            out6 = paddle.nanmean(y, axis=[1, 2])
            # [2.66666675, 6.33333349]
            out7 = paddle.nanmean(y, axis=[0, 1])
            # [3., 6.]
    """
    if isinstance(axis, int):
        axis = [axis]
1510 1511 1512
    check_variable_and_dtype(
        x, 'x/input', ['uint16', 'float16', 'float32', 'float64'], 'nanmean'
    )
1513 1514 1515
    if axis is not None:
        check_type(axis, 'axis/dim', (int, list, tuple), 'nanmean')

1516 1517 1518
    cnt = paddle.sum(~paddle.isnan(x), axis=axis, keepdim=keepdim)
    return paddle.divide(
        paddle.nansum(x, axis=axis, keepdim=keepdim, name=name),
1519 1520
        cnt.astype(x.dtype),
    )
1521 1522


1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576
def count_nonzero(x, axis=None, keepdim=False, name=None):
    r"""
    Counts the number of non-zero values in the tensor x along the specified axis.

    Args:
        x (Tensor): An N-D Tensor, the data type is bool, float16, float32, float64, int32 or int64.
        axis (int|list|tuple, optional): The dimensions along which the sum is performed. If
            :attr:`None`, sum all elements of :attr:`x` and return a
            Tensor with a single element, otherwise must be in the
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: Results of count operation on the specified axis of input Tensor `x`, it's data type is `'int64'`.

    Examples:

        .. code-block:: python

            import paddle
            # x is a 2-D Tensor:
            x = paddle.to_tensor([[0., 1.1, 1.2], [0., 0., 1.3], [0., 0., 0.]])
            out1 = paddle.count_nonzero(x)
            # [3]
            out2 = paddle.count_nonzero(x, axis=0)
            # [0, 1, 2]
            out3 = paddle.count_nonzero(x, axis=0, keepdim=True)
            # [[0, 1, 2]]
            out4 = paddle.count_nonzero(x, axis=1)
            # [2, 1, 0]
            out5 = paddle.count_nonzero(x, axis=1, keepdim=True)
            #[[2],
            # [1],
            # [0]]

            # y is a 3-D Tensor:
            y = paddle.to_tensor([[[0., 1.1, 1.2], [0., 0., 1.3], [0., 0., 0.]],
                                  [[0., 2.5, 2.6], [0., 0., 2.4], [2.1, 2.2, 2.3]]])
            out6 = paddle.count_nonzero(y, axis=[1, 2])
            # [3, 6]
            out7 = paddle.count_nonzero(y, axis=[0, 1])
            # [1, 3, 5]
    """

    if axis is not None:
        if isinstance(axis, int):
            axis = [axis]
        dims = len(x.shape)
        for i in range(len(axis)):
1577 1578 1579
            if not isinstance(axis[i], int) or not (
                axis[i] < dims and axis[i] >= -dims
            ):
1580 1581 1582 1583 1584 1585 1586 1587 1588
                raise ValueError(
                    "Axis should be None, int, or a list, element should in range [-rank(x), rank(x))."
                )

    bool_tensor = paddle.cast(x, 'bool')
    int_tensor = paddle.cast(bool_tensor, 'int64')
    return paddle.sum(int_tensor, axis=axis, keepdim=keepdim, name=name)


1589
@templatedoc(op_type="sum")
S
Steffy-zxf 已提交
1590
def add_n(inputs, name=None):
1591
    """
1592
    Sum one or more Tensor of the input.
1593

S
Steffy-zxf 已提交
1594 1595 1596
    For example:

    .. code-block:: text
1597

S
Steffy-zxf 已提交
1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610
        Case 1:

            Input:
                input.shape = [2, 3]
                input = [[1, 2, 3],
                         [4, 5, 6]]

            Output:
                output.shape = [2, 3]
                output = [[1, 2, 3],
                          [4, 5, 6]]

        Case 2:
1611

S
Steffy-zxf 已提交
1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626
            Input:
                First input:
                    input1.shape = [2, 3]
                    Input1 = [[1, 2, 3],
                              [4, 5, 6]]

                The second input:
                    input2.shape = [2, 3]
                    input2 = [[7, 8, 9],
                              [10, 11, 12]]

                Output:
                    output.shape = [2, 3]
                    output = [[8, 10, 12],
                              [14, 16, 18]]
1627 1628

    Args:
1629
        inputs (Tensor|list[Tensor]|tuple[Tensor]):  A Tensor or a list/tuple of Tensors. The shape and data type of the list/tuple elements should be consistent.
S
Steffy-zxf 已提交
1630
            Input can be multi-dimensional Tensor, and data types can be: float32, float64, int32, int64.
1631
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1632 1633

    Returns:
S
Steffy-zxf 已提交
1634
        Tensor, the sum of input :math:`inputs` , its shape and data types are consistent with :math:`inputs`.
1635 1636 1637

    Examples:
        .. code-block:: python
1638

1639 1640
            import paddle

S
Steffy-zxf 已提交
1641 1642 1643
            input0 = paddle.to_tensor([[1, 2, 3], [4, 5, 6]], dtype='float32')
            input1 = paddle.to_tensor([[7, 8, 9], [10, 11, 12]], dtype='float32')
            output = paddle.add_n([input0, input1])
1644
            # [[8., 10., 12.],
S
Steffy-zxf 已提交
1645
            #  [14., 16., 18.]]
1646
    """
1647 1648 1649
    if in_dygraph_mode():
        if isinstance(inputs, Variable):
            inputs = [inputs]
1650
        return _C_ops.add_n(inputs)
1651
    else:
1652 1653
        helper = LayerHelper('add_n', **locals())
        check_type(inputs, 'inputs', (Variable, tuple, list), 'add_n')
1654
        if isinstance(inputs, (list, tuple)):
1655 1656 1657 1658 1659
            if len(inputs) > 0:
                for input in inputs:
                    check_variable_and_dtype(
                        input,
                        "inputs",
1660 1661 1662 1663 1664 1665 1666 1667
                        [
                            'float16',
                            'float32',
                            'float64',
                            'int32',
                            'int64',
                            'uint16',
                        ],
1668 1669 1670 1671 1672 1673
                        'add_n',
                    )
        else:
            check_variable_and_dtype(
                inputs,
                "inputs",
1674
                ['float16', 'float32', 'float64', 'int32', 'int64', 'uint16'],
1675 1676
                'add_n',
            )
1677

1678 1679 1680 1681 1682 1683 1684 1685 1686
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype('inputs')
        )
        helper.append_op(
            type='sum',
            inputs={'X': inputs},
            outputs={'Out': out},
            attrs={'use_mkldnn': False},
        )
1687

1688
        return out
1689 1690


1691 1692 1693
def trunc(input, name=None):
    '''
    This API is used to returns a new tensor with the truncated integer values of input.
1694

1695 1696 1697
    Args:
        input (Tensor): The input tensor, it's data type should be int32, int64, float32, float64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1698

1699 1700
    Returns:
        Tensor: The output Tensor of trunc.
1701

1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718
    Examples:
        .. code-block:: python

            import paddle

            input = paddle.rand([2,2],'float32')
            print(input)
            # Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [[0.02331470, 0.42374918],
            #         [0.79647720, 0.74970269]])

            output = paddle.trunc(input)
            print(output)
            # Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [[0., 0.],
            #         [0., 0.]]))
    '''
J
Jiabin Yang 已提交
1719
    if in_dygraph_mode():
1720
        return _C_ops.trunc(input)
1721
    else:
1722 1723
        inputs = {"X": input}
        attrs = {}
1724

1725 1726 1727 1728 1729
        helper = LayerHelper("trunc", **locals())
        check_variable_and_dtype(
            input, 'X', ['int32', 'int64', 'float32', 'float64'], 'trunc'
        )
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
1730

1731 1732 1733 1734
        helper.append_op(
            type="trunc", inputs=inputs, attrs=attrs, outputs={"Out": out}
        )
        return out
1735 1736


W
WuHaobo 已提交
1737
def mm(input, mat2, name=None):
1738
    """
S
swtkiwi 已提交
1739

1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.


    Also note that if the raw tensor :math:`x` or :math:`mat2` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
    removed after matrix multiplication.

    Args:
1751
        input (Tensor): The input tensor which is a Tensor.
N
Noel 已提交
1752
        mat2 (Tensor): The input tensor which is a Tensor.
1753
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1754 1755

    Returns:
N
Noel 已提交
1756
        Tensor: The product Tensor.
1757

W
wawltor 已提交
1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789
    ::

        * example 1:

        input: [B, ..., M, K], mat2: [B, ..., K, N]
        out: [B, ..., M, N]

        * example 2:

        input: [B, M, K], mat2: [B, K, N]
        out: [B, M, N]

        * example 3:

        input: [B, M, K], mat2: [K, N]
        out: [B, M, N]

        * example 4:

        input: [M, K], mat2: [K, N]
        out: [M, N]

        * example 5:

        input: [B, M, K], mat2: [K]
        out: [B, M]

        * example 6:

        input: [K], mat2: [K]
        out: [1]

1790 1791 1792 1793
    Examples:
        .. code-block:: python

            import paddle
1794 1795 1796 1797 1798 1799 1800 1801
            input = paddle.arange(1, 7).reshape((3, 2)).astype('float32')
            mat2 = paddle.arange(1, 9).reshape((2, 4)).astype('float32')
            out = paddle.mm(input, mat2)
            print(out)
            #        [[11., 14., 17., 20.],
            #         [23., 30., 37., 44.],
            #         [35., 46., 57., 68.]])

N
Noel 已提交
1802

1803
    """
1804
    if in_dygraph_mode():
1805
        return _C_ops.matmul(input, mat2, False, False)
1806
    else:
1807

1808 1809 1810 1811 1812
        def __check_input(x, y):
            var_names = {'x': x, 'y': y}
            for name, val in var_names.items():
                check_variable_and_dtype(
                    val, name, ['float16', 'float32', 'float64'], 'mm'
1813
                )
1814 1815 1816 1817 1818 1819
            x_shape = list(x.shape)
            y_shape = list(y.shape)
            if len(x_shape) == 1:
                x_shape = [1] + x_shape
            if len(y_shape) == 1:
                y_shape = y_shape + [1]
1820

1821 1822 1823
            # check the inner 2 dimensions
            if x_shape[-1] != y_shape[-2]:
                if not ((x_shape[-1] == -1) or (y_shape[-2] == -1)):
1824
                    raise ValueError(
1825 1826 1827 1828
                        "After performing an optional transpose, Input X's width should be "
                        "equal to Y's width for multiplication "
                        "prerequisites. But received X's shape: %s, Y's shape: %s\n"
                        % (x_shape, y_shape)
1829
                    )
1830

1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853
            if len(y_shape) > 2 and len(x_shape) > 2:
                for i, dim_x in enumerate(x_shape[:-2]):
                    # don't check neg shape
                    if dim_x < 0 or y_shape[i] < 0:
                        continue
                    if dim_x != y_shape[i]:
                        raise ValueError(
                            "When the matrix is larger than 2 dimensions, the higher "
                            "dimensional values of the two matrices need to be equal. "
                            "But received x_shape[%d] != y_shape[%d]. X's shape: %s, "
                            "Y's shape: %s.\n" % (i, i, x_shape, y_shape)
                        )

        __check_input(input, mat2)

        helper = LayerHelper('mm', **locals())
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
        helper.append_op(
            type='matmul_v2',
            inputs={'X': input, 'Y': mat2},
            outputs={'Out': out},
        )
        return out
1854

1855

Y
yaoxuefeng 已提交
1856
def addmm(input, x, y, beta=1.0, alpha=1.0, name=None):
1857 1858 1859
    """
    **addmm**

1860
    Perform matrix multiplication for input $x$ and $y$.
1861 1862 1863 1864 1865 1866 1867 1868 1869
    $input$ is added to the final result.
    The equation is:

    ..  math::
        Out = alpha * x * y + beta * input

    $Input$, $x$ and $y$ can carry the LoD (Level of Details) information, or not. But the output only shares the LoD information with input $input$.

    Args:
Y
yaoxuefeng 已提交
1870 1871 1872
        input (Tensor): The input Tensor to be added to the final result.
        x (Tensor): The first input Tensor for matrix multiplication.
        y (Tensor): The second input Tensor for matrix multiplication.
1873 1874
        beta (float, optional): Coefficient of $input$, default is 1.
        alpha (float, optional): Coefficient of $x*y$, default is 1.
1875
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1876 1877

    Returns:
1878
        Tensor: The output Tensor of addmm.
1879 1880 1881

    Examples:
        ..  code-block:: python
1882

1883 1884
            import paddle

Y
yaoxuefeng 已提交
1885 1886 1887
            x = paddle.ones([2,2])
            y = paddle.ones([2,2])
            input = paddle.ones([2,2])
Y
yaoxuefeng 已提交
1888

Y
yaoxuefeng 已提交
1889
            out = paddle.addmm( input=input, x=x, y=y, beta=0.5, alpha=5.0 )
Y
yaoxuefeng 已提交
1890

N
Noel 已提交
1891
            print(out)
1892 1893 1894
            # [[10.5 10.5]
            # [10.5 10.5]]
    """
Y
yaoxuefeng 已提交
1895 1896 1897
    input_shape = input.shape
    x_shape = x.shape
    y_shape = y.shape
1898
    if not len(x_shape) == len(y_shape) == 2:
1899
        raise ValueError(
1900 1901 1902 1903
            "The dimention of x, y should be 2 but receive x's shape: {}, y's shape: {}".format(
                x_shape, y_shape
            )
        )
Y
yaoxuefeng 已提交
1904
    if x_shape[1] != y_shape[0]:
1905
        raise ValueError(
1906 1907 1908 1909
            "The input Variable x's width must be equal with Variable y' height. But received x's shape = {}, y's shape = {}.".format(
                x_shape, y_shape
            )
        )
1910 1911 1912
    if len(input_shape) == 2:
        if input_shape[0] != x_shape[0]:
            if input_shape[0] != 1:
1913
                raise ValueError(
1914 1915 1916 1917
                    "When x's dimension[0] is not equal with input's dimension[0], input's dimension[0] must be 1 but got {}".format(
                        input_shape[0]
                    )
                )
1918
            if input_shape[1] != y_shape[1] and input_shape[1] != 1:
1919
                raise ValueError(
1920 1921 1922 1923
                    "When y's dimension[1] is not equal with input's dimension[1], input's dimension[1] must be 1 but got {}".format(
                        input_shape[1]
                    )
                )
1924 1925
        if input_shape[1] != y_shape[1]:
            if input_shape[1] != 1:
1926
                raise ValueError(
1927 1928 1929 1930
                    "When y's dimension[1] is not equal with input's dimension[1], input's dimension[1] must be 1 but got {}".format(
                        input_shape[1]
                    )
                )
1931 1932
    elif len(input_shape) == 1:
        if input_shape[0] not in (y_shape[1], 1):
1933
            raise ValueError(
1934 1935 1936 1937
                "The input's shape: {} is not broadcastable with [x.shape[0], y.shape[1]]: [{},{}]".format(
                    input_shape, x_shape[0], y_shape[1]
                )
            )
1938
    else:
1939
        raise ValueError(
1940 1941 1942 1943
            "The dimention of input should be 2 or 1 but receive input's shape: {}".format(
                input_shape
            )
        )
Y
yaoxuefeng 已提交
1944

J
Jiabin Yang 已提交
1945
    if in_dygraph_mode():
1946
        return _C_ops.addmm(input, x, y, beta, alpha)
J
Jiabin Yang 已提交
1947
    else:
1948 1949
        inputs = {'Input': input, "X": x, "Y": y}
        attrs = {'Alpha': alpha, 'Beta': beta}
1950

1951 1952 1953 1954 1955 1956 1957
        helper = LayerHelper("addmm", **locals())
        check_variable_and_dtype(
            input, 'Input', ['float32', 'float64'], 'addmm'
        )
        check_variable_and_dtype(x, 'X', ['float32', 'float64'], 'addmm')
        check_variable_and_dtype(y, 'Y', ['float32', 'float64'], 'addmm')
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1958

1959 1960 1961 1962
        helper.append_op(
            type="addmm", inputs=inputs, attrs=attrs, outputs={"Out": out}
        )
        return out
1963

1964

S
seemingwang 已提交
1965 1966 1967 1968 1969 1970 1971
def renorm(x, p, axis, max_norm):
    """
    **renorm**

    This operator is used to calculate the p-norm along the axis,
    suppose the input-shape on axis dimension has the value of T, then
    the tensor is split into T parts, the p-norm should be calculated for each
1972
    part, if the p-norm for part i is larger than max-norm, then each element
S
seemingwang 已提交
1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986
    in part i should be re-normalized at the same scale so that part-i' p-norm equals
    max-norm exactly, otherwise part-i stays unchanged.

    Args:
        x (Tensor): The input Tensor
        p (float): The power of the norm operation.
        axis (int): the dimension to slice the tensor.
        max-norm (float): the maximal norm limit.

    Returns:
        Tensor: the renorm Tensor.

    Examples:
        ..  code-block:: python
1987

S
seemingwang 已提交
1988 1989 1990 1991
            import paddle
            input = [[[2.0,2,-2],[3,0.3,3]],[[2,-8,2],[3.1,3.7,3]]]
            x = paddle.to_tensor(input,dtype='float32')
            y = paddle.renorm(x, 1.0, 2, 2.05)
1992
            print(y)
S
seemingwang 已提交
1993 1994 1995 1996
    #        [[[ 0.40594056,  0.29285714, -0.41000000],
    #          [ 0.60891086,  0.04392857,  0.61500001]],
    #         [[ 0.40594056, -1.17142856,  0.41000000],
    #          [ 0.62920785,  0.54178572,  0.61500001]]])
1997

S
seemingwang 已提交
1998 1999 2000
    """
    input_shape = x.shape
    if not axis < len(input_shape):
2001 2002
        raise ValueError(
            "the axis:{} should be less then the shape's size {}:{}".format(
2003 2004 2005
                axis, len(input_shape), input_shape
            )
        )
2006
    if not axis >= 0:
S
seemingwang 已提交
2007
        if not axis >= -1 * len(input_shape):
2008
            raise ValueError(
2009 2010 2011 2012
                "the axis:{} should not be less than -1 * length of input_shape:{}".format(
                    axis, -1 * len(input_shape)
                )
            )
S
seemingwang 已提交
2013
        axis = axis + len(input_shape)
S
seemingwang 已提交
2014
    if in_dygraph_mode():
2015
        out = _C_ops.renorm(x, p, axis, max_norm)
S
seemingwang 已提交
2016
        return out
2017
    else:
2018
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'renorm')
2019 2020
        inputs = {'X': x}
        attrs = {'p': p, 'axis': axis, 'max_norm': max_norm}
S
seemingwang 已提交
2021

2022 2023
        helper = LayerHelper("renorm", **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
seemingwang 已提交
2024

2025 2026 2027 2028
        helper.append_op(
            type="renorm", inputs=inputs, attrs=attrs, outputs={"Out": out}
        )
        return out
S
seemingwang 已提交
2029

2030

Z
zhiboniu 已提交
2031 2032 2033 2034
def inner(x, y, name=None):
    """

    Inner product of two input Tensor.
2035

Z
zhiboniu 已提交
2036 2037 2038 2039 2040
    Ordinary inner product for 1-D Tensors, in higher dimensions a sum product over the last axes.

