layer.py 15.3 KB
Newer Older
Q
qiaolongfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
"""
Y
Yu Yang 已提交
15 16 17
`paddle.v2.layer` is a part of model config packages in paddle.v2. In API v2,
we want to make Paddle a plain Python package. The model config package defined
the way how to configure a neural network topology in Paddle Python code.
18

Y
Yu Yang 已提交
19
The primary usage shows below.
20

Y
Yu Yang 已提交
21
..  code-block:: python
22

Y
Yu Yang 已提交
23
    import paddle.v2 as paddle
24

Y
Yu Yang 已提交
25 26 27 28
    img = paddle.layer.data(name='img', type=paddle.data_type.dense_vector(784))
    hidden = paddle.layer.fc(input=img, size=200)
    prediction = paddle.layer.fc(input=hidden, size=10,
                                 act=paddle.activation.Softmax())
29

Y
Yu Yang 已提交
30 31
    # use prediction instance where needed.
    parameters = paddle.v2.parameters.create(cost)
32
"""
Q
qiaolongfei 已提交
33

Q
qiaolongfei 已提交
34
import collections
Y
Yu Yang 已提交
35
import inspect
Y
Yu Yang 已提交
36
from config_base import Layer, __convert_to_v2__
Q
qiaolongfei 已提交
37 38 39
import paddle.trainer_config_helpers as conf_helps
from paddle.trainer_config_helpers.config_parser_utils import \
    parse_network_config as __parse__
40
from paddle.trainer_config_helpers.default_decorators import wrap_act_default
Y
Yu Yang 已提交
41 42
from paddle.trainer_config_helpers.default_decorators import \
    wrap_bias_attr_default
Q
qiaolongfei 已提交
43
from paddle.trainer_config_helpers.default_decorators import wrap_name_default
44
from paddle.trainer_config_helpers.layers import layer_support
45 46 47
from paddle.trainer.config_parser import \
    RecurrentLayerGroupWithoutOutLinksBegin, RecurrentLayerGroupSetOutLink, \
    RecurrentLayerGroupEnd, model_type
Q
qiaolongfei 已提交
48

L
Luo Tao 已提交
49
import activation
Q
qiaolongfei 已提交
50
import data_type
Q
qiaolongfei 已提交
51

Y
Yu Yang 已提交
52
__all__ = ['parse_network', 'data']
Q
qiaolongfei 已提交
53

D
dangqingqing 已提交
54 55 56 57 58 59 60
__projection_names__ = filter(lambda x: x.endswith('_projection'),
                              dir(conf_helps))
__all__ += __projection_names__

__operator_names__ = filter(lambda x: x.endswith('_operator'), dir(conf_helps))
__all__ += __operator_names__

Q
qiaolongfei 已提交
61

Q
qiaolongfei 已提交
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
def parse_network(*outputs):
    """
    parse all output layers and then generate a model config proto.
    :param outputs:
    :return:
    """

    def __real_func__():
        context = dict()
        real_output = [each.to_proto(context=context) for each in outputs]
        conf_helps.outputs(real_output)

    return __parse__(__real_func__)


Q
qiaolongfei 已提交
77 78 79 80 81 82 83
"""
Some layer may need some special config, and can not use __convert_to_v2__ to convert.
So we also need to implement some special LayerV2.
"""


class DataLayerV2(Layer):
Q
qiaolongfei 已提交
84
    def __init__(self, name, type, **kwargs):
85
        assert isinstance(type, data_type.InputType)
Q
qiaolongfei 已提交
86

Q
qiaolongfei 已提交
87
        self.type = type
Q
qiaolongfei 已提交
88 89
        self.__method_name__ = 'data_layer'
        self.__kwargs__ = kwargs
Q
qiaolongfei 已提交
90 91 92 93 94

        super(DataLayerV2, self).__init__(name=name, parent_layers=dict())

    def to_proto_impl(self, **kwargs):
        args = dict()
Q
qiaolongfei 已提交
95
        args['size'] = self.type.dim
Q
qiaolongfei 已提交
96 97
        for each in kwargs:
            args[each] = kwargs[each]
Q
qiaolongfei 已提交
98 99
        for each in self.__kwargs__:
            args[each] = self.__kwargs__[each]
Q
qiaolongfei 已提交
100 101 102
        return getattr(conf_helps, self.__method_name__)(name=self.name, **args)