    Args:
        x (Tensor): An N-D Tensor or a Scalar Tensor. If its not a scalar Tensor, its last dimensions must match y's.
        y (Tensor): An N-D Tensor or a Scalar Tensor. If its not a scalar Tensor, its last dimensions must match x's.
2041
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Z
zhiboniu 已提交
2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063

    Returns:
        Tensor: The inner-product Tensor, the output shape is x.shape[:-1] + y.shape[:-1].

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.arange(1, 7).reshape((2, 3)).astype('float32')
            y = paddle.arange(1, 10).reshape((3, 3)).astype('float32')
            out = paddle.inner(x, y)
            print(out)
            #        ([[14, 32, 50],
            #         [32, 77, 122]])


    """
    if x.size == 1 or y.size == 1:
        return multiply(x, y)
    else:
        xshape = x.shape
        yshape = y.shape
2064 2065
        dstshape = list(xshape[:-1]) + list(yshape[:-1])
        if len(dstshape) == 0:
Z
zhiboniu 已提交
2066 2067 2068 2069
            dstshape = [1]
        nx = x.reshape((-1, xshape[-1]))
        ny = y.reshape((-1, yshape[-1]))

2070
        if in_dygraph_mode():
2071
            return _C_ops.matmul(nx, ny.T, False, False).reshape(dstshape)
2072
        else:
Z
zhiboniu 已提交
2073

2074 2075 2076 2077 2078
            def __check_input(x, y):
                var_names = {'x': x, 'y': y}
                for name, val in var_names.items():
                    check_variable_and_dtype(
                        val, name, ['float16', 'float32', 'float64'], 'inner'
2079
                    )
2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102
                x_shape = list(xshape)
                y_shape = list(yshape)

                # check the inner 2 dimensions
                if x_shape[-1] != y_shape[-1]:
                    if not ((x_shape[-1] == -1) or (y_shape[-1] == -1)):
                        raise ValueError(
                            "After performing an optional transpose, Input X's last dim should be "
                            "equal to Y's last dim for multiplication "
                            "prerequisites. But received X's shape: %s, Y's shape: %s\n"
                            % (x_shape, y_shape)
                        )

            __check_input(nx, ny)

            helper = LayerHelper('inner', **locals())
            out = helper.create_variable_for_type_inference(dtype=nx.dtype)
            helper.append_op(
                type='matmul_v2',
                inputs={'X': nx, 'Y': ny.T},
                outputs={'Out': out},
            )
            return out.reshape(dstshape)
Z
zhiboniu 已提交
2103 2104 2105 2106 2107 2108 2109 2110 2111 2112


def outer(x, y, name=None):
    """

    Outer product of two Tensors.

    Input is flattened if not already 1-dimensional.

    Args:
2113 2114
        x (Tensor): An N-D Tensor or a Scalar Tensor.
        y (Tensor): An N-D Tensor or a Scalar Tensor.
2115
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Z
zhiboniu 已提交
2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136

    Returns:
        Tensor: The outer-product Tensor.

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.arange(1, 4).astype('float32')
            y = paddle.arange(1, 6).astype('float32')
            out = paddle.outer(x, y)
            print(out)
            #        ([[1, 2, 3, 4, 5],
            #         [2, 4, 6, 8, 10],
            #         [3, 6, 9, 12, 15]])


    """
    nx = x.reshape((-1, 1))
    ny = y.reshape((1, -1))

2137
    if in_dygraph_mode():
2138
        return _C_ops.matmul(nx, ny, False, False)
2139
    else:
Z
zhiboniu 已提交
2140

2141 2142 2143 2144 2145 2146
        def __check_input(x, y):
            var_names = {'x': x, 'y': y}
            for name, val in var_names.items():
                check_variable_and_dtype(
                    val, name, ['float16', 'float32', 'float64'], 'inner'
                )
Z
zhiboniu 已提交
2147

2148
        __check_input(nx, ny)
Z
zhiboniu 已提交
2149

2150 2151 2152 2153 2154 2155
        helper = LayerHelper('outer', **locals())
        out = helper.create_variable_for_type_inference(dtype=nx.dtype)
        helper.append_op(
            type='matmul_v2', inputs={'X': nx, 'Y': ny}, outputs={'Out': out}
        )
        return out
Z
zhiboniu 已提交
2156 2157


2158
def logsumexp(x, axis=None, keepdim=False, name=None):
2159
    r"""
2160
    Calculates the log of the sum of exponentials of ``x`` along ``axis`` .
2161

2162
    .. math::
2163
       logsumexp(x) = \log\sum exp(x)
2164

2165
    Args:
2166
        x (Tensor): The input Tensor with data type float16, float32 or float64, which
S
Shang Zhizhou 已提交
2167
            have no more than 4 dimensions.
2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183
        axis (int|list|tuple, optional): The axis along which to perform
            logsumexp calculations. ``axis`` should be int, list(int) or
            tuple(int). If ``axis`` is a list/tuple of dimension(s), logsumexp
            is calculated along all element(s) of ``axis`` . ``axis`` or
            element(s) of ``axis`` should be in range [-D, D), where D is the
            dimensions of ``x`` . If ``axis`` or element(s) of ``axis`` is
            less than 0, it works the same way as :math:`axis + D` . If
            ``axis`` is None, logsumexp is calculated along all elements of
            ``x``. Default is None.
        keepdim (bool, optional): Whether to reserve the reduced dimension(s)
            in the output Tensor. If ``keep_dim`` is True, the dimensions of
            the output Tensor is the same as ``x`` except in the reduced
            dimensions(it is of size 1 in this case). Otherwise, the shape of
            the output Tensor is squeezed in ``axis`` . Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
2184

2185
    Returns:
2186 2187
        Tensor, results of logsumexp along ``axis`` of ``x``, with the same data
        type as ``x``.
2188

2189
    Examples:
2190

2191
    .. code-block:: python
2192

2193 2194
        import paddle

2195
        x = paddle.to_tensor([[-1.5, 0., 2.], [3., 1.2, -2.4]])
2196 2197
        out1 = paddle.logsumexp(x) # [3.4691226]
        out2 = paddle.logsumexp(x, 1) # [2.15317821, 3.15684602]
2198 2199

    """
2200
    reduce_all, axis = _get_reduce_axis(axis, x)
2201

2202
    if in_dygraph_mode():
2203
        return _C_ops.logsumexp(x, axis, keepdim, reduce_all)
2204
    else:
2205 2206 2207
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'logsumexp'
        )
2208 2209 2210 2211 2212 2213

        helper = LayerHelper('logsumexp', **locals())
        attrs = {'axis': axis, 'keepdim': keepdim, 'reduce_all': reduce_all}
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='logsumexp', inputs={'X': x}, outputs={'Out': out}, attrs=attrs
2214
        )
2215
        return out
2216

S
swtkiwi 已提交
2217

2218 2219
def inverse(x, name=None):
    """
2220 2221 2222 2223 2224
    Takes the inverse of the square matrix. A square matrix is a matrix with
    the same number of rows and columns. The input can be a square matrix
    (2-D Tensor) or batches of square matrices.

    Args:
2225
        x (Tensor): The input tensor. The last two
2226 2227 2228
            dimensions should be equal. When the number of dimensions is
            greater than 2, it is treated as batches of square matrix. The data
            type can be float32 and float64.
2229
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
2230 2231

    Returns:
2232
        Tensor: A Tensor holds the inverse of x. The shape and data type
2233
                        is the same as x.
2234 2235 2236 2237 2238

    Examples:
        .. code-block:: python

            import paddle
2239 2240

            mat = paddle.to_tensor([[2, 0], [0, 2]], dtype='float32')
2241 2242
            inv = paddle.inverse(mat)
            print(inv) # [[0.5, 0], [0, 0.5]]
2243 2244

    """
2245
    if in_dygraph_mode():
W
wanghuancoder 已提交
2246
        return _C_ops.inverse(x)
2247
    else:
2248

2249 2250 2251 2252 2253 2254 2255 2256
        def _check_input(x):
            check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'inverse')
            if len(x.shape) < 2:
                raise ValueError(
                    "The input of inverse is expected to be a Tensor whose number "
                    "of dimensions is no less than 2. But reviced: %d, "
                    "x's shape: %s." % (len(x.shape), x.shape)
                )
2257

2258 2259 2260 2261 2262 2263 2264
        _check_input(x)
        helper = LayerHelper('inverse', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='inverse', inputs={'Input': [x]}, outputs={'Output': [out]}
        )
        return out
2265

2266

2267
def max(x, axis=None, keepdim=False, name=None):
2268
    """
S
swtkiwi 已提交
2269

2270
    Computes the maximum of tensor elements over the given axis.
2271

T
Tao Luo 已提交
2272 2273
    Note:
        The difference between max and amax is: If there are multiple maximum elements,
2274
        amax evenly distributes gradient between these equal values,
T
Tao Luo 已提交
2275 2276 2277
        while max propagates gradient to all of them.


2278
    Args:
2279 2280
        x (Tensor): A tensor, the data type is float32, float64, int32, int64.
        axis (int|list|tuple, optional): The axis along which the maximum is computed.
2281
            If :attr:`None`, compute the maximum over all elements of
N
Noel 已提交
2282
            `x` and return a Tensor with a single element,
2283 2284
            otherwise must be in the range :math:`[-x.ndim(x), x.ndim(x))`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
2285
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
2286
            output Tensor. The result tensor will have one fewer dimension
2287
            than the `x` unless :attr:`keepdim` is true, default
2288
            value is False.
2289
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
2290 2291

    Returns:
2292
        Tensor, results of maximum on the specified axis of input tensor,
2293
        it's data type is the same as `x`.
2294 2295 2296

    Examples:
        .. code-block:: python
2297

2298
            import paddle
2299

N
Noel 已提交
2300
            # data_x is a Tensor with shape [2, 4]
2301
            # the axis is a int element
2302
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
2303
                                  [0.1, 0.2, 0.6, 0.7]],
2304
                                 dtype='float64', stop_gradient=False)
2305
            result1 = paddle.max(x)
2306
            result1.backward()
2307
            print(result1, x.grad)
2308 2309 2310
            #[0.9], [[0., 0., 0., 1.], [0., 0., 0., 0.]]

            x.clear_grad()
2311
            result2 = paddle.max(x, axis=0)
2312
            result2.backward()
2313
            print(result2, x.grad)
2314 2315 2316
            #[0.2, 0.3, 0.6, 0.9], [[1., 1., 0., 1.], [0., 0., 1., 0.]]

            x.clear_grad()
2317
            result3 = paddle.max(x, axis=-1)
2318
            result3.backward()
2319
            print(result3, x.grad)
2320 2321 2322
            #[0.9, 0.7], [[0., 0., 0., 1.], [0., 0., 0., 1.]]

            x.clear_grad()
2323
            result4 = paddle.max(x, axis=1, keepdim=True)
2324
            result4.backward()
2325
            print(result4, x.grad)
2326
            #[[0.9], [0.7]], [[0., 0., 0., 1.], [0., 0., 0., 1.]]
2327

N
Noel 已提交
2328
            # data_y is a Tensor with shape [2, 2, 2]
2329
            # the axis is list
2330
            y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]],
2331 2332
                                  [[5.0, 6.0], [7.0, 8.0]]],
                                 dtype='float64', stop_gradient=False)
2333
            result5 = paddle.max(y, axis=[1, 2])
2334
            result5.backward()
2335
            print(result5, y.grad)
2336 2337 2338
            #[4., 8.], [[[0., 0.], [0., 1.]], [[0., 0.], [0., 1.]]]

            y.clear_grad()
2339
            result6 = paddle.max(y, axis=[0, 1])
2340
            result6.backward()
2341
            print(result6, y.grad)
2342
            #[7., 8.], [[[0., 0.], [0., 0.]], [[0., 0.], [1., 1.]]]
2343 2344
    """

2345
    if in_dygraph_mode():
2346
        return _C_ops.max(x, axis, keepdim)
2347 2348 2349 2350 2351
    else:
        reduce_all, axis = _get_reduce_axis_with_tensor(axis, x)
        helper = LayerHelper('max', **locals())
        check_variable_and_dtype(
            x, 'x', ['float32', 'float64', 'int32', 'int64'], 'max'
2352
        )
2353 2354
        if not isinstance(axis, Variable) and paddle.utils._contain_var(axis):
            axis = paddle.utils._convert_to_tensor_list(axis)
2355

2356 2357 2358 2359 2360 2361 2362 2363
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='reduce_max',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all},
        )
        return out
2364

2365

2366
def min(x, axis=None, keepdim=False, name=None):
2367
    """
S
swtkiwi 已提交
2368

2369
    Computes the minimum of tensor elements over the given axis
2370

T
Tao Luo 已提交
2371 2372
    Note:
        The difference between min and amin is: If there are multiple minimum elements,
2373
        amin evenly distributes gradient between these equal values,
T
Tao Luo 已提交
2374 2375
        while min propagates gradient to all of them.

2376
    Args:
2377 2378
        x (Tensor): A tensor, the data type is float32, float64, int32, int64.
        axis (int|list|tuple, optional): The axis along which the minimum is computed.
2379
            If :attr:`None`, compute the minimum over all elements of
N
Noel 已提交
2380
            `x` and return a Tensor with a single element,
2381 2382
            otherwise must be in the range :math:`[-x.ndim, x.ndim)`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
2383
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
2384
            output Tensor. The result tensor will have one fewer dimension
2385
            than the `x` unless :attr:`keepdim` is true, default
2386
            value is False.
2387
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
2388

2389
    Returns:
2390
        Tensor, results of minimum on the specified axis of input tensor,
2391
        it's data type is the same as input's Tensor.
2392

2393 2394 2395
    Examples:
        .. code-block:: python

2396
            import paddle
2397

2398
            # data_x is a Tensor with shape [2, 4]
2399
            # the axis is a int element
2400
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
2401
                                  [0.1, 0.2, 0.6, 0.7]],
2402
                                 dtype='float64', stop_gradient=False)
2403
            result1 = paddle.min(x)
2404
            result1.backward()
2405
            print(result1, x.grad)
2406 2407 2408
            #[0.1], [[0., 0., 0., 0.], [1., 0., 0., 0.]]

            x.clear_grad()
2409
            result2 = paddle.min(x, axis=0)
2410
            result2.backward()
2411
            print(result2, x.grad)
2412 2413 2414
            #[0.1, 0.2, 0.5, 0.7], [[0., 0., 1., 0.], [1., 1., 0., 1.]]

            x.clear_grad()
2415
            result3 = paddle.min(x, axis=-1)
2416
            result3.backward()
2417
            print(result3, x.grad)
2418 2419 2420
            #[0.2, 0.1], [[1., 0., 0., 0.], [1., 0., 0., 0.]]

            x.clear_grad()
2421
            result4 = paddle.min(x, axis=1, keepdim=True)
2422
            result4.backward()
2423
            print(result4, x.grad)
2424
            #[[0.2], [0.1]], [[1., 0., 0., 0.], [1., 0., 0., 0.]]
2425

2426
            # data_y is a Tensor with shape [2, 2, 2]
2427
            # the axis is list
2428
            y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]],
2429 2430
                                  [[5.0, 6.0], [7.0, 8.0]]],
                                 dtype='float64', stop_gradient=False)
2431
            result5 = paddle.min(y, axis=[1, 2])
2432
            result5.backward()
2433
            print(result5, y.grad)
2434 2435 2436
            #[1., 5.], [[[1., 0.], [0., 0.]], [[1., 0.], [0., 0.]]]

            y.clear_grad()
2437
            result6 = paddle.min(y, axis=[0, 1])
2438
            result6.backward()
2439
            print(result6, y.grad)
2440
            #[1., 2.], [[[1., 1.], [0., 0.]], [[0., 0.], [0., 0.]]]
2441
    """
2442

2443
    if in_dygraph_mode():
2444
        return _C_ops.min(x, axis, keepdim)
2445 2446 2447 2448 2449
    else:
        reduce_all, axis = _get_reduce_axis_with_tensor(axis, x)
        helper = LayerHelper('min', **locals())
        check_variable_and_dtype(
            x, 'x', ['float32', 'float64', 'int32', 'int64'], 'min'
2450
        )
2451

2452 2453 2454 2455 2456 2457 2458 2459
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='reduce_min',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all},
        )
        return out
2460

2461

T
Tao Luo 已提交
2462 2463 2464 2465 2466 2467
def amax(x, axis=None, keepdim=False, name=None):
    """
    Computes the maximum of tensor elements over the given axis.

    Note:
        The difference between max and amax is: If there are multiple maximum elements,
2468
        amax evenly distributes gradient between these equal values,
T
Tao Luo 已提交
2469 2470 2471
        while max propagates gradient to all of them.

    Args:
2472
        x (Tensor): A tensor, the data type is float32, float64, int32, int64,
2473
            the dimension is no more than 4.
2474
        axis (int|list|tuple, optional): The axis along which the maximum is computed.
T
Tao Luo 已提交
2475 2476 2477 2478
            If :attr:`None`, compute the maximum over all elements of
            `x` and return a Tensor with a single element,
            otherwise must be in the range :math:`[-x.ndim(x), x.ndim(x))`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
2479
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
T
Tao Luo 已提交
2480 2481 2482
            output Tensor. The result tensor will have one fewer dimension
            than the `x` unless :attr:`keepdim` is true, default
            value is False.
2483
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
T
Tao Luo 已提交
2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496

    Returns:
        Tensor, results of maximum on the specified axis of input tensor,
        it's data type is the same as `x`.