Y
Yu Yang 已提交
103 104 105
class WithExtraParent(Layer):
    def extra_parent(self):
        return self.__extra_parent__
Q
qiaolongfei 已提交
106

Q
qiaolongfei 已提交
107
    def __init__(self, name=None, parent_layers=None):
Y
Yu Yang 已提交
108
        self.__extra_parent__ = []
Q
qiaolongfei 已提交
109
        super(WithExtraParent, self).__init__(
Q
qiaolongfei 已提交
110
            name=name, parent_layers=parent_layers)
Q
qiaolongfei 已提交
111

Y
Yu Yang 已提交
112 113
    def append_extra_parent(self, parent):
        self.__extra_parent__.append(parent)
Q
qiaolongfei 已提交
114

Y
Yu Yang 已提交
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
    def to_proto(self, context):
        """
        function to set proto attribute
        """
        kwargs = dict()
        for p in self.__extra_parent__:
            p.to_proto(context=context)

        for layer_name in self.__parent_layers__:
            if not isinstance(self.__parent_layers__[layer_name],
                              collections.Sequence):
                v1_layer = self.__parent_layers__[layer_name].to_proto(
                    context=context)
            else:
                v1_layer = map(lambda x: x.to_proto(context=context),
                               self.__parent_layers__[layer_name])
            kwargs[layer_name] = v1_layer

        if self.context_name() is None:
            return self.to_proto_impl(context=context, **kwargs)
        elif self.context_name() not in context:
            context[self.context_name()] = self.to_proto_impl(
                context=context, **kwargs)

        if self.use_context_name():
            return context[self.context_name()]
        else:
            return context[self.name]


class MemoryV2(WithExtraParent):
Q
qiaolongfei 已提交
146
    def __init__(self, name, **kwargs):
Y
Yu Yang 已提交
147
        self.name = name
Q
qiaolongfei 已提交
148
        super(MemoryV2, self).__init__(name=name, parent_layers=dict())
Y
Yu Yang 已提交
149 150 151 152 153 154 155 156 157
        self.__kwargs__ = kwargs
        self.__boot_layer_name__ = None
        if 'boot_layer' in kwargs:
            begin_of_current_rnn = []
            # TODO(yuyang18): Fix inspect, it could be wrong when user invoke a
            # function inside step.
            st = inspect.stack()
            for i in xrange(len(st)):
                locs = inspect.stack()[i][0].f_locals
Q
qiaolongfei 已提交
158 159 160
                keys = locs.keys()
                for key in keys:
                    val = locs[key]
Y
Yu Yang 已提交
161 162
                    if isinstance(val, RecurrentLayerInput):
                        begin_of_current_rnn.append(val)
Q
qiaolongfei 已提交
163 164 165 166
                    elif isinstance(val, collections.Sequence):
                        for v in val:
                            if isinstance(v, RecurrentLayerInput):
                                begin_of_current_rnn.append(v)
Y
Yu Yang 已提交
167 168 169 170 171 172 173 174 175 176 177

                if begin_of_current_rnn:
                    break
            assert begin_of_current_rnn is not None
            for extra in begin_of_current_rnn:
                self.append_extra_parent(extra)
                assert isinstance(extra, WithExtraParent)
                extra.append_extra_parent(kwargs['boot_layer'])
                self.__boot_layer_name__ = kwargs['boot_layer'].name

    def to_proto_impl(self, context, **kwargs):
Q
qiaolongfei 已提交
178 179 180 181 182
        args = dict()
        for each in kwargs:
            args[each] = kwargs[each]
        for each in self.__kwargs__:
            args[each] = self.__kwargs__[each]
Q
qiaolongfei 已提交
183

Y
Yu Yang 已提交
184 185
        if self.__boot_layer_name__ is not None:
            args['boot_layer'] = context[self.__boot_layer_name__]
Q
qiaolongfei 已提交
186

Q
qiaolongfei 已提交
187 188 189 190 191 192 193
        size = args.get('size', None)
        if size is not None:
            if callable(size):
                real_size = size()
            else:
                real_size = size
            args['size'] = real_size
Q
qiaolongfei 已提交
194
        return conf_helps.memory(name=self.name, **args)
Q
qiaolongfei 已提交
195

196 197 198
    def context_name(self):
        return self.name + "#memory"

Q
qiaolongfei 已提交
199 200 201 202 203 204 205
    def use_context_name(self):
        """
        memory layer will have the same name with some layer
        :return:
        """
        return True