    Examples:
        .. code-block:: python

            import paddle
            # data_x is a Tensor with shape [2, 4] with multiple maximum elements
            # the axis is a int element

            x = paddle.to_tensor([[0.1, 0.9, 0.9, 0.9],
2497
                                  [0.9, 0.9, 0.6, 0.7]],
T
Tao Luo 已提交
2498
                                 dtype='float64', stop_gradient=False)
2499 2500
            # There are 5 maximum elements:
            # 1) amax evenly distributes gradient between these equal values,
T
Tao Luo 已提交
2501
            #    thus the corresponding gradients are 1/5=0.2;
2502
            # 2) while max propagates gradient to all of them,
T
Tao Luo 已提交
2503
            #    thus the corresponding gradient are 1.
T
Tao Luo 已提交
2504 2505
            result1 = paddle.amax(x)
            result1.backward()
2506
            print(result1, x.grad)
T
Tao Luo 已提交
2507 2508
            #[0.9], [[0., 0.2, 0.2, 0.2], [0.2, 0.2, 0., 0.]]

T
Tao Luo 已提交
2509 2510 2511
            x.clear_grad()
            result1_max = paddle.max(x)
            result1_max.backward()
2512
            print(result1_max, x.grad)
T
Tao Luo 已提交
2513 2514 2515 2516
            #[0.9], [[0., 1.0, 1.0, 1.0], [1.0, 1.0, 0., 0.]]

            ###############################

T
Tao Luo 已提交
2517 2518 2519
            x.clear_grad()
            result2 = paddle.amax(x, axis=0)
            result2.backward()
2520
            print(result2, x.grad)
T
Tao Luo 已提交
2521 2522 2523 2524 2525
            #[0.9, 0.9, 0.9, 0.9], [[0., 0.5, 1., 1.], [1., 0.5, 0., 0.]]

            x.clear_grad()
            result3 = paddle.amax(x, axis=-1)
            result3.backward()
2526
            print(result3, x.grad)
T
Tao Luo 已提交
2527 2528 2529 2530 2531
            #[0.9, 0.9], [[0., 0.3333, 0.3333, 0.3333], [0.5, 0.5, 0., 0.]]

            x.clear_grad()
            result4 = paddle.amax(x, axis=1, keepdim=True)
            result4.backward()
2532
            print(result4, x.grad)
T
Tao Luo 已提交
2533 2534 2535
            #[[0.9], [0.9]], [[0., 0.3333, 0.3333, 0.3333.], [0.5, 0.5, 0., 0.]]

            # data_y is a Tensor with shape [2, 2, 2]
2536
            # the axis is list
T
Tao Luo 已提交
2537 2538 2539 2540 2541
            y = paddle.to_tensor([[[0.1, 0.9], [0.9, 0.9]],
                                  [[0.9, 0.9], [0.6, 0.7]]],
                                 dtype='float64', stop_gradient=False)
            result5 = paddle.amax(y, axis=[1, 2])
            result5.backward()
2542
            print(result5, y.grad)
T
Tao Luo 已提交
2543 2544 2545 2546 2547
            #[0.9., 0.9], [[[0., 0.3333], [0.3333, 0.3333]], [[0.5, 0.5], [0., 1.]]]

            y.clear_grad()
            result6 = paddle.amax(y, axis=[0, 1])
            result6.backward()
2548
            print(result6, y.grad)
T
Tao Luo 已提交
2549 2550
            #[0.9., 0.9], [[[0., 0.3333], [0.5, 0.3333]], [[0.5, 0.3333], [1., 1.]]]
    """
2551
    if in_dygraph_mode():
2552
        return _C_ops.amax(x, axis, keepdim)
2553

2554 2555 2556 2557 2558
    else:
        reduce_all, axis = _get_reduce_axis(axis, x)
        helper = LayerHelper('amax', **locals())
        check_variable_and_dtype(
            x, 'x', ['float32', 'float64', 'int32', 'int64'], 'amax'
2559
        )
T
Tao Luo 已提交
2560

2561 2562 2563 2564 2565 2566 2567 2568
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='reduce_amax',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all},
        )
        return out
T
Tao Luo 已提交
2569

2570

T
Tao Luo 已提交
2571 2572 2573 2574 2575 2576 2577
def amin(x, axis=None, keepdim=False, name=None):
    """

    Computes the minimum of tensor elements over the given axis

    Note:
        The difference between min and amin is: If there are multiple minimum elements,
2578
        amin evenly distributes gradient between these equal values,
T
Tao Luo 已提交
2579 2580 2581
        while min propagates gradient to all of them.

    Args:
2582
        x (Tensor): A tensor, the data type is float32, float64, int32, int64,
2583
            the dimension is no more than 4.
2584
        axis (int|list|tuple, optional): The axis along which the minimum is computed.
T
Tao Luo 已提交
2585 2586 2587 2588
            If :attr:`None`, compute the minimum over all elements of
            `x` and return a Tensor with a single element,
            otherwise must be in the range :math:`[-x.ndim, x.ndim)`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
2589
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
T
Tao Luo 已提交
2590 2591 2592
            output Tensor. The result tensor will have one fewer dimension
            than the `x` unless :attr:`keepdim` is true, default
            value is False.
2593
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
T
Tao Luo 已提交
2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606

    Returns:
        Tensor, results of minimum on the specified axis of input tensor,
        it's data type is the same as input's Tensor.

    Examples:
        .. code-block:: python

            import paddle
            # data_x is a Tensor with shape [2, 4] with multiple minimum elements
            # the axis is a int element

            x = paddle.to_tensor([[0.2, 0.1, 0.1, 0.1],
2607
                                  [0.1, 0.1, 0.6, 0.7]],
T
Tao Luo 已提交
2608
                                 dtype='float64', stop_gradient=False)
2609 2610
            # There are 5 minimum elements:
            # 1) amin evenly distributes gradient between these equal values,
T
Tao Luo 已提交
2611
            #    thus the corresponding gradients are 1/5=0.2;
2612
            # 2) while min propagates gradient to all of them,
T
Tao Luo 已提交
2613
            #    thus the corresponding gradient are 1.
T
Tao Luo 已提交
2614 2615
            result1 = paddle.amin(x)
            result1.backward()
2616
            print(result1, x.grad)
T
Tao Luo 已提交
2617 2618
            #[0.1], [[0., 0.2, 0.2, 0.2], [0.2, 0.2, 0., 0.]]

T
Tao Luo 已提交
2619 2620 2621
            x.clear_grad()
            result1_min = paddle.min(x)
            result1_min.backward()
2622
            print(result1_min, x.grad)
T
Tao Luo 已提交
2623 2624 2625 2626
            #[0.1], [[0., 1.0, 1.0, 1.0], [1.0, 1.0, 0., 0.]]

            ###############################

T
Tao Luo 已提交
2627 2628 2629
            x.clear_grad()
            result2 = paddle.amin(x, axis=0)
            result2.backward()
2630
            print(result2, x.grad)
T
Tao Luo 已提交
2631 2632 2633 2634 2635
            #[0.1, 0.1, 0.1, 0.1], [[0., 0.5, 1., 1.], [1., 0.5, 0., 0.]]

            x.clear_grad()
            result3 = paddle.amin(x, axis=-1)
            result3.backward()
2636
            print(result3, x.grad)
T
Tao Luo 已提交
2637 2638 2639 2640 2641
            #[0.1, 0.1], [[0., 0.3333, 0.3333, 0.3333], [0.5, 0.5, 0., 0.]]

            x.clear_grad()
            result4 = paddle.amin(x, axis=1, keepdim=True)
            result4.backward()
2642
            print(result4, x.grad)
T
Tao Luo 已提交
2643 2644 2645
            #[[0.1], [0.1]], [[0., 0.3333, 0.3333, 0.3333.], [0.5, 0.5, 0., 0.]]

            # data_y is a Tensor with shape [2, 2, 2]
2646
            # the axis is list
T
Tao Luo 已提交
2647 2648 2649 2650 2651
            y = paddle.to_tensor([[[0.2, 0.1], [0.1, 0.1]],
                                  [[0.1, 0.1], [0.6, 0.7]]],
                                 dtype='float64', stop_gradient=False)
            result5 = paddle.amin(y, axis=[1, 2])
            result5.backward()
2652
            print(result5, y.grad)
T
Tao Luo 已提交
2653 2654 2655 2656 2657
            #[0.1., 0.1], [[[0., 0.3333], [0.3333, 0.3333]], [[0.5, 0.5], [0., 1.]]]

            y.clear_grad()
            result6 = paddle.amin(y, axis=[0, 1])
            result6.backward()
2658
            print(result6, y.grad)
T
Tao Luo 已提交
2659 2660
            #[0.1., 0.1], [[[0., 0.3333], [0.5, 0.3333]], [[0.5, 0.3333], [1., 1.]]]
    """
2661
    if in_dygraph_mode():
2662
        return _C_ops.amin(x, axis, keepdim)
2663

2664 2665 2666 2667 2668
    else:
        reduce_all, axis = _get_reduce_axis(axis, x)
        helper = LayerHelper('amin', **locals())
        check_variable_and_dtype(
            x, 'x', ['float32', 'float64', 'int32', 'int64'], 'amin'
2669
        )
T
Tao Luo 已提交
2670

2671 2672 2673 2674 2675 2676 2677 2678
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='reduce_amin',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all},
        )
        return out
T
Tao Luo 已提交
2679

2680

W
WuHaobo 已提交
2681
def log1p(x, name=None):
2682
    r"""
2683
    Calculates the natural log of the given input tensor, element-wise.
N
Noel 已提交
2684

2685
    .. math::
2686
        Out = \ln(x+1)
S
Steffy-zxf 已提交
2687

2688
    Args:
2689
        x (Tensor): Input Tensor. Must be one of the following types: float16, float32, float64.
2690
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
2691

2692
    Returns:
S
Steffy-zxf 已提交
2693
        Tensor, the natural log of the input Tensor computed element-wise.
2694

2695 2696
    Examples:
        .. code-block:: python
S
Steffy-zxf 已提交
2697

2698
            import paddle
S
Steffy-zxf 已提交
2699 2700 2701 2702

            data = paddle.to_tensor([[0], [1]], dtype='float32')
            res = paddle.log1p(data)
            # [[0.], [0.6931472]]
2703 2704
    """

2705
    if in_dygraph_mode():
W
wanghuancoder 已提交
2706
        return _C_ops.log1p(x)
2707
    else:
2708 2709 2710
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], "log1p"
        )
2711 2712 2713 2714 2715 2716
        inputs = {'X': [x]}
        helper = LayerHelper('log1p', **locals())
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(dtype)
        helper.append_op(type="log1p", inputs={"X": x}, outputs={"Out": out})
        return out
B
Bai Yifan 已提交
2717

2718

J
joejiong 已提交
2719
def log2(x, name=None):
2720
    r"""
J
joejiong 已提交
2721 2722 2723 2724
    Calculates the log to the base 2 of the given input tensor, element-wise.

    .. math::

2725
        Out = \log_2x
J
joejiong 已提交
2726 2727 2728

    Args:
        x (Tensor): Input tensor must be one of the following types: float32, float64.
2729
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
J
joejiong 已提交
2730 2731 2732 2733 2734 2735 2736 2737


    Returns:
        Tensor: The log to the base 2 of the input Tensor computed element-wise.

    Examples:

        .. code-block:: python
2738

J
joejiong 已提交
2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756
            import paddle

            # example 1: x is a float
            x_i = paddle.to_tensor([[1.0], [2.0]])
            res = paddle.log2(x_i) # [[0.], [1.0]]

            # example 2: x is float32
            x_i = paddle.full(shape=[1], fill_value=2, dtype='float32')
            paddle.to_tensor(x_i)
            res = paddle.log2(x_i)
            print(res) # [1.0]

            # example 3: x is float64
            x_i = paddle.full(shape=[1], fill_value=2, dtype='float64')
            paddle.to_tensor(x_i)
            res = paddle.log2(x_i)
            print(res) # [1.0]
    """
2757
    if in_dygraph_mode():
W
wanghuancoder 已提交
2758
        return _C_ops.log2(x)
2759 2760 2761 2762 2763 2764 2765 2766 2767 2768
    else:
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], "log2"
        )
        inputs = {'X': [x]}
        helper = LayerHelper('log2', **locals())
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(dtype)
        helper.append_op(type="log2", inputs={"X": x}, outputs={"Out": out})
        return out
W
WuHaobo 已提交
2769

J
joejiong 已提交
2770 2771

def log10(x, name=None):
2772
    r"""
J
joejiong 已提交
2773 2774 2775 2776
    Calculates the log to the base 10 of the given input tensor, element-wise.

    .. math::

2777
        Out = \log_10_x
J
joejiong 已提交
2778 2779 2780

    Args:
        x (Tensor): Input tensor must be one of the following types: float32, float64.
2781
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
J
joejiong 已提交
2782 2783 2784 2785 2786 2787 2788 2789


    Returns:
        Tensor: The log to the base 10 of the input Tensor computed element-wise.

    Examples:

        .. code-block:: python
2790

J
joejiong 已提交
2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808
            import paddle

            # example 1: x is a float
            x_i = paddle.to_tensor([[1.0], [10.0]])
            res = paddle.log10(x_i) # [[0.], [1.0]]

            # example 2: x is float32
            x_i = paddle.full(shape=[1], fill_value=10, dtype='float32')
            paddle.to_tensor(x_i)
            res = paddle.log10(x_i)
            print(res) # [1.0]

            # example 3: x is float64
            x_i = paddle.full(shape=[1], fill_value=10, dtype='float64')
            paddle.to_tensor(x_i)
            res = paddle.log10(x_i)
            print(res) # [1.0]
    """
2809
    if in_dygraph_mode():
W
wanghuancoder 已提交
2810
        return _C_ops.log10(x)
2811 2812 2813 2814 2815 2816 2817 2818 2819 2820
    else:
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], "log10"
        )
        inputs = {'X': [x]}
        helper = LayerHelper('log10', **locals())
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(dtype)
        helper.append_op(type="log10", inputs={"X": x}, outputs={"Out": out})
        return out
J
joejiong 已提交
2821 2822


Y
Yang Zhang 已提交
2823
def clip(x, min=None, max=None, name=None):
2824
    """
Y
Yang Zhang 已提交
2825
    This operator clip all elements in input into the range [ min, max ] and return
2826 2827 2828 2829
    a resulting tensor as the following equation:

    .. math::

2830
        Out = MIN(MAX(x, min), max)
2831 2832

    Args:
2833
        x (Tensor): An N-D Tensor with data type float16, float32, float64, int32 or int64.
2834
        min (float|int|Tensor, optional): The lower bound with type ``float`` , ``int`` or a ``Tensor``
2835
            with shape [1] and type ``int32``, ``float16``, ``float32``, ``float64``.
2836
        max (float|int|Tensor, optional): The upper bound with type ``float``, ``int`` or a ``Tensor``
2837
            with shape [1] and type ``int32``, ``float16``, ``float32``, ``float64``.
2838
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
2839 2840

    Returns:
Y
Yang Zhang 已提交
2841
        Tensor: A Tensor with the same data type and data shape as input.
2842 2843 2844 2845 2846

    Examples:
        .. code-block:: python

            import paddle
N
Noel 已提交
2847

2848
            x1 = paddle.to_tensor([[1.2, 3.5], [4.5, 6.4]], 'float32')
Y
Yang Zhang 已提交
2849 2850
            out1 = paddle.clip(x1, min=3.5, max=5.0)
            out2 = paddle.clip(x1, min=2.5)
2851
            print(out1)
Y
Yang Zhang 已提交
2852 2853
            # [[3.5, 3.5]
            # [4.5, 5.0]]
2854
            print(out2)
Y
Yang Zhang 已提交
2855 2856
            # [[2.5, 3.5]
            # [[4.5, 6.4]
2857 2858
    """

2859 2860 2861 2862 2863 2864 2865
    x_dtype = str(x.dtype)
    if x_dtype == 'paddle.int32':
        min_ = np.iinfo(np.int32).min
        max_ = np.iinfo(np.int32).max - 2**7
    elif x_dtype == 'paddle.int64':
        min_ = np.iinfo(np.int64).min
        max_ = np.iinfo(np.int64).max - 2**39
2866 2867 2868
    elif x_dtype == 'paddle.float16':
        min_ = float(np.finfo(np.float16).min)
        max_ = float(np.finfo(np.float16).max)
2869 2870 2871
    else:
        min_ = float(np.finfo(np.float32).min)
        max_ = float(np.finfo(np.float32).max)
2872

C
chentianyu03 已提交
2873 2874
    if in_dygraph_mode():
        if isinstance(min, Variable):
2875
            min = min.item(0)
C
chentianyu03 已提交
2876
        if isinstance(max, Variable):
2877
            max = max.item(0)
C
chentianyu03 已提交
2878 2879
        min = min_ if min is None else min
        max = max_ if max is None else max
2880
        return _C_ops.clip(x, min, max)
2881 2882 2883 2884 2885 2886 2887
    else:
        if min is not None:
            check_type(min, 'min', (float, int, Variable), 'clip')
            if isinstance(min, Variable):
                check_dtype(
                    min.dtype,
                    'min',
2888
                    ['float16', 'float32', 'float64', 'int32', 'uint16'],
2889 2890 2891 2892 2893 2894 2895 2896 2897
                    'clip',
                    '(When the type of min in clip is Variable.)',
                )
        if max is not None:
            check_type(max, 'max', (float, int, Variable), 'clip')
            if isinstance(max, Variable):
                check_dtype(
                    max.dtype,
                    'max',
2898
                    ['float16', 'float32', 'float64', 'int32', 'uint16'],
2899 2900 2901
                    'clip',
                    '(When the type of max in clip is Variable.)',
                )
C
chentianyu03 已提交
2902

2903
        check_variable_and_dtype(
2904 2905 2906 2907
            x,
            'x',
            ['float16', 'float32', 'float64', 'int32', 'int64', 'uint16'],
            'clip',
2908
        )
Y
Yang Zhang 已提交
2909

2910 2911
        inputs = {'X': x}
        attrs = {'min': min_, 'max': max_}
2912

2913 2914 2915 2916 2917
        if isinstance(min, Variable):
            min.stop_gradient = True
            inputs['Min'] = min
        elif min is not None:
            attrs['min'] = min
2918

2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931
        if isinstance(max, Variable):
            max.stop_gradient = True
            inputs['Max'] = max
        elif max is not None:
            attrs['max'] = max

        helper = LayerHelper('clip', **locals())
        output = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype('x')
        )
        helper.append_op(
            type='clip', inputs=inputs, outputs={'Out': [output]}, attrs=attrs
        )
2932

2933
        return output
F
Feiyu Chan 已提交
2934

W
WuHaobo 已提交
2935

2936 2937 2938 2939 2940 2941 2942 2943 2944
@inplace_apis_in_dygraph_only
def clip_(x, min=None, max=None, name=None):
    """
    Inplace version of ``clip`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_clip`.
    """
    fmin = float(np.finfo(np.float32).min)
    fmax = float(np.finfo(np.float32).max)
    if isinstance(min, Variable):
2945
        min = min.item(0)
2946
    if isinstance(max, Variable):
2947
        max = max.item(0)
2948 2949
    min = fmin if min is None else min
    max = fmax if max is None else max
C
chentianyu03 已提交
2950 2951

    if in_dygraph_mode():
2952
        return _C_ops.clip_(x, min, max)
C
chentianyu03 已提交
2953

2954

2955
def trace(x, offset=0, axis1=0, axis2=1, name=None):
L
Li Fuchen 已提交
2956
    """
S
swtkiwi 已提交
2957

2958
    Computes the sum along diagonals of the input tensor x.
2959 2960

    If ``x`` is 2D, returns the sum of diagonal.
L
Li Fuchen 已提交
2961

2962
    If ``x`` has larger dimensions, then returns an tensor of diagonals sum, diagonals be taken from
2963
    the 2D planes specified by axis1 and axis2. By default, the 2D planes formed by the first and second axes
2964
    of the input tensor x.
L
Li Fuchen 已提交
2965

2966
    The argument ``offset`` determines where diagonals are taken from input tensor x:
L
Li Fuchen 已提交
2967 2968 2969 2970

    - If offset = 0, it is the main diagonal.
    - If offset > 0, it is above the main diagonal.
    - If offset < 0, it is below the main diagonal.
2971
    - Note that if offset is out of input's shape indicated by axis1 and axis2, 0 will be returned.
2972

L
Li Fuchen 已提交
2973
    Args:
2974 2975 2976 2977 2978
        x (Tensor): The input tensor x. Must be at least 2-dimensional. The input data type should be float32, float64, int32, int64.
        offset (int, optional): Which diagonals in input tensor x will be taken. Default: 0 (main diagonals).
        axis1 (int, optional): The first axis with respect to take diagonal. Default: 0.
        axis2 (int, optional): The second axis with respect to take diagonal. Default: 1.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
L
Li Fuchen 已提交
2979 2980

    Returns:
2981
        Tensor: the output data type is the same as input data type.
L
Li Fuchen 已提交
2982 2983 2984 2985 2986

    Examples:
        .. code-block:: python

            import paddle
2987

2988 2989 2990
            case1 = paddle.randn([2, 3])
            case2 = paddle.randn([3, 10, 10])
            case3 = paddle.randn([3, 10, 5, 10])
2991 2992 2993
            data1 = paddle.trace(case1) # data1.shape = [1]
            data2 = paddle.trace(case2, offset=1, axis1=1, axis2=2) # data2.shape = [3]
            data3 = paddle.trace(case3, offset=-3, axis1=1, axis2=-1) # data2.shape = [3, 5]
L
Li Fuchen 已提交
2994
    """
2995

Z
zyfncg 已提交
2996
    def __check_input(x, offset, axis1, axis2):
2997 2998 2999 3000 3001 3002
        check_dtype(
            x.dtype,
            'Input',
            ['int32', 'int64', 'float16', 'float32', 'float64'],
            'trace',
        )
L
Li Fuchen 已提交
3003

3004
        input_shape = list(x.shape)
3005 3006 3007 3008
        assert len(input_shape) >= 2, (
            "The x must be at least 2-dimensional, "
            "But received Input x's dimensional: %s.\n" % len(input_shape)
        )
L
Li Fuchen 已提交
3009

3010 3011
        axis1_ = axis1 if axis1 >= 0 else len(input_shape) + axis1
        axis2_ = axis2 if axis2 >= 0 else len(input_shape) + axis2
L
Li Fuchen 已提交
3012

3013 3014
        assert (0 <= axis1_) and (axis1_ < len(input_shape)), (
            "The argument axis1 is out of range (expected to be in range of [%d, %d], but got %d).\n"
3015
            % (-(len(input_shape)), len(input_shape) - 1, axis1)
3016
        )
L
Li Fuchen 已提交
3017

3018 3019
        assert (0 <= axis2_) and (axis2_ < len(input_shape)), (
            "The argument axis2 is out of range (expected to be in range of [%d, %d], but got %d).\n"
3020
            % (-(len(input_shape)), len(input_shape) - 1, axis2)
3021
        )
L
Li Fuchen 已提交
3022

3023 3024 3025 3026
        assert axis1_ != axis2_, (
            "axis1 and axis2 cannot be the same axis."
            "But received axis1 = %d, axis2 = %d\n" % (axis1, axis2)
        )
L
Li Fuchen 已提交
3027

H
hong 已提交
3028
    if in_dygraph_mode():
3029
        return _C_ops.trace(x, offset, axis1, axis2)
3030 3031
    else:
        __check_input(x, offset, axis1, axis2)
H
hong 已提交
3032

3033 3034
        helper = LayerHelper('trace', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
L
Li Fuchen 已提交
3035

3036 3037 3038 3039 3040 3041 3042
        helper.append_op(
            type='trace',
            inputs={'Input': [x]},
            attrs={'offset': offset, 'axis1': axis1, 'axis2': axis2},
            outputs={'Out': [out]},
        )
        return out
L
Li Fuchen 已提交
3043

3044

3045 3046 3047 3048 3049
def diagonal(x, offset=0, axis1=0, axis2=1, name=None):
    """
    This OP computes the diagonals of the input tensor x.

    If ``x`` is 2D, returns the diagonal.
3050
    If ``x`` has larger dimensions, diagonals be taken from the 2D planes specified by axis1 and axis2.
3051 3052 3053 3054 3055 3056 3057
    By default, the 2D planes formed by the first and second axis of the input tensor x.

    The argument ``offset`` determines where diagonals are taken from input tensor x:

    - If offset = 0, it is the main diagonal.
    - If offset > 0, it is above the main diagonal.
    - If offset < 0, it is below the main diagonal.
3058

3059
    Args:
3060 3061 3062 3063 3064
        x (Tensor): The input tensor x. Must be at least 2-dimensional. The input data type should be bool, int32, int64, float16, float32, float64.
        offset (int, optional): Which diagonals in input tensor x will be taken. Default: 0 (main diagonals).
        axis1 (int, optional): The first axis with respect to take diagonal. Default: 0.
        axis2 (int, optional): The second axis with respect to take diagonal. Default: 1.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107

    Returns:
        Tensor: a partial view of input tensor in specify two dimensions, the output data type is the same as input data type.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.rand([2,2,3],'float32')
            print(x)
            # Tensor(shape=[2, 2, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [[[0.45661032, 0.03751532, 0.90191704],
            #          [0.43760979, 0.86177313, 0.65221709]],

            #         [[0.17020577, 0.00259554, 0.28954273],
            #          [0.51795638, 0.27325270, 0.18117726]]])

            out1 = paddle.diagonal(x)
            print(out1)
            #Tensor(shape=[3, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[0.45661032, 0.51795638],
            #        [0.03751532, 0.27325270],
            #        [0.90191704, 0.18117726]])

            out2 = paddle.diagonal(x, offset=0, axis1=2, axis2=1)
            print(out2)
            #Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[0.45661032, 0.86177313],
            #        [0.17020577, 0.27325270]])

            out3 = paddle.diagonal(x, offset=1, axis1=0, axis2=1)
            print(out3)
            #Tensor(shape=[3, 1], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[0.43760979],
            #        [0.86177313],
            #        [0.65221709]])

            out4 = paddle.diagonal(x, offset=0, axis1=1, axis2=2)
            print(out4)
            #Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[0.45661032, 0.86177313],
            #        [0.17020577, 0.27325270]])
3108

3109
    """
J
Jiabin Yang 已提交
3110
    if in_dygraph_mode():
3111
        return _C_ops.diagonal(x, offset, axis1, axis2)
J
Jiabin Yang 已提交
3112
    else:
W
wanghuancoder 已提交
3113

3114 3115 3116 3117 3118 3119 3120
        def __check_input(x, offset, axis1, axis2):
            check_dtype(
                x.dtype,
                'Input',
                ['bool', 'int32', 'int64', 'float16', 'float32', 'float64'],
                'diagonal',
            )
3121

3122 3123 3124 3125 3126
            input_shape = list(x.shape)
            assert len(input_shape) >= 2, (
                "The x must be at least 2-dimensional, "
                "But received Input x's dimensional: %s.\n" % len(input_shape)
            )
3127

3128 3129
            axis1_ = axis1 if axis1 >= 0 else len(input_shape) + axis1
            axis2_ = axis2 if axis2 >= 0 else len(input_shape) + axis2
3130

3131 3132 3133 3134
            assert axis1_ < len(input_shape), (
                "The argument axis1 is out of range (expected to be in range of [%d, %d], but got %d).\n"
                % (-(len(input_shape)), len(input_shape) - 1, axis1)
            )
3135

3136 3137 3138 3139
            assert axis2_ < len(input_shape), (
                "The argument axis2 is out of range (expected to be in range of [%d, %d], but got %d).\n"
                % (-(len(input_shape)), len(input_shape) - 1, axis2)
            )
3140

3141 3142 3143 3144
            assert axis1_ != axis2_, (
                "axis1 and axis2 cannot be the same axis."
                "But received axis1 = %d, axis2 = %d\n" % (axis1, axis2)
            )
3145

3146 3147 3148
        __check_input(x, offset, axis1, axis2)
        helper = LayerHelper('diagonal', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
3149

3150 3151 3152 3153 3154 3155 3156
        helper.append_op(
            type='diagonal',
            inputs={'Input': [x]},
            attrs={'offset': offset, 'axis1': axis1, 'axis2': axis2},
            outputs={'Out': [out]},
        )
        return out
3157 3158


W
WuHaobo 已提交
3159
def kron(x, y, name=None):
3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178
    r"""
    Compute the Kronecker product of two tensors, a
    composite tensor made of blocks of the second tensor scaled by the
    first.
    Assume that the rank of the two tensors, $X$ and $Y$
    are the same, if necessary prepending the smallest with ones. If the
    shape of $X$ is [$r_0$, $r_1$, ..., $r_N$] and the shape of $Y$ is
    [$s_0$, $s_1$, ..., $s_N$], then the shape of the output tensor is
    [$r_{0}s_{0}$, $r_{1}s_{1}$, ..., $r_{N}s_{N}$]. The elements are
    products of elements from $X$ and $Y$.
    The equation is:
    $$
    output[k_{0}, k_{1}, ..., k_{N}] = X[i_{0}, i_{1}, ..., i_{N}] *
    Y[j_{0}, j_{1}, ..., j_{N}]
    $$
    where
    $$
    k_{t} = i_{t} * s_{t} + j_{t}, t = 0, 1, ..., N
    $$
F
Feiyu Chan 已提交
3179 3180

    Args:
3181 3182
        x (Tensor): the fist operand of kron op, data type: float16, float32, float64, int32 or int64.
        y (Tensor): the second operand of kron op, data type: float16, float32, float64, int32 or int64. Its data type should be the same with x.
3183
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
F
Feiyu Chan 已提交
3184 3185

    Returns:
3186
        Tensor: The output of kron, data type: float16, float32, float64, int32 or int64. Its data is the same with x.
F
Feiyu Chan 已提交
3187 3188 3189

    Examples:
        .. code-block:: python
3190

3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201
            import paddle
            x = paddle.to_tensor([[1, 2], [3, 4]], dtype='int64')
            y = paddle.to_tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype='int64')
            out = paddle.kron(x, y)
            print(out)
            #        [[1, 2, 3, 2, 4, 6],
            #         [ 4,  5,  6,  8, 10, 12],
            #         [ 7,  8,  9, 14, 16, 18],
            #         [ 3,  6,  9,  4,  8, 12],
            #         [12, 15, 18, 16, 20, 24],
            #         [21, 24, 27, 28, 32, 36]])
F
Feiyu Chan 已提交
3202
    """
3203
    if in_dygraph_mode():
3204 3205 3206 3207 3208 3209 3210 3211 3212
        return _legacy_C_ops.kron(x, y)
    else:
        helper = LayerHelper('kron', **locals())
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'kron'
        )
        check_variable_and_dtype(
            y, 'y', ['float16', 'float32', 'float64', 'int32', 'int64'], 'kron'
        )
F
Feiyu Chan 已提交
3213

3214 3215 3216 3217 3218
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type="kron", inputs={"X": x, "Y": y}, outputs={"Out": out}
        )
        return out
3219 3220 3221 3222


def cumsum(x, axis=None, dtype=None, name=None):
    """
3223 3224
    The cumulative sum of the elements along a given axis.

3225
    Note:
3226
        The first element of the result is the same as the first element of the input.
3227 3228

    Args:
3229
        x (Tensor): The input tensor needed to be cumsumed.
3230
        axis (int, optional): The dimension to accumulate along. -1 means the last dimension. The default (None) is to compute the cumsum over the flattened array.
3231
        dtype (str, optional): The data type of the output tensor, can be float16, float32, float64, int32, int64. If specified, the input tensor is casted to dtype before the operation is performed. This is useful for preventing data type overflows. The default value is None.
3232 3233 3234
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
3235
        Tensor, the result of cumsum operator.
3236 3237 3238

    Examples:
        .. code-block:: python
3239

3240
            import paddle
3241

3242 3243
            data = paddle.arange(12)
            data = paddle.reshape(data, (3, 4))
3244 3245 3246 3247 3248 3249 3250 3251

            y = paddle.cumsum(data)
            # [ 0  1  3  6 10 15 21 28 36 45 55 66]

            y = paddle.cumsum(data, axis=0)
            # [[ 0  1  2  3]
            #  [ 4  6  8 10]
            #  [12 15 18 21]]
3252

3253 3254 3255 3256 3257 3258 3259
            y = paddle.cumsum(data, axis=-1)
            # [[ 0  1  3  6]
            #  [ 4  9 15 22]
            #  [ 8 17 27 38]]

            y = paddle.cumsum(data, dtype='float64')
            print(y.dtype)
3260
            # paddle.float64
3261 3262 3263 3264 3265 3266
    """
    if axis is None:
        flatten = True
    else:
        flatten = False
    if dtype is not None and x.dtype != convert_np_dtype_to_dtype_(dtype):
Z
zhiboniu 已提交
3267
        x = cast(x, dtype)
3268

H
hong 已提交
3269
    if in_dygraph_mode():
3270 3271
        if axis is None:
            axis = -1
3272
        return _C_ops.cumsum(x, axis, flatten, False, False)
3273
    else:
3274 3275 3276 3277 3278 3279
        check_variable_and_dtype(
            x,
            'x',
            ['float16', 'float32', 'float64', 'int32', 'int64'],
            'cumsum',
        )
3280 3281
        check_type(x, 'x', (Variable), 'cumsum')
        locals_var = locals().copy()
3282
        kwargs = {}
3283 3284 3285 3286 3287
        for name, val in locals_var.items():
            if val is not None:
                kwargs[name] = val
        _cum_sum_ = generate_layer_fn('cumsum')
        return _cum_sum_(**kwargs)
G
guofei 已提交
3288

3289 3290 3291

def logcumsumexp(x, axis=None, dtype=None, name=None):
    r"""
3292
    The logarithm of the cumulative summation of the exponentiation of the elements along a given axis.
3293 3294 3295 3296 3297 3298

    For summation index j given by `axis` and other indices i, the result is

    .. math::

        logcumsumexp(x)_{ij} = log \sum_{i=0}^{j}exp(x_{ij})
3299

3300 3301 3302 3303 3304 3305
    Note:
        The first element of the result is the same as the first element of the input.

    Args:
        x (Tensor): The input tensor.
        axis (int, optional): The dimension to do the operation along. -1 means the last dimension. The default (None) is to compute the cumsum over the flattened array.
3306
        dtype (str, optional): The data type of the output tensor, can be float16, float32, float64. If specified, the input tensor is casted to dtype before the operation is performed. This is useful for preventing data type overflows. The default value is None.
3307 3308 3309
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
3310
        Tensor, the result of logcumsumexp operator.
3311 3312 3313

    Examples:
        .. code-block:: python
3314

3315
            import paddle
3316

3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327
            data = paddle.arange(12, dtype='float64')
            data = paddle.reshape(data, (3, 4))

            y = paddle.logcumsumexp(data)
            # [ 0.         1.3132617  2.4076061  3.4401898  4.4519143  5.4561934
            #   6.4577627  7.4583397  8.458551   9.45863   10.458658  11.458669 ]

            y = paddle.logcumsumexp(data, axis=0)
            # [[ 0.        1.        2.        3.      ]
            #  [ 4.01815   5.01815   6.01815   7.01815 ]
            #  [ 8.018479  9.018479 10.018479 11.018479]]
3328

3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345
            y = paddle.logcumsumexp(data, axis=-1)
            # [[ 0.         1.3132617  2.4076061  3.4401898]
            #  [ 4.         5.3132615  6.407606   7.44019  ]
            #  [ 8.         9.313262  10.407606  11.440189 ]]

            y = paddle.logcumsumexp(data, dtype='float64')
            print(y.dtype)
            # paddle.float64
    """
    if axis is None:
        flatten = True
    else:
        flatten = False
    if dtype is not None and x.dtype != convert_np_dtype_to_dtype_(dtype):
        x = cast(x, dtype)

    if in_dygraph_mode():
3346 3347
        if axis is None:
            axis = -1
3348
        return _C_ops.logcumsumexp(x, axis, flatten, False, False)
3349 3350 3351 3352
    else:
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], "logcumsumexp"
        )
3353

3354 3355 3356 3357 3358 3359 3360 3361 3362
        helper = LayerHelper('logcumsumexp', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='logcumsumexp',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'axis': axis, 'flatten': flatten},
        )
        return out
3363 3364


H
hlygit66666 已提交
3365 3366 3367 3368
def cumprod(x, dim=None, dtype=None, name=None):
    """
    Compute the cumulative product of the input tensor x along a given dimension dim.