Q
qiaolongfei 已提交
206

207
class LayerOutputV2(Layer):
Q
qiaolongfei 已提交
208 209 210 211 212
    """
    LayerOutputV2 is used to store the result of LayerOutput in v1 api.
    It will not store it's parents because layer_output has been parsed already.
    """

213 214 215 216 217 218 219 220 221 222
    def __init__(self, layer_output):
        assert isinstance(layer_output, conf_helps.LayerOutput)
        self.layer_output = layer_output
        super(LayerOutputV2, self).__init__(
            name=layer_output.name, parent_layers=dict())

    def to_proto_impl(self):
        return self.layer_output


Q
qiaolongfei 已提交
223 224 225 226 227 228 229
class StaticInputV2(object):
    def __init__(self, input, is_seq=False, size=None):
        assert isinstance(input, LayerV2)
        self.name = input.name
        self.input = input
        self.is_seq = is_seq
        self.size = size
230
        # TODO(add size check)
Q
qiaolongfei 已提交
231
        # assert input.size is not None or size is not None
232 233


234 235 236 237 238 239 240 241 242 243
class MixedLayerV2(Layer):
    """
    This class is use to support `with` grammar. If not, the following code
    could convert mixed_layer simply.

        mixed = __convert_to_v2__(
            'mixed_layer', name_prefix='mixed', parent_names=['input'])
    """

    class AddToSealedMixedLayerExceptionV2(Exception):
D
dangqingqing 已提交
244
        pass
245 246 247 248 249 250 251 252 253 254

    def __init__(self,
                 size=0,
                 input=None,
                 name=None,
                 act=None,
                 bias_attr=None,
                 layer_attr=None):
        self.__method_name__ = 'mixed_layer'
        self.finalized = False
D
dangqingqing 已提交
255
        self.__inputs__ = []
256
        if input is not None:
D
dangqingqing 已提交
257
            self.__inputs__ = input
258

D
dangqingqing 已提交
259 260
        other_kwargs = dict()
        other_kwargs['name'] = name
261 262 263 264
        other_kwargs['size'] = size
        other_kwargs['act'] = act
        other_kwargs['bias_attr'] = bias_attr
        other_kwargs['layer_attr'] = layer_attr
D
dangqingqing 已提交
265
        parent_layers = {"input": self.__inputs__}
Q
qiaolongfei 已提交
266
        super(MixedLayerV2, self).__init__(name, parent_layers)
267 268 269 270
        self.__other_kwargs__ = other_kwargs

    def __iadd__(self, other):
        if not self.finalized:
D
dangqingqing 已提交
271
            self.__inputs__.append(other)
272 273
            return self
        else:
Y
Yu Yang 已提交
274
            raise MixedLayerV2.AddToSealedMixedLayerExceptionV2()
275 276

    def __enter__(self):
D
dangqingqing 已提交
277
        assert len(self.__inputs__) == 0
278 279 280 281 282 283 284 285 286 287 288
        return self

    def __exit__(self, *args, **kwargs):
        self.finalized = True

    def to_proto_impl(self, **kwargs):
        args = dict()
        for each in kwargs:
            args[each] = kwargs[each]
        for each in self.__other_kwargs__:
            args[each] = self.__other_kwargs__[each]
Q
qiaolongfei 已提交
289
        size = args.get('size', None)
Q
qiaolongfei 已提交
290 291 292 293 294 295
        if size is not None:
            if callable(size):
                real_size = size()
            else:
                real_size = size
            args['size'] = real_size
D
dangqingqing 已提交
296
        return getattr(conf_helps, self.__method_name__)(**args)
297 298 299


@wrap_name_default("mixed")
D
dangqingqing 已提交
300
@wrap_act_default(act=activation.Linear())
301 302 303 304 305 306 307 308 309 310 311
@wrap_bias_attr_default(has_bias=False)
@layer_support(conf_helps.layers.ERROR_CLIPPING, conf_helps.layers.DROPOUT)
def mixed(size=0,
          name=None,
          input=None,
          act=None,
          bias_attr=False,
          layer_attr=None):
    return MixedLayerV2(size, input, name, act, bias_attr, layer_attr)


Y
Yu Yang 已提交
312
class RecurrentLayerInput(WithExtraParent):
313 314 315 316 317 318 319 320 321 322
    def __init__(self, recurrent_name, index, parent_layers):
        assert len(parent_layers) == 1
        self.__parents__ = parent_layers