3369 3370
    Note:
        The first element of the result is the same as the first element of the input.
H
hlygit66666 已提交
3371 3372 3373

    Args:
        x (Tensor): the input tensor need to be cumproded.
Z
Zman 已提交
3374 3375 3376 3377 3378 3379 3380
        dim (int, optional): the dimension along which the input tensor will be accumulated. It need to be in the range of [-x.rank, x.rank),
                    where x.rank means the dimensions of the input tensor x and -1 means the last dimension.
        dtype (str, optional): The data type of the output tensor, can be float32, float64, int32, int64, complex64,
                    complex128. If specified, the input tensor is casted to dtype before the operation is performed.
                    This is useful for preventing data type overflows. The default value is None.
        name (str, optional): Name for the operation (optional, default is None). For more information,
                    please refer to :ref:`api_guide_Name`.
H
hlygit66666 已提交
3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416

    Returns:
        Tensor, the result of cumprod operator.

    Examples:
        .. code-block:: python

            import paddle

            data = paddle.arange(12)
            data = paddle.reshape(data, (3, 4))
            # [[ 0  1  2  3 ]
            #  [ 4  5  6  7 ]
            #  [ 8  9  10 11]]

            y = paddle.cumprod(data, dim=0)
            # [[ 0  1   2   3]
            #  [ 0  5  12  21]
            #  [ 0 45 120 231]]

            y = paddle.cumprod(data, dim=-1)
            # [[ 0   0   0    0]
            #  [ 4  20 120  840]
            #  [ 8  72 720 7920]]

            y = paddle.cumprod(data, dim=1, dtype='float64')
            # [[ 0.   0.   0.    0.]
            #  [ 4.  20. 120.  840.]
            #  [ 8.  72. 720. 7920.]]

            print(y.dtype)
            # paddle.float64

    """

    if dtype is not None and x.dtype != convert_np_dtype_to_dtype_(dtype):
Z
zhiboniu 已提交
3417
        x = cast(x, dtype)
H
hlygit66666 已提交
3418

3419
    if in_dygraph_mode():
3420
        return _C_ops.cumprod(x, dim)
3421 3422 3423 3424 3425 3426 3427 3428
    else:
        check_variable_and_dtype(
            x,
            "x",
            ['complex64', 'complex128', 'float32', 'float64', 'int32', 'int64'],
            'cumprod',
        )
        check_type(dim, 'dim', int, 'cumprod')
H
hlygit66666 已提交
3429

3430 3431 3432 3433 3434 3435 3436 3437 3438
        helper = LayerHelper('cumprod', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='cumprod',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'dim': dim},
        )
        return out
H
hlygit66666 已提交
3439

3440

J
Jack Zhou 已提交
3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456
def isfinite(x, name=None):
    """

    Return whether every element of input tensor is finite number or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is finite number or not.

    Examples:
        .. code-block:: python

            import paddle
N
Noel 已提交
3457

3458
            x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
C
Chen Long 已提交
3459
            out = paddle.isfinite(x)
N
Noel 已提交
3460
            print(out)  # [False  True  True False  True False False]
J
Jack Zhou 已提交
3461
    """
H
hong 已提交
3462
    if in_dygraph_mode():
3463
        return _C_ops.isfinite(x)
3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476
    else:
        helper = LayerHelper("isfinite_v2", **locals())
        check_variable_and_dtype(
            x,
            'x',
            ['float16', 'float32', 'float64', 'int32', 'int64'],
            'isfinite',
        )
        out = helper.create_variable_for_type_inference('bool')
        helper.append_op(
            type="isfinite_v2", inputs={"X": x}, outputs={"Out": out}
        )
        return out
J
Jack Zhou 已提交
3477

3478

J
Jack Zhou 已提交
3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494
def isinf(x, name=None):
    """

    Return whether every element of input tensor is `+/-INF` or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is `+/-INF` or not.

    Examples:
        .. code-block:: python

            import paddle
C
Chen Long 已提交
3495

3496
            x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
C
Chen Long 已提交
3497
            out = paddle.isinf(x)
N
Noel 已提交
3498
            print(out)  # [ True False False  True False False False]
J
Jack Zhou 已提交
3499
    """
H
hong 已提交
3500
    if in_dygraph_mode():
3501
        return _C_ops.isinf(x)
3502 3503 3504 3505 3506 3507 3508 3509
    else:
        helper = LayerHelper("isinf_v2", **locals())
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'isinf'
        )
        out = helper.create_variable_for_type_inference(dtype='bool')
        helper.append_op(type="isinf_v2", inputs={"X": x}, outputs={"Out": out})
        return out
J
Jack Zhou 已提交
3510

3511

J
Jack Zhou 已提交
3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527
def isnan(x, name=None):
    """

    Return whether every element of input tensor is `NaN` or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is `NaN` or not.

    Examples:
        .. code-block:: python

            import paddle
3528

3529
            x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
C
Chen Long 已提交
3530
            out = paddle.isnan(x)
N
Noel 已提交
3531
            print(out)  # [False False False False False  True  True]
J
Jack Zhou 已提交
3532
    """
H
hong 已提交
3533
    if in_dygraph_mode():
3534
        return _C_ops.isnan(x)
3535 3536 3537 3538 3539 3540 3541 3542
    else:
        helper = LayerHelper("isnan_v2", **locals())
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'isnan'
        )
        out = helper.create_variable_for_type_inference(dtype='bool')
        helper.append_op(type="isnan_v2", inputs={"X": x}, outputs={"Out": out})
        return out
J
Jack Zhou 已提交
3543 3544


G
guofei 已提交
3545 3546 3547 3548 3549
def prod(x, axis=None, keepdim=False, dtype=None, name=None):
    """
    Compute the product of tensor elements over the given axis.

    Args:
3550
        x (Tensor): The input tensor, its data type should be float32, float64, int32, int64.
3551 3552 3553
        axis (int|list|tuple, optional): The axis along which the product is computed. If :attr:`None`,
            multiply all elements of `x` and return a Tensor with a single element,
            otherwise must be in the range :math:`[-x.ndim, x.ndim)`. If :math:`axis[i]<0`,
G
guofei 已提交
3554
            the axis to reduce is :math:`x.ndim + axis[i]`. Default is None.
3555
        keepdim (bool, optional): Whether to reserve the reduced dimension in the output Tensor. The result
3556
            tensor will have one fewer dimension than the input unless `keepdim` is true. Default is False.
3557 3558 3559
        dtype (str|np.dtype, optional): The desired date type of returned tensor, can be float32, float64,
            int32, int64. If specified, the input tensor is casted to dtype before operator performed.
            This is very useful for avoiding data type overflows. The default value is None, the dtype
G
guofei 已提交
3560
            of output is the same as input Tensor `x`.
3561
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
G
guofei 已提交
3562 3563 3564

    Returns:
        Tensor, result of product on the specified dim of input tensor.
3565

G
guofei 已提交
3566 3567 3568 3569 3570 3571
    Examples:
        .. code-block:: python

            import paddle

            # the axis is a int element
3572 3573
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
                                  [0.1, 0.2, 0.6, 0.7]])
G
guofei 已提交
3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589
            out1 = paddle.prod(x)
            # [0.0002268]

            out2 = paddle.prod(x, -1)
            # [0.027  0.0084]

            out3 = paddle.prod(x, 0)
            # [0.02 0.06 0.3  0.63]

            out4 = paddle.prod(x, 0, keepdim=True)
            # [[0.02 0.06 0.3  0.63]]

            out5 = paddle.prod(x, 0, dtype='int64')
            # [0 0 0 0]

            # the axis is list
3590 3591
            y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]],
                                  [[5.0, 6.0], [7.0, 8.0]]])
G
guofei 已提交
3592 3593 3594 3595 3596 3597 3598 3599
            out6 = paddle.prod(y, [0, 1])
            # [105. 384.]

            out7 = paddle.prod(y, (1, 2))
            # [  24. 1680.]

    """
    if dtype is not None:
3600 3601 3602
        check_dtype(
            dtype, 'dtype', ['float32', 'float64', 'int32', 'int64'], 'prod'
        )
G
guofei 已提交
3603
        if x.dtype != convert_np_dtype_to_dtype_(dtype):
Z
zhiboniu 已提交
3604
            x = cast(x, dtype)
G
guofei 已提交
3605

3606
    reduce_all, axis = _get_reduce_axis_with_tensor(axis, x)
3607
    if in_dygraph_mode():
3608
        return _C_ops.prod(x, axis, keepdim, reduce_all)
3609 3610 3611 3612 3613 3614 3615
    else:
        helper = LayerHelper('reduce_prod', **locals())
        check_variable_and_dtype(
            x,
            'x/input',
            ['float32', 'float64', 'int32', 'int64'],
            'reduce_prod',
3616
        )
3617 3618 3619 3620 3621 3622 3623 3624 3625 3626
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype()
        )
        helper.append_op(
            type='reduce_prod',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'dim': axis, 'keep_dim': keepdim, 'reduce_all': reduce_all},
        )
        return out
W
WangXi 已提交
3627 3628 3629 3630


def sign(x, name=None):
    """
3631
    Returns sign of every element in `x`: 1 for positive, -1 for negative and 0 for zero.
W
WangXi 已提交
3632 3633

    Args:
3634 3635
        x (Tensor): The input tensor. The data type can be float16, float32 or float64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
W
WangXi 已提交
3636 3637 3638 3639 3640 3641 3642 3643 3644

    Returns:
        Tensor: The output sign tensor with identical shape and data type to the input :attr:`x`.

    Examples:
        .. code-block:: python

          import paddle

3645
          x = paddle.to_tensor([3.0, 0.0, -2.0, 1.7], dtype='float32')
W
WangXi 已提交
3646 3647 3648
          out = paddle.sign(x=x)
          print(out)  # [1.0, 0.0, -1.0, 1.0]
    """
H
hong 已提交
3649
    if in_dygraph_mode():
3650
        return _C_ops.sign(x)
3651 3652 3653 3654 3655 3656
    else:
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'sign'
        )
        helper = LayerHelper("sign", **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
H
hong 已提交
3657

3658
        helper.append_op(type='sign', inputs={'X': [x]}, outputs={'Out': [out]})
W
WangXi 已提交
3659

3660
        return out
W
WangXi 已提交
3661 3662 3663


def tanh(x, name=None):
3664
    r"""
W
WangXi 已提交
3665 3666 3667
    Tanh Activation Operator.

    .. math::
3668
        out = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}
W
WangXi 已提交
3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682

    Args:
        x (Tensor): Input of Tanh operator, an N-D Tensor, with data type float32, float64 or float16.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Output of Tanh operator, a Tensor with same data type and shape as input.

    Examples:

        .. code-block:: python

            import paddle

3683
            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
W
WangXi 已提交
3684
            out = paddle.tanh(x)
N
Noel 已提交
3685
            print(out)
W
WangXi 已提交
3686 3687
            # [-0.37994896 -0.19737532  0.09966799  0.29131261]
    """
H
hong 已提交
3688
    if in_dygraph_mode():
3689
        return _C_ops.tanh(x)
3690 3691 3692 3693 3694 3695 3696 3697 3698
    else:
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'tanh'
        )
        check_type(x, 'x', (Variable), 'tanh')
        helper = LayerHelper('tanh', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(type='tanh', inputs={'X': x}, outputs={'Out': out})
        return out
S
Steffy-zxf 已提交
3699

3700

3701
@inplace_apis_in_dygraph_only
3702 3703 3704 3705 3706
def tanh_(x, name=None):
    r"""
    Inplace version of ``tanh`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_tanh`.
    """
3707
    return _C_ops.tanh_(x)
3708 3709


S
Steffy-zxf 已提交
3710 3711
def increment(x, value=1.0, name=None):
    """
3712
    The API is usually used for control flow to increment the data of :attr:`x` by an amount :attr:`value`.
S
Steffy-zxf 已提交
3713 3714 3715 3716
    Notice that the number of elements in :attr:`x` must be equal to 1.

    Args:
        x (Tensor): A tensor that must always contain only one element, its data type supports float32, float64, int32 and int64.
3717
        value (float, optional): The amount to increment the data of :attr:`x`. Default: 1.0.
S
Steffy-zxf 已提交
3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the elementwise-incremented tensor with the same shape and data type as :attr:`x`.

    Examples:
        .. code-block:: python

            import paddle

            data = paddle.zeros(shape=[1], dtype='float32')
            counter = paddle.increment(data)
            # [1.]

    """
H
hong 已提交
3733
    if in_dygraph_mode():
3734
        return _C_ops.increment_(x, value)
3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746
    else:
        check_variable_and_dtype(
            x, 'x', ['float32', 'float64', 'int32', 'int64'], 'increment'
        )
        helper = LayerHelper("increment", **locals())
        helper.append_op(
            type='increment',
            inputs={'X': [x]},
            outputs={'Out': [x]},
            attrs={'step': float(value)},
        )
        return x
3747 3748 3749 3750


def all(x, axis=None, keepdim=False, name=None):
    """
3751
    Computes the ``logical and`` of tensor elements over the given dimension.
3752 3753 3754 3755 3756

    Args:
        x (Tensor): An N-D Tensor, the input data type should be `bool`.
        axis (int|list|tuple, optional): The dimensions along which the ``logical and`` is compute. If
            :attr:`None`, and all elements of :attr:`x` and return a
N
Noel 已提交
3757
            Tensor with a single element, otherwise must be in the
3758 3759 3760 3761 3762 3763
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
3764
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3765 3766 3767 3768 3769 3770 3771 3772

    Returns:
        Tensor: Results the ``logical and`` on the specified axis of input Tensor `x`,  it's data type is bool.

    Examples:
        .. code-block:: python

            import paddle
C
Chen Long 已提交
3773

N
Noel 已提交
3774
            # x is a bool Tensor with following elements:
3775 3776
            #    [[True, False]
            #     [True, True]]
C
Chen Long 已提交
3777
            x = paddle.to_tensor([[1, 0], [1, 1]], dtype='int32')
3778
            print(x)
S
syyxsxx 已提交
3779
            x = paddle.cast(x, 'bool')
C
Chen Long 已提交
3780

3781 3782 3783
            # out1 should be [False]
            out1 = paddle.all(x)  # [False]
            print(out1)
C
Chen Long 已提交
3784

3785 3786 3787
            # out2 should be [True, False]
            out2 = paddle.all(x, axis=0)  # [True, False]
            print(out2)
C
Chen Long 已提交
3788 3789

            # keepdim=False, out3 should be [False, True], out.shape should be (2,)
3790 3791
            out3 = paddle.all(x, axis=-1)  # [False, True]
            print(out3)
C
Chen Long 已提交
3792 3793 3794

            # keepdim=True, out4 should be [[False], [True]], out.shape should be (2,1)
            out4 = paddle.all(x, axis=1, keepdim=True) # [[False], [True]]
3795
            print(out4)
3796

3797
    """
3798
    if in_dygraph_mode():
3799
        return _C_ops.all(x, axis, keepdim)
3800 3801 3802 3803 3804 3805 3806 3807
    else:
        reduce_all, axis = _get_reduce_axis(axis, x)
        attrs = {
            'dim': axis,
            'keep_dim': keepdim,
            'reduce_all': reduce_all,
        }
        check_variable_and_dtype(x, 'x', ['bool'], 'all')
3808

3809
        check_type(axis, 'axis', (int, list, tuple, type(None)), 'all')
3810

3811 3812 3813 3814 3815 3816 3817 3818 3819
        helper = LayerHelper('all', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='reduce_all',
            inputs={'X': x},
            outputs={'Out': out},
            attrs=attrs,
        )
        return out
3820 3821 3822 3823


def any(x, axis=None, keepdim=False, name=None):
    """
C
Chen Long 已提交
3824
    Computes the ``logical or`` of tensor elements over the given dimension, and return the result.
3825 3826 3827 3828 3829

    Args:
        x (Tensor): An N-D Tensor, the input data type should be `bool`.
        axis (int|list|tuple, optional): The dimensions along which the ``logical or`` is compute. If
            :attr:`None`, and all elements of :attr:`x` and return a
N
Noel 已提交
3830
            Tensor with a single element, otherwise must be in the
3831 3832 3833 3834 3835 3836
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
3837
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3838 3839 3840 3841 3842 3843 3844 3845

    Returns:
        Tensor: Results the ``logical or`` on the specified axis of input Tensor `x`,  it's data type is bool.

    Examples:
        .. code-block:: python

            import paddle
C
Chen Long 已提交
3846 3847 3848

            x = paddle.to_tensor([[1, 0], [1, 1]], dtype='int32')
            x = paddle.assign(x)
3849
            print(x)
S
syyxsxx 已提交
3850
            x = paddle.cast(x, 'bool')
C
Chen Long 已提交
3851 3852 3853 3854
            # x is a bool Tensor with following elements:
            #    [[True, False]
            #     [True, True]]

3855 3856 3857
            # out1 should be [True]
            out1 = paddle.any(x)  # [True]
            print(out1)
C
Chen Long 已提交
3858

3859 3860
            # out2 should be [True, True]
            out2 = paddle.any(x, axis=0)  # [True, True]
3861
            print(out2)
C
Chen Long 已提交
3862 3863

            # keepdim=False, out3 should be [True, True], out.shape should be (2,)
3864
            out3 = paddle.any(x, axis=-1)  # [True, True]
3865
            print(out3)
C
Chen Long 已提交
3866 3867 3868

            # keepdim=True, result should be [[True], [True]], out.shape should be (2,1)
            out4 = paddle.any(x, axis=1, keepdim=True)  # [[True], [True]]
3869 3870
            print(out4)

3871
    """
3872
    if in_dygraph_mode():
3873
        return _C_ops.any(x, axis, keepdim)
3874 3875 3876 3877 3878 3879 3880
    else:
        reduce_all, axis = _get_reduce_axis(axis, x)
        attrs = {
            'dim': axis,
            'keep_dim': keepdim,
            'reduce_all': reduce_all,
        }
3881

3882
        check_variable_and_dtype(x, 'x', ['bool'], 'any')
3883

3884
        check_type(axis, 'axis', (int, list, tuple, type(None)), 'any')
3885

3886 3887 3888 3889 3890 3891 3892 3893 3894
        helper = LayerHelper('any', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='reduce_any',
            inputs={'X': x},
            outputs={'Out': out},
            attrs=attrs,
        )
        return out
L
Leo Chen 已提交
3895

3896

L
Leo Chen 已提交
3897 3898
def broadcast_shape(x_shape, y_shape):
    """
I
Infinity_lee 已提交
3899 3900 3901 3902 3903 3904
    The function returns the shape of doing operation with broadcasting on tensors of x_shape and y_shape.

    Note:
        If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
L
Leo Chen 已提交
3905 3906 3907 3908

    Args:
        x_shape (list[int]|tuple[int]): A shape of tensor.
        y_shape (list[int]|tuple[int]): A shape of tensor.
3909

L
Leo Chen 已提交
3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920

    Returns:
        list[int], the result shape.

    Examples:
        .. code-block:: python

            import paddle

            shape = paddle.broadcast_shape([2, 1, 3], [1, 3, 1])
            # [2, 3, 3]
3921

L
Leo Chen 已提交
3922 3923 3924 3925 3926 3927
            # shape = paddle.broadcast_shape([2, 1, 3], [3, 3, 1])
            # ValueError (terminated with error message).

    """

    return core.broadcast_shape(x_shape, y_shape)
3928

3929

3930 3931 3932 3933 3934
def conj(x, name=None):
    r"""
    This function computes the conjugate of the Tensor elementwisely.

    Args:
3935
        x (Tensor): The input Tensor which hold the complex numbers.
3936
            Optional data types are:float16, complex64, complex128, float32, float64, int32 or int64.
3937
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
3938 3939

    Returns:
C
Chen Long 已提交
3940
        out (Tensor): The conjugate of input. The shape and data type is the same with input. If the elements of tensor is real type such as float32, float64, int32 or int64, the out is the same with input.
3941 3942 3943 3944 3945

    Examples:
        .. code-block:: python

          import paddle
3946

3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957
          data=paddle.to_tensor([[1+1j, 2+2j, 3+3j], [4+4j, 5+5j, 6+6j]])
          #Tensor(shape=[2, 3], dtype=complex64, place=CUDAPlace(0), stop_gradient=True,
          #       [[(1+1j), (2+2j), (3+3j)],
          #        [(4+4j), (5+5j), (6+6j)]])

          conj_data=paddle.conj(data)
          #Tensor(shape=[2, 3], dtype=complex64, place=CUDAPlace(0), stop_gradient=True,
          #       [[(1-1j), (2-2j), (3-3j)],
          #        [(4-4j), (5-5j), (6-6j)]])

    """
H
hong 已提交
3958
    if in_dygraph_mode():
3959
        return _C_ops.conj(x)
3960 3961 3962 3963
    else:
        check_variable_and_dtype(
            x,
            "x",
3964 3965 3966 3967 3968 3969 3970 3971 3972
            [
                'complex64',
                'complex128',
                'float16',
                'float32',
                'float64',
                'int32',
                'int64',
            ],
3973 3974
            'conj',
        )
H
hong 已提交
3975

3976 3977 3978 3979
        helper = LayerHelper('conj', **locals())
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype()
        )
3980

3981 3982
        helper.append_op(type='conj', inputs={'X': x}, outputs={'Out': [out]})
        return out
3983

3984

Z
zyfncg 已提交
3985 3986 3987 3988 3989 3990 3991 3992 3993
def digamma(x, name=None):
    r"""
    Calculates the digamma of the given input tensor, element-wise.

    .. math::
        Out = \Psi(x) = \frac{ \Gamma^{'}(x) }{ \Gamma(x) }

    Args:
        x (Tensor): Input Tensor. Must be one of the following types: float32, float64.
3994
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Z
zyfncg 已提交
3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010
    Returns:
        Tensor, the digamma of the input Tensor, the shape and data type is the same with input.

    Examples:
        .. code-block:: python

            import paddle

            data = paddle.to_tensor([[1, 1.5], [0, -2.2]], dtype='float32')
            res = paddle.digamma(data)
            print(res)
            # Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[-0.57721591,  0.03648996],
            #        [ nan       ,  5.32286835]])
    """

J
Jiabin Yang 已提交
4011
    if in_dygraph_mode():
4012
        return _C_ops.digamma(x)
J
Jiabin Yang 已提交
4013
    else:
4014 4015 4016 4017 4018
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'digamma')
        helper = LayerHelper('digamma', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(type='digamma', inputs={'X': x}, outputs={'Out': out})
        return out
Z
zyfncg 已提交
4019

4020

4021 4022 4023 4024 4025 4026 4027 4028 4029
def lgamma(x, name=None):
    r"""
    Calculates the lgamma of the given input tensor, element-wise.

    This operator performs elementwise lgamma for input $X$.
    :math:`out = log\Gamma(x)`


    Args:
4030
        x (Tensor): Input Tensor. Must be one of the following types: float16, float32, float64, uint16.
4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the lgamma of the input Tensor, the shape and data type is the same with input.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
            out = paddle.lgamma(x)
            print(out)
            # [1.31452441, 1.76149750, 2.25271273, 1.09579802]
    """
    if in_dygraph_mode():
        return _C_ops.lgamma(x)
4048
    else:
4049 4050 4051
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64', 'uint16'], 'lgamma'
        )
4052 4053 4054 4055
        helper = LayerHelper('lgamma', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(type='lgamma', inputs={'X': x}, outputs={'Out': out})
        return out
4056 4057


4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079
def neg(x, name=None):
    """
    This function computes the negative of the Tensor elementwisely.

    Args:
        x (Tensor): Input of neg operator, an N-D Tensor, with data type float32, float64, int8, int16, int32, or int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): The negative of input Tensor. The shape and data type are the same with input Tensor.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
            out = paddle.neg(x)
            print(out)
            # [0.4 0.2 -0.1 -0.3]
    """

4080 4081 4082
    return scale(
        x, scale=-1.0, bias=0.0, bias_after_scale=True, act=None, name=name
    )
4083

R
ronnywang 已提交
4084

4085
def atan2(x, y, name=None):
R
ronnywang 已提交
4086
    r"""
4087
    Element-wise arctangent of x/y with consideration of the quadrant.
R
ronnywang 已提交
4088 4089 4090 4091

    Equation:
        .. math::

4092 4093 4094 4095 4096 4097 4098 4099
            atan2(x,y)=\left\{\begin{matrix}
            & tan^{-1}(\frac{x}{y}) & y > 0 \\
            & tan^{-1}(\frac{x}{y}) + \pi & x>=0, y < 0 \\
            & tan^{-1}(\frac{x}{y}) - \pi & x<0, y < 0 \\
            & +\frac{\pi}{2} & x>0, y = 0 \\
            & -\frac{\pi}{2} & x<0, y = 0 \\
            &\text{undefined} & x=0, y = 0
            \end{matrix}\right.
R
ronnywang 已提交
4100 4101

    Args:
4102 4103
        x (Tensor): An N-D Tensor, the data type is int32, int64, float16, float32, float64.
        y (Tensor): An N-D Tensor, must have the same type as `x`.
R
ronnywang 已提交
4104 4105 4106 4107 4108 4109 4110 4111
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input (The output data type is float64 when the input data type is int).

    Examples:
        .. code-block:: python

4112
            import paddle
R
ronnywang 已提交
4113

4114 4115 4116
            x = paddle.to_tensor([-1, +1, +1, -1]).astype('float32')
            #Tensor(shape=[4], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [-1,  1,  1, -1])
R
ronnywang 已提交
4117

4118 4119 4120
            y = paddle.to_tensor([-1, -1, +1, +1]).astype('float32')
            #Tensor(shape=[4], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [-1,  -1,  1, 1])
R
ronnywang 已提交
4121

4122 4123 4124
            out = paddle.atan2(x, y)
            #Tensor(shape=[4], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [-2.35619450,  2.35619450,  0.78539819, -0.78539819])
R
ronnywang 已提交
4125 4126 4127

    """

J
Jiabin Yang 已提交
4128
    if in_dygraph_mode():
4129
        return _C_ops.atan2(x, y)
R
ronnywang 已提交
4130
    else:
4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142
        check_variable_and_dtype(
            x,
            'x',
            ['int32', 'int64', 'float16', 'float32', 'float64'],
            'atan2',
        )
        check_variable_and_dtype(
            y,
            'y',
            ['int32', 'int64', 'float16', 'float32', 'float64'],
            'atan2',
        )
R
ronnywang 已提交
4143

4144 4145 4146 4147 4148
        helper = LayerHelper('atan2', **locals())
        inputs = {'X1': x, 'X2': y}
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(type='atan2', inputs=inputs, outputs={'Out': out})
        return out
A
andyjpaddle 已提交
4149

4150

W
wangzhen38 已提交
4151 4152 4153 4154 4155
def logit(x, eps=None, name=None):
    r"""
    This function generates a new tensor with the logit of the elements of input x. x is clamped to [eps, 1-eps] when eps is not zero. When eps is zero and x < 0 or x > 1, the function will yields NaN.

    .. math::
4156

W
wangzhen38 已提交
4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187
        logit(x) = ln(\frac{x}{1 - x})

    where

    .. math::

        x_i=
            \left\{\begin{array}{rcl}
                x_i & &\text{if } eps == Default \\
                eps & &\text{if } x_i < eps \\
                x_i & &\text{if } eps <= x_i <= 1-eps \\
                1-eps & &\text{if } x_i > 1-eps
            \end{array}\right.

    Args:
        x (Tensor): The input Tensor with data type float32, float64.
        eps (float, optional):  the epsilon for input clamp bound. Default is None.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out(Tensor): A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([0.2635, 0.0106, 0.2780, 0.2097, 0.8095])
            out1 = paddle.logit(x)
            print(out1)
4188
            # [-1.0277, -4.5365, -0.9544, -1.3269,  1.4468]
W
wangzhen38 已提交
4189 4190

    """
4191
    if eps is None:
W
wangzhen38 已提交
4192
        eps = 0.0
4193
    if in_dygraph_mode():
4194
        return _C_ops.logit(x, eps)
4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207
    else:
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'logit'
        )
        helper = LayerHelper("logit", **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='logit',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'eps': eps},
        )
        return out
W
wangzhen38 已提交
4208

4209

4210 4211 4212 4213 4214 4215 4216 4217 4218 4219
def lerp(x, y, weight, name=None):
    r"""
    Does a linear interpolation between x and y based on weight.

    Equation:
        .. math::

            lerp(x, y, weight) = x + weight * (y - x).

    Args:
4220 4221 4222
        x (Tensor): An N-D Tensor with starting points, the data type is float16, float32, float64.
        y (Tensor): An N-D Tensor with ending points, the data type is float16, float32, float64.
        weight (float|Tensor): The weight for the interpolation formula. When weight is Tensor, the data type is float16, float32, float64.
4223 4224 4225 4226 4227 4228 4229 4230 4231
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input.

    Example:
        .. code-block:: python

            import paddle
4232

4233 4234 4235
            x = paddle.arange(1., 5., dtype='float32')
            y = paddle.empty([4], dtype='float32')
            y.fill_(10.)
4236
            out = paddle.lerp(x, y, 0.5)
4237
            # out: [5.5, 6., 6.5, 7.]
4238 4239

    """
4240 4241
    if isinstance(weight, float):
        weight = paddle.full(shape=[], fill_value=weight, dtype=x.dtype)
H
hong 已提交
4242

4243
    if in_dygraph_mode():
4244
        return _C_ops.lerp(x, y, weight)
4245 4246
    else:
        check_variable_and_dtype(
4247 4248 4249 4250 4251 4252 4253
            x, 'x', ['float16', 'float32', 'float64'], 'lerp'
        )
        check_variable_and_dtype(
            y, 'y', ['float16', 'float32', 'float64'], 'lerp'
        )
        check_variable_and_dtype(
            weight, 'weight', ['float16', 'float32', 'float64'], 'lerp'
4254
        )
4255

4256 4257 4258 4259 4260
        helper = LayerHelper('lerp', **locals())
        inputs = {'X': x, 'Y': y, 'Weight': weight}
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(type='lerp', inputs=inputs, outputs={'Out': out})
        return out
4261

4262

4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275
@inplace_apis_in_dygraph_only
def lerp_(x, y, weight, name=None):
    r"""
    Inplace version of ``lerp`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_lerp`.
    """
    out_shape = broadcast_shape(x.shape, y.shape)
    check_type(weight, 'weight', (float, paddle.Tensor, Variable), 'lerp')
    if isinstance(weight, float):
        weight = paddle.to_tensor([weight], dtype=x.dtype)
    elif isinstance(weight, (paddle.Tensor, Variable)):
        out_shape = broadcast_shape(out_shape, weight.shape)
    if out_shape != x.shape:
4276
        raise ValueError(
4277 4278 4279 4280
            "The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation.".format(
                out_shape, x.shape
            )
        )
4281
    return _C_ops.lerp_(x, y, weight)
4282

4283

W
wuhuanzhou 已提交
4284 4285
def erfinv(x, name=None):
    r"""
4286
    The inverse error function of x. Please refer to :ref:`api_paddle_erf`
W
wuhuanzhou 已提交
4287 4288 4289 4290 4291 4292 4293 4294 4295 4296

        .. math::

            erfinv(erf(x)) = x.

    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
4297
        out (Tensor), an N-D Tensor, the shape and data type is the same with input.
W
wuhuanzhou 已提交
4298 4299 4300 4301 4302

    Example:
        .. code-block:: python

            import paddle
4303

W
wuhuanzhou 已提交
4304 4305 4306 4307 4308
            x = paddle.to_tensor([0, 0.5, -1.], dtype="float32")
            out = paddle.erfinv(x)
            # out: [0, 0.4769, -inf]

    """
H
hong 已提交
4309
    if in_dygraph_mode():
4310
        return _C_ops.erfinv(x)
4311 4312 4313 4314 4315 4316
    else:
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'erfinv')
        helper = LayerHelper('erfinv', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(type='erfinv', inputs={'X': x}, outputs={'Out': out})
        return out
W
wuhuanzhou 已提交
4317

4318

W
wuhuanzhou 已提交
4319 4320 4321 4322 4323 4324 4325
@inplace_apis_in_dygraph_only
def erfinv_(x, name=None):
    r"""
    Inplace version of ``erfinv`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_erfinv`.
    """
    check_type(x, 'x', (paddle.Tensor, Variable), 'erfinv')
4326
    return _C_ops.erfinv_(x)
W
wuhuanzhou 已提交
4327

4328

4329
def rad2deg(x, name=None):
4330
    r"""
4331
    Convert each of the elements of input x from angles in radians to degrees.
4332

4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348
    Equation:
        .. math::

            rad2deg(x)=180/ \pi * x

    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input (The output data type is float32 when the input data type is int).

    Examples:
        .. code-block:: python

            import paddle
4349
            import math
4350

4351 4352 4353 4354 4355 4356 4357
            x1 = paddle.to_tensor([3.142, -3.142, 6.283, -6.283, 1.570, -1.570])
            result1 = paddle.rad2deg(x1)
            print(result1)
            # Tensor(shape=[6], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [180.02334595, -180.02334595,  359.98937988, -359.98937988,
            #           9.95437622 , -89.95437622])

4358
            x2 = paddle.to_tensor(math.pi/2)
4359 4360 4361 4362
            result2 = paddle.rad2deg(x2)
            print(result2)
            # Tensor(shape=[1], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [90.])
4363

4364 4365 4366 4367 4368 4369 4370
            x3 = paddle.to_tensor(1)
            result3 = paddle.rad2deg(x3)
            print(result3)
            # Tensor(shape=[1], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [57.29578018])
    """
    rad2deg_scale = 180 / np.pi
4371 4372 4373
    if in_dygraph_mode():
        if convert_dtype(x.dtype) in ['int32', 'int64']:
            x = cast(x, dtype="float32")
4374
        return _C_ops.scale(x, rad2deg_scale, 0.0, True)
4375
    else:
4376 4377 4378
        check_variable_and_dtype(
            x, 'x', ['int32', 'int64', 'float32', 'float64'], 'rad2deg'
        )
4379 4380 4381
        helper = LayerHelper('rad2deg', **locals())
        out_cast = x
        if convert_dtype(x.dtype) in ['int32', 'int64']:
4382
            out_cast = helper.create_variable_for_type_inference(
4383 4384 4385 4386 4387 4388 4389 4390
                dtype=paddle.float32
            )
            helper.append_op(
                type='cast',
                inputs={'X': x},
                outputs={'Out': out_cast},
                attrs={'in_dtype': x.dtype, 'out_dtype': paddle.float32},
            )
4391
        out = helper.create_variable_for_type_inference(dtype=out_cast.dtype)
4392 4393 4394 4395 4396 4397
        helper.append_op(
            type='scale',
            inputs={'X': out_cast},
            outputs={'Out': out},
            attrs={'scale': rad2deg_scale},
        )
4398 4399
        return out

4400

4401
def deg2rad(x, name=None):
4402
    r"""
4403
    Convert each of the elements of input x from degrees to angles in radians.
4404

4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419
        .. math::

            deg2rad(x)=\pi * x / 180

    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input (The output data type is float32 when the input data type is int).

    Examples:
        .. code-block:: python

            import paddle
4420

4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434
            x1 = paddle.to_tensor([180.0, -180.0, 360.0, -360.0, 90.0, -90.0])
            result1 = paddle.deg2rad(x1)
            print(result1)
            # Tensor(shape=[6], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [3.14159274, -3.14159274,  6.28318548, -6.28318548,  1.57079637,
            #           -1.57079637])

            x2 = paddle.to_tensor(180)
            result2 = paddle.deg2rad(x2)
            print(result2)
            # Tensor(shape=[1], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [3.14159274])
    """
    deg2rad_scale = np.pi / 180.0
4435 4436 4437
    if in_dygraph_mode():
        if convert_dtype(x.dtype) in ['int32', 'int64']:
            x = cast(x, dtype="float32")
4438
        return _C_ops.scale(x, deg2rad_scale, 0.0, True)
4439
    else:
4440 4441 4442
        check_variable_and_dtype(
            x, 'x', ['int32', 'int64', 'float32', 'float64'], 'deg2rad'
        )
4443 4444 4445
        helper = LayerHelper('deg2rad', **locals())
        out_cast = x
        if convert_dtype(x.dtype) in ['int32', 'int64']:
4446
            out_cast = helper.create_variable_for_type_inference(
4447 4448 4449 4450 4451 4452 4453 4454
                dtype=paddle.float32
            )
            helper.append_op(
                type='cast',
                inputs={'X': x},
                outputs={'Out': out_cast},
                attrs={'in_dtype': x.dtype, 'out_dtype': paddle.float32},
            )
4455
        out = helper.create_variable_for_type_inference(dtype=out_cast.dtype)
4456 4457 4458 4459 4460 4461
        helper.append_op(
            type='scale',
            inputs={'X': out_cast},
            outputs={'Out': out},
            attrs={'scale': deg2rad_scale},
        )
4462
        return out
A
andyjpaddle 已提交
4463

4464

T
Tao Luo 已提交
4465 4466 4467 4468
def gcd(x, y, name=None):
    """
    Computes the element-wise greatest common divisor (GCD) of input |x| and |y|.
    Both x and y must have integer types.
4469

T
Tao Luo 已提交
4470 4471 4472
    Note:
        gcd(0,0)=0, gcd(0, y)=|y|

T
Tao Luo 已提交
4473 4474
        If x.shape != y.shape, they must be broadcastable to a common shape (which becomes the shape of the output).

T
Tao Luo 已提交
4475
    Args:
4476 4477
        x (Tensor): An N-D Tensor, the data type is int32,int64.
        y (Tensor): An N-D Tensor, the data type is int32,int64.
T
Tao Luo 已提交
4478 4479 4480 4481 4482 4483 4484 4485 4486
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the data type is the same with input.

    Examples:
        .. code-block:: python

            import paddle
4487

T
Tao Luo 已提交
4488 4489 4490 4491 4492 4493
            x1 = paddle.to_tensor(12)
            x2 = paddle.to_tensor(20)
            paddle.gcd(x1, x2)
            # Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [4])

T
Tao Luo 已提交
4494
            x3 = paddle.arange(6)
T
Tao Luo 已提交
4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506
            paddle.gcd(x3, x2)
            # Tensor(shape=[6], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [20, 1 , 2 , 1 , 4 , 5])

            x4 = paddle.to_tensor(0)
            paddle.gcd(x4, x2)
            # Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [20])

            paddle.gcd(x4, x4)
            # Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [0])
4507

T
Tao Luo 已提交
4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519
            x5 = paddle.to_tensor(-20)
            paddle.gcd(x1, x5)
            # Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [4])
    """
    shape = paddle.broadcast_shape(x.shape, y.shape)
    x = paddle.broadcast_to(x, shape)
    y = paddle.broadcast_to(y, shape)
    x = paddle.abs(x)
    y = paddle.abs(y)

    def _gcd_cond_fn(x, y):
4520
        return paddle.any(y != 0)
T
Tao Luo 已提交
4521 4522 4523 4524 4525

    def _gcd_body_fn(x, y):
        # paddle.mod will raise an error when any element of y is 0. To avoid
        # that, we change those zeros to ones. Their values don't matter because
        # they won't be used.
4526
        y_not_equal_0 = y != 0
T
Tao Luo 已提交
4527
        y_safe = paddle.where(y_not_equal_0, y, paddle.ones(y.shape, y.dtype))
4528 4529 4530 4531 4532 4533 4534 4535
        x, y = (
            paddle.where(y_not_equal_0, y, x),
            paddle.where(
                y_not_equal_0,
                paddle.mod(x, y_safe),
                paddle.zeros(y.shape, y.dtype),
            ),
        )
T
Tao Luo 已提交
4536 4537
        return (paddle.where(x < y, y, x), paddle.where(x < y, x, y))

4538
    if in_dygraph_mode():
T
Tao Luo 已提交
4539 4540 4541 4542 4543
        while _gcd_cond_fn(x, y):
            x, y = _gcd_body_fn(x, y)

        return x
    else:
T
Tao Luo 已提交
4544 4545
        check_variable_and_dtype(x, 'x', ['int32', 'int64'], 'gcd')
        check_variable_and_dtype(y, 'y', ['int32', 'int64'], 'gcd')
T
Tao Luo 已提交
4546 4547 4548
        out, _ = paddle.static.nn.while_loop(_gcd_cond_fn, _gcd_body_fn, [x, y])
        return out

4549

T
Tao Luo 已提交
4550 4551 4552 4553
def lcm(x, y, name=None):
    """
    Computes the element-wise least common multiple (LCM) of input |x| and |y|.
    Both x and y must have integer types.
4554

T
Tao Luo 已提交
4555 4556 4557
    Note:
        lcm(0,0)=0, lcm(0, y)=0

T
Tao Luo 已提交
4558 4559
        If x.shape != y.shape, they must be broadcastable to a common shape (which becomes the shape of the output).

T
Tao Luo 已提交
4560
    Args:
4561 4562
        x (Tensor): An N-D Tensor, the data type is int32,int64.
        y (Tensor): An N-D Tensor, the data type is int32,int64.
T
Tao Luo 已提交
4563 4564 4565 4566 4567 4568 4569 4570 4571
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the data type is the same with input.

    Examples:
        .. code-block:: python

            import paddle
4572

T
Tao Luo 已提交
4573 4574 4575 4576 4577 4578
            x1 = paddle.to_tensor(12)
            x2 = paddle.to_tensor(20)
            paddle.lcm(x1, x2)
            # Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [60])

T
Tao Luo 已提交
4579
            x3 = paddle.arange(6)
T
Tao Luo 已提交
4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591
            paddle.lcm(x3, x2)
            # Tensor(shape=[6], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [0, 20, 20, 60, 20, 20])

            x4 = paddle.to_tensor(0)
            paddle.lcm(x4, x2)
            # Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [0])

            paddle.lcm(x4, x4)
            # Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [0])
4592

T
Tao Luo 已提交
4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603
            x5 = paddle.to_tensor(-20)
            paddle.lcm(x1, x5)
            # Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [60])
    """
    d = paddle.gcd(x, y)
    # paddle.mod will raise an error when any element of y is 0. To avoid
    # that, we change those zeros to ones. Their values don't matter because
    # they won't be used.
    d_equal_0 = paddle.equal(d, 0)
    d_safe = paddle.where(d_equal_0, paddle.ones(d.shape, d.dtype), d)
4604 4605 4606
    out = paddle.where(
        d_equal_0, paddle.zeros(d.shape, d.dtype), paddle.abs(x * y) // d_safe
    )
T
Tao Luo 已提交
4607 4608
    return out

4609

A
andyjpaddle 已提交
4610 4611 4612
def diff(x, n=1, axis=-1, prepend=None, append=None, name=None):
    r"""
    Computes the n-th forward difference along the given axis.
4613
    The first-order differences is computed by using the following formula:
A
andyjpaddle 已提交
4614 4615 4616 4617

    .. math::

        out[i] = x[i+1] - x[i]
4618 4619

    Higher-order differences are computed by using paddle.diff() recursively.
A
andyjpaddle 已提交
4620 4621 4622
    Only n=1 is currently supported.

    Args:
4623
        x (Tensor): The input tensor to compute the forward difference on, the data type is float16, float32, float64, bool, int32, int64.
4624
        n (int, optional): The number of times to recursively compute the difference.
A
andyjpaddle 已提交
4625
                          Only support n=1. Default:1
4626 4627
        axis (int, optional): The axis to compute the difference along. Default:-1
        prepend (Tensor, optional): The tensor to prepend to input along axis before computing the difference.
4628
                                   It's dimensions must be equivalent to that of x,
A
andyjpaddle 已提交
4629
                                   and its shapes must match x's shape except on axis.
4630 4631
        append (Tensor, optional): The tensor to append to input along axis before computing the difference,
                                   It's dimensions must be equivalent to that of x,
A
andyjpaddle 已提交
4632
                                   and its shapes must match x's shape except on axis.
4633
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
4634

A
andyjpaddle 已提交
4635 4636 4637 4638 4639 4640 4641
    Returns:
        Tensor: The output tensor with same dtype with x.

    Examples:
        .. code-block:: python

            import paddle
4642

A
andyjpaddle 已提交
4643 4644 4645 4646 4647 4648 4649 4650 4651
            x = paddle.to_tensor([1, 4, 5, 2])
            out = paddle.diff(x)
            print(out)
            # out:
            # [3, 1, -3]

            y = paddle.to_tensor([7, 9])
            out = paddle.diff(x, append=y)
            print(out)
4652
            # out:
A
andyjpaddle 已提交
4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673
            # [3, 1, -3, 5, 2]

            z = paddle.to_tensor([[1, 2, 3], [4, 5, 6]])
            out = paddle.diff(z, axis=0)
            print(out)
            # out:
            # [[3, 3, 3]]
            out = paddle.diff(z, axis=1)
            print(out)
            # out:
            # [[1, 1], [1, 1]]
    """

    if axis < 0:
        axis = axis + len(x.shape)
    if axis > len(x.shape):
        axis = len(x.shape)
    if axis < 0:
        axis = 0
    dtype = x.dtype
    axes = [axis]
4674
    infer_flags = [1 for i in range(len(axes))]
4675
    if in_dygraph_mode():
A
andyjpaddle 已提交
4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687
        has_pend = False
        input_list = []
        if prepend is not None and append is not None:
            input_list = [prepend, x, append]
            has_pend = True
        elif prepend is not None:
            input_list = [prepend, x]
            has_pend = True
        elif append is not None:
            input_list = [x, append]
            has_pend = True
        if has_pend:
4688
            new_input = _C_ops.concat(input_list, axis)
A
andyjpaddle 已提交
4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700
        else:
            new_input = x

        attrs_1 = ()
        attrs_2 = ()

        dim_len = new_input.shape[axis]

        starts_1 = [0]
        attrs_1 += ('starts', starts_1)
        ends_1 = [dim_len - 1]
        attrs_1 += ('ends', ends_1)
4701 4702 4703
        input_front = _C_ops.slice(
            new_input, axes, starts_1, ends_1, infer_flags, []
        )
A
andyjpaddle 已提交
4704 4705 4706 4707
        starts_2 = [1]
        attrs_2 += ('starts', starts_2)
        ends_2 = [dim_len]
        attrs_2 += ('ends', ends_2)
4708 4709 4710
        input_back = _C_ops.slice(
            new_input, axes, starts_2, ends_2, infer_flags, []
        )
4711 4712

        if x.dtype == paddle.bool:
4713
            return _C_ops.logical_xor(input_back, input_front)
4714
        else:
4715
            return _C_ops.subtract(input_back, input_front)
A
andyjpaddle 已提交
4716
    else:
4717
        check_variable_and_dtype(
4718 4719 4720 4721
            x,
            'x',
            ['float16', 'float32', 'float64', 'bool', 'int32', 'int64'],
            'diff',
4722
        )
A
andyjpaddle 已提交
4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738
        check_type(axis, 'axis', (int), 'diff')
        helper = LayerHelper('diff', **locals())
        has_pend = False
        input_list = []
        if prepend is not None and append is not None:
            input_list = [prepend, x, append]
            has_pend = True
        elif prepend is not None:
            input_list = [prepend, x]
            has_pend = True
        elif append is not None:
            input_list = [x, append]
            has_pend = True

        if has_pend:
            new_input = helper.create_variable_for_type_inference(dtype)
4739 4740 4741 4742 4743 4744
            helper.append_op(
                type='concat',
                inputs={'X': input_list},
                outputs={'Out': [new_input]},
                attrs={'axis': axis},
            )
A
andyjpaddle 已提交
4745 4746 4747 4748 4749 4750 4751 4752 4753 4754
        else:
            new_input = x

        dim_len = new_input.shape[axis]
        attrs_1 = {'axes': axes}
        starts_1 = [0]
        ends_1 = [dim_len - 1]
        attrs_1['starts'] = starts_1
        attrs_1['ends'] = ends_1
        input_front = helper.create_variable_for_type_inference(dtype)
4755 4756 4757 4758 4759 4760
        helper.append_op(
            type='slice',
            inputs={'Input': new_input},
            attrs=attrs_1,
            outputs={'Out': input_front},
        )
A
andyjpaddle 已提交
4761 4762 4763 4764 4765 4766
        attrs_2 = {'axes': axes}
        starts_2 = [1]
        ends_2 = [dim_len]
        attrs_2['starts'] = starts_2
        attrs_2['ends'] = ends_2
        input_back = helper.create_variable_for_type_inference(dtype)
4767 4768 4769 4770 4771 4772
        helper.append_op(
            type='slice',
            inputs={'Input': new_input},
            attrs=attrs_2,
            outputs={'Out': input_back},
        )
A
andyjpaddle 已提交
4773 4774 4775

        if dtype == paddle.bool:
            out = helper.create_variable_for_type_inference(dtype)
4776 4777 4778 4779 4780
            helper.append_op(
                type='logical_xor',
                inputs={"X": input_back, "Y": input_front},
                outputs={"Out": out},
            )
A
andyjpaddle 已提交
4781
        else:
Z
zyfncg 已提交
4782
            out = paddle.tensor.math.subtract(input_back, input_front)
A
andyjpaddle 已提交
4783
        return out
F
Feiyu Chan 已提交
4784

4785

F
Feiyu Chan 已提交
4786 4787
def angle(x, name=None):
    r"""
4788
    Element-wise angle of complex numbers. For non-negative real numbers, the angle is 0 while
F
Feiyu Chan 已提交
4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800
    for negative real numbers, the angle is :math:`\pi`.

    Equation:
        .. math::

            angle(x)=arctan2(x.imag, x.real)

    Args:
        x (Tensor): An N-D Tensor, the data type is complex64, complex128, or float32, float64 .
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
4801
        Tensor: An N-D Tensor of real data type with the same precision as that of x's data type.
F
Feiyu Chan 已提交
4802 4803 4804 4805 4806 4807 4808 4809 4810

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([-2, -1, 0, 1]).unsqueeze(-1).astype('float32')
            y = paddle.to_tensor([-2, -1, 0, 1]).astype('float32')
            z = x + 1j * y
4811 4812 4813 4814 4815 4816
            print(z)
            # Tensor(shape=[4, 4], dtype=complex64, place=Place(cpu), stop_gradient=True,
            #        [[(-2-2j), (-2-1j), (-2+0j), (-2+1j)],
            #         [(-1-2j), (-1-1j), (-1+0j), (-1+1j)],
            #         [-2j    , -1j    ,  0j    ,  1j    ],
            #         [ (1-2j),  (1-1j),  (1+0j),  (1+1j)]])
F
Feiyu Chan 已提交
4817 4818

            theta = paddle.angle(z)
4819 4820 4821 4822 4823 4824
            print(theta)
            # Tensor(shape=[4, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[-2.35619450, -2.67794514,  3.14159274,  2.67794514],
            #         [-2.03444386, -2.35619450,  3.14159274,  2.35619450],
            #         [-1.57079637, -1.57079637,  0.        ,  1.57079637],
            #         [-1.10714877, -0.78539819,  0.        ,  0.78539819]])
F
Feiyu Chan 已提交
4825 4826
    """

W
WangZhen 已提交
4827
    if in_dygraph_mode():
F
Feiyu Chan 已提交
4828
        return _C_ops.angle(x)
4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841
    else:
        check_variable_and_dtype(
            x, 'x', ['float32', 'float64', 'complex64', 'complex128'], 'angle'
        )
        op_type = "angle"
        helper = LayerHelper(op_type, **locals())
        inputs = {"X": x}
        out = helper.create_variable_for_type_inference(
            dtype=_complex_to_real_dtype(x.dtype)
        )
        outputs = {"Out": out}
        helper.append_op(type=op_type, inputs=inputs, outputs=outputs)
        return out
4842

4843

4844
def heaviside(x, y, name=None):
4845
    r"""
4846 4847 4848 4849 4850
    Computes the Heaviside step function determined by corresponding element in y for each element in x. The equation is

    .. math::
        heaviside(x, y)=
            \left\{
4851 4852 4853 4854
                \begin{array}{lcl}
                0,& &\text{if} \ x < 0, \\
                y,& &\text{if} \ x = 0, \\
                1,& &\text{if} \ x > 0.
4855
                \end{array}
4856
            \right.
4857

4858
    Note:
I
Infinity_lee 已提交
4859 4860 4861
        ``paddle.heaviside`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
4862 4863

    Args:
4864 4865
        x (Tensor): The input tensor of Heaviside step function, it's data type should be float16, float32, float64, int32 or int64.
        y (Tensor): The tensor that determines a Heaviside step function, it's data type should be float16, float32, float64, int32 or int64.
4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883
        name (str, optional): Name for the operation (optional, default is None). Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x and y have different shapes and are broadcastable, the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape, its shape is the same as x and y.

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.to_tensor([-0.5, 0, 0.5])
            y = paddle.to_tensor([0.1])
            paddle.heaviside(x, y)
            #    [0.        , 0.10000000, 1.        ]
            x = paddle.to_tensor([[-0.5, 0, 0.5], [-0.5, 0.5, 0]])
            y = paddle.to_tensor([0.1, 0.2, 0.3])
            paddle.heaviside(x, y)
            #    [[0.        , 0.20000000, 1.        ],
            #     [0.        , 1.        , 0.30000001]]
4884
    """
4885
    if in_dygraph_mode():
4886
        return _C_ops.heaviside(x, y)
4887
    else:
W
Weilong Wu 已提交
4888
        op_type = 'elementwise_heaviside'
4889
        return _elementwise_op(LayerHelper(op_type, **locals()))
4890

4891

4892 4893 4894 4895 4896 4897
def frac(x, name=None):
    """
    This API is used to return the fractional portion of each element in input.

    Args:
        x (Tensor): The input tensor, which data type should be int32, int64, float32, float64.
4898
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
4899 4900 4901 4902 4903

    Returns:
        Tensor: The output Tensor of frac.

    Examples:
4904
        .. code-block:: python
4905 4906 4907

            import paddle

4908 4909
            input = paddle.to_tensor([[12.22000003, -1.02999997],
                                    [-0.54999995, 0.66000003]])
4910
            output = paddle.frac(input)
4911 4912 4913 4914
            print(output)
            # Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[ 0.22000003, -0.02999997],
            #         [-0.54999995,  0.66000003]])
4915
    """
4916
    if x.dtype not in [
4917 4918 4919 4920
        paddle.int32,
        paddle.int64,
        paddle.float32,
        paddle.float64,
4921
    ]:
4922
        raise TypeError(
4923 4924 4925 4926
            "The data type of input must be one of ['int32', 'int64', 'float32', 'float64'], but got {}".format(
                x.dtype
            )
        )
4927
    if in_dygraph_mode():
4928 4929
        y = _C_ops.trunc(x)
        return _C_ops.subtract(x, y)
4930
    else:
4931 4932
        inputs = {"X": x}
        attrs = {}
4933

4934 4935 4936 4937 4938 4939 4940 4941
        helper = LayerHelper("trunc", **locals())
        check_variable_and_dtype(
            x, "X", ['int32', 'int64', 'float32', 'float64'], 'trunc'
        )
        y = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type="trunc", inputs=inputs, attrs=attrs, outputs={"Out": y}
        )
4942
        return _elementwise_op(LayerHelper('elementwise_sub', **locals()))
4943

4944

4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969
def sgn(x, name=None):
    """
    For complex tensor, this API returns a new tensor whose elements have the same angles as the corresponding
    elements of input and absolute values of one.
    For other float dtype tensor,
    this API returns sign of every element in `x`: 1 for positive, -1 for negative and 0 for zero, same as paddle.sign.

    Args:
        x (Tensor): The input tensor, which data type should be float16, float32, float64, complex64, complex128.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: A sign Tensor for real input, or normalized Tensor for complex input, shape and data type are same as input.

    Examples:
        .. code-block:: Python

            import paddle

            x = paddle.to_tensor([[3 + 4j, 7 - 24j, 0, 1 + 2j], [6 + 8j, 3, 0, -2]])
            print(paddle.sgn(x))
            #[[0.6+0.8j       0.28-0.96j      0.+0.j      0.4472136+0.8944272j]
            # [0.6+0.8j       1.+0.j          0.+0.j      -1.+0.j]]

    """
4970
    if x.dtype not in [
4971 4972 4973 4974 4975
        paddle.float16,
        paddle.float32,
        paddle.float64,
        paddle.complex64,
        paddle.complex128,
4976
    ]:
4977
        raise TypeError(
4978 4979 4980 4981
            "The data type of input must be one of ['float16', 'float32', 'float64', 'complex64', 'complex128'], but got {}".format(
                x.dtype
            )
        )
4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992
    if paddle.is_complex(x):
        expand_x = paddle.as_real(x)
        x_abs = paddle.abs(x)
        x_abs = paddle.unsqueeze(x_abs, axis=-1)
        output = expand_x / x_abs
        zeros = paddle.zeros_like(output)
        output = paddle.where(paddle.isnan(output), zeros, output)

        return paddle.as_complex(output)
    else:
        return paddle.sign(x)
4993

4994

4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061
def take(x, index, mode='raise', name=None):
    """
    Returns a new tensor with the elements of input tensor x at the given index.
    The input tensor is treated as if it were viewed as a 1-D tensor.
    The result takes the same shape as the index.

    Args:
        x (Tensor): An N-D Tensor, its data type should be int32, int64, float32, float64.
        index (Tensor): An N-D Tensor, its data type should be int32, int64.
        mode (str, optional): Specifies how out-of-bounds index will behave. the candicates are ``'raise'``, ``'wrap'`` and ``'clip'``.

            - ``'raise'``: raise an error (default);
            - ``'wrap'``: wrap around;
            - ``'clip'``: clip to the range. ``'clip'`` mode means that all indices that are too large are replaced by the index that addresses the last element. Note that this disables indexing with negative numbers.

        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, Tensor with the same shape as index, the data type is the same with input.

    Examples:
        .. code-block:: python

            import paddle

            x_int = paddle.arange(0, 12).reshape([3, 4])
            x_float = x_int.astype(paddle.float64)

            idx_pos = paddle.arange(4, 10).reshape([2, 3])  # positive index
            idx_neg = paddle.arange(-2, 4).reshape([2, 3])  # negative index
            idx_err = paddle.arange(-2, 13).reshape([3, 5])  # index out of range

            paddle.take(x_int, idx_pos)
            # Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[4, 5, 6],
            #         [7, 8, 9]])

            paddle.take(x_int, idx_neg)
            # Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[10, 11, 0 ],
            #         [1 , 2 , 3 ]])

            paddle.take(x_float, idx_pos)
            # Tensor(shape=[2, 3], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        [[4., 5., 6.],
            #         [7., 8., 9.]])

            x_int.take(idx_pos)
            # Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[4, 5, 6],
            #         [7, 8, 9]])

            paddle.take(x_int, idx_err, mode='wrap')
            # Tensor(shape=[3, 5], dtype=int32, place=Place(cpu), stop_gradient=True,
            #        [[10, 11, 0 , 1 , 2 ],
            #         [3 , 4 , 5 , 6 , 7 ],
            #         [8 , 9 , 10, 11, 0 ]])

            paddle.take(x_int, idx_err, mode='clip')
            # Tensor(shape=[3, 5], dtype=int32, place=Place(cpu), stop_gradient=True,
            #        [[0 , 0 , 0 , 1 , 2 ],
            #         [3 , 4 , 5 , 6 , 7 ],
            #         [8 , 9 , 10, 11, 11]])

    """
    if mode not in ['raise', 'wrap', 'clip']:
        raise ValueError(
5062 5063 5064 5065
            "'mode' in 'take' should be 'raise', 'wrap', 'clip', but received {}.".format(
                mode
            )
        )
5066

5067
    if in_dygraph_mode():
5068 5069
        if not isinstance(index, (paddle.Tensor, Variable)):
            raise TypeError(
5070
                "The type of 'index' must be Tensor, but got {}".format(
5071 5072 5073
                    type(index)
                )
            )
5074 5075
        if index.dtype not in [paddle.int32, paddle.int64]:
            raise TypeError(
5076 5077 5078 5079
                "The data type of 'index' must be one of ['int32', 'int64'], but got {}".format(
                    index.dtype
                )
            )
5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092

    else:
        check_variable_and_dtype(index, 'index', ['int32', 'int64'], 'take')

    input_1d = x.flatten()
    index_1d = index.flatten()
    max_index = input_1d.shape[-1]

    if mode == 'raise':
        # This processing enables 'take' to handle negative indexes within the correct range.
        index_1d = paddle.where(index_1d < 0, index_1d + max_index, index_1d)
    elif mode == 'wrap':
        # The out of range indices are constrained by taking the remainder.
5093
        index_1d = paddle.where(index_1d < 0, index_1d % max_index, index_1d)
5094 5095 5096
        index_1d = paddle.where(
            index_1d >= max_index, index_1d % max_index, index_1d
        )
5097 5098 5099 5100 5101 5102 5103
    elif mode == 'clip':
        # 'clip' mode disables indexing with negative numbers.
        index_1d = clip(index_1d, 0, max_index - 1)

    out = input_1d.index_select(index_1d).reshape(index.shape)

    return out
5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129


def frexp(x, name=None):
    """
    The function used to decompose a floating point number into mantissa and exponent.

    Args:
        x (Tensor): The input tensor, it's data type should be float32, float64.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
    Returns:

        - mantissa (Tensor), A mantissa Tensor. The shape and data type of mantissa tensor and exponential tensor are
            the same as those of input.

        - exponent (Tensor), A exponent Tensor. The shape and data type of mantissa tensor and exponential tensor are
            the same as those of input.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([[1, 2, 3, 4]], dtype="float32")
            print(paddle.tensor.math.frexp(x))
            # (Tensor(shape=[1, 4], dtype=float32, place=Place(cpu), stop_gradient=True,[[0.50000000, 0.50000000, 0.75000000, 0.50000000]]),
            #  Tensor(shape=[1, 4], dtype=float32, place=Place(cpu), stop_gradient=True,[[1., 2., 2., 3.]]))
5130
    """
5131 5132
    if x.dtype not in [paddle.float32, paddle.float64]:
        raise TypeError(
5133 5134 5135 5136
            "The data type of input must be one of ['float32', 'float64'], but got {}".format(
                x.dtype
            )
        )
5137 5138
    input_x = paddle.abs(x)
    exponent = paddle.floor(paddle.log2(input_x))
5139 5140 5141
    exponent = paddle.where(
        paddle.isinf(exponent), paddle.full_like(exponent, 0), exponent
    )
5142 5143 5144 5145

    # 0填充
    mantissa = paddle.divide(input_x, 2**exponent)
    # 计算exponent
5146 5147 5148 5149 5150 5151 5152 5153 5154 5155
    exponent = paddle.where(
        (mantissa >= 1),
        paddle.add(exponent, paddle.ones_like(exponent)),
        exponent,
    )
    mantissa = paddle.where(
        (mantissa >= 1),
        paddle.divide(mantissa, 2 ** paddle.ones_like(exponent)),
        mantissa,
    )
5156 5157 5158

    mantissa = paddle.where((x < 0), mantissa * -1, mantissa)
    return mantissa, exponent
5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200


def _trapezoid(y, x=None, dx=None, axis=-1, mode='sum'):
    """
    Integrate along the given axis using the composite trapezoidal rule.

    Args:
        y (Tensor): Input tensor to integrate. It's data type should be float16, float32, float64.
        x (Tensor, optional): The sample points corresponding to the :attr:`y` values, the same type as :attr:`y`.
            It is known that the size of :attr:`y` is `[d_1, d_2, ... , d_n]` and :math:`axis=k`, then the size of :attr:`x` can only be `[d_k]` or `[d_1, d_2, ... , d_n ]`.
            If :attr:`x` is None, the sample points are assumed to be evenly spaced :attr:`dx` apart. The default is None.
        dx (float, optional): The spacing between sample points when :attr:`x` is None. If neither :attr:`x` nor :attr:`dx` is provided then the default is :math:`dx = 1`.
        axis (int, optional): The axis along which to integrate. The default is -1.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
        sum_mode (str): use a different summation. The default is `sum`.

    Returns:
        Tensor, Definite integral of :attr:`y` is N-D tensor as approximated along a single axis by the trapezoidal rule.
    """
    if mode == 'sum':
        sum_mode = paddle.sum
    elif mode == 'cumsum':
        sum_mode = paddle.cumsum

    if not (x is None or dx is None):
        raise ValueError("Not permitted to specify both x and dx input args.")
    if y.dtype not in [paddle.float16, paddle.float32, paddle.float64]:
        raise TypeError(
            "The data type of input must be Tensor, and dtype should be one of ['paddle.float16', 'paddle.float32', 'paddle.float64'], but got {}".format(
                y.dtype
            )
        )

    y_shape = y.shape
    length = y_shape[axis]
    if axis < 0:
        axis += y.dim()
    if x is None:
        if dx is None:
            dx = 1.0
        dx = paddle.to_tensor(dx)
        if dx.dim() > 1:
5201
            raise ValueError(f'Expected dx to be a scalar, got dx={dx}')
5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341
    else:
        if x.dtype not in [paddle.float16, paddle.float32, paddle.float64]:
            raise TypeError(
                "The data type of input must be Tensor, and dtype should be one of ['paddle.float16', 'paddle.float32', 'paddle.float64'], but got {}".format(
                    x.dtype
                )
            )
        # Reshape to correct shape
        if x.dim() == 1:
            dx = paddle.diff(x)
            shape = [1] * y.dim()
            shape[axis] = dx.shape[0]
            dx = dx.reshape(shape)
        else:
            dx = paddle.diff(x, axis=axis)
    return 0.5 * sum_mode(
        (
            paddle.gather(y, paddle.arange(1, length), axis=axis)
            + paddle.gather(y, paddle.arange(0, length - 1), axis=axis)
        )
        * dx,
        axis=axis,
    )


def trapezoid(y, x=None, dx=None, axis=-1, name=None):
    """
    Integrate along the given axis using the composite trapezoidal rule. Use the sum method.

    Args:
        y (Tensor): Input tensor to integrate. It's data type should be float16, float32, float64.
        x (Tensor, optional): The sample points corresponding to the :attr:`y` values, the same type as :attr:`y`.
            It is known that the size of :attr:`y` is `[d_1, d_2, ... , d_n]` and :math:`axis=k`, then the size of :attr:`x` can only be `[d_k]` or `[d_1, d_2, ... , d_n ]`.
            If :attr:`x` is None, the sample points are assumed to be evenly spaced :attr:`dx` apart. The default is None.
        dx (float, optional): The spacing between sample points when :attr:`x` is None. If neither :attr:`x` nor :attr:`dx` is provided then the default is :math:`dx = 1`.
        axis (int, optional): The axis along which to integrate. The default is -1.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, Definite integral of :attr:`y` is N-D tensor as approximated along a single axis by the trapezoidal rule.
        If :attr:`y` is a 1D tensor, then the result is a float. If N is greater than 1, then the result is an (N-1)-D tensor.

    Examples:
        .. code-block:: python

            import paddle

            y = paddle.to_tensor([4, 5, 6], dtype='float32')

            print(paddle.trapezoid(y))
            # Tensor(shape=[1], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [10.])

            print(paddle.trapezoid(y, dx=2.))
            # Tensor(shape=[1], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [20.])

            y = paddle.to_tensor([4, 5, 6], dtype='float32')
            x = paddle.to_tensor([1, 2, 3], dtype='float32')

            print(paddle.trapezoid(y, x))
            # Tensor(shape=[1], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [10.])


            y = paddle.to_tensor([1, 2, 3], dtype='float64')
            x = paddle.to_tensor([8, 6, 4], dtype='float64')

            print(paddle.trapezoid(y, x))
            # Tensor(shape=[1], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        [-8.])
            y = paddle.arange(6).reshape((2, 3)).astype('float32')

            print(paddle.trapezoid(y, axis=0))
            # Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [1.50000000, 2.50000000, 3.50000000])
            print(paddle.trapezoid(y, axis=1))
            # Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [2., 8.])
    """
    return _trapezoid(y, x, dx, axis, mode='sum')


def cumulative_trapezoid(y, x=None, dx=None, axis=-1, name=None):
    """
    Integrate along the given axis using the composite trapezoidal rule. Use the cumsum method

    Args:
        y (Tensor): Input tensor to integrate. It's data type should be float16, float32, float64.
        x (Tensor, optional): The sample points corresponding to the :attr:`y` values, the same type as :attr:`y`.
            It is known that the size of :attr:`y` is `[d_1, d_2, ... , d_n]` and :math:`axis=k`, then the size of :attr:`x` can only be `[d_k]` or `[d_1, d_2, ... , d_n ]`.
            If :attr:`x` is None, the sample points are assumed to be evenly spaced :attr:`dx` apart. The default is None.
        dx (float, optional): The spacing between sample points when :attr:`x` is None. If neither :attr:`x` nor :attr:`dx` is provided then the default is :math:`dx = 1`.
        axis (int, optional): The axis along which to integrate. The default is -1.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, Definite integral of :attr:`y` is N-D tensor as approximated along a single axis by the trapezoidal rule.
        The result is an N-D tensor.

    Examples:
        .. code-block:: python

            import paddle

            y = paddle.to_tensor([4, 5, 6], dtype='float32')

            print(paddle.cumulative_trapezoid(y))
            # Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [4.50000000, 10.       ])

            print(paddle.cumulative_trapezoid(y, dx=2.))
            # Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [9. , 20.])

            y = paddle.to_tensor([4, 5, 6], dtype='float32')
            x = paddle.to_tensor([1, 2, 3], dtype='float32')

            print(paddle.cumulative_trapezoid(y, x))
            # Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [4.50000000, 10.       ])

            y = paddle.to_tensor([1, 2, 3], dtype='float64')
            x = paddle.to_tensor([8, 6, 4], dtype='float64')

            print(paddle.cumulative_trapezoid(y, x))
            # Tensor(shape=[2], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        [-3., -8.])

            y = paddle.arange(6).reshape((2, 3)).astype('float32')

            print(paddle.cumulative_trapezoid(y, axis=0))
            # Tensor(shape=[1, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[1.50000000, 2.50000000, 3.50000000]])
            print(paddle.cumulative_trapezoid(y, axis=1))
            # Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[0.50000000, 2.        ],
            #         [3.50000000, 8.        ]])
    """
    return _trapezoid(y, x, dx, axis, mode='cumsum')
5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417


def vander(x, n=None, increasing=False, name=None):
    """
    Generate a Vandermonde matrix.

    The columns of the output matrix are powers of the input vector. Order of the powers is
    determined by the increasing Boolean parameter. Specifically, when the increment is
    "false", the ith output column is a step-up in the order of the elements of the input
    vector to the N - i - 1 power. Such a matrix with a geometric progression in each row
    is named after Alexandre-Theophile Vandermonde.

    Args:
        x (Tensor): The input tensor, it must be 1-D Tensor, and it's data type should be ['complex64', 'complex128', 'float32', 'float64', 'int32', 'int64'].
        n (int): Number of columns in the output. If n is not specified, a square array is returned (n = len(x)).
        increasing(bool): Order of the powers of the columns. If True, the powers increase from left to right, if False (the default) they are reversed.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
    Returns:
        Tensor, A vandermonde matrix with shape (len(x), N). If increasing is False, the first column is :math:`x^{(N-1)}`, the second :math:`x^{(N-2)}` and so forth.
        If increasing is True, the columns are :math:`x^0`, :math:`x^1`, ..., :math:`x^{(N-1)}`.

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.to_tensor([1., 2., 3.], dtype="float32")
            out = paddle.vander(x)
            print(out.numpy())
            # [[1., 1., 1.],
            #  [4., 2., 1.],
            #  [9., 3., 1.]]
            out1 = paddle.vander(x,2)
            print(out1.numpy())
            # [[1., 1.],
            #  [2., 1.],
            #  [3., 1.]]
            out2 = paddle.vander(x, increasing = True)
            print(out2.numpy())
            # [[1., 1., 1.],
            #  [1., 2., 4.],
            #  [1., 3., 9.]]
            real = paddle.to_tensor([2., 4.])
            imag = paddle.to_tensor([1., 3.])
            complex = paddle.complex(real, imag)
            out3 = paddle.vander(complex)
            print(out3.numpy())
            # [[2.+1.j, 1.+0.j],
            #  [4.+3.j, 1.+0.j]]
    """
    check_variable_and_dtype(
        x,
        'x',
        ['complex64', 'complex128', 'float32', 'float64', 'int32', 'int64'],
        'vander',
    )
    if x.dim() != 1:
        raise ValueError(
            "The input of x is expected to be a 1-D Tensor."
            "But now the dims of Input(X) is %d." % x.dim()
        )

    if n is None:
        n = x.shape[0]

    if n < 0:
        raise ValueError("N must be non-negative.")

    res = paddle.empty([x.shape[0], n], dtype=x.dtype)

    if n > 0:
        res[:, 0] = paddle.to_tensor([1], dtype=x.dtype)
    if n > 1:
        res[:, 1:] = x[:, None]
        res[:, 1:] = paddle.cumprod(res[:, 1:], dim=-1)
    res = res[:, ::-1] if not increasing else res
    return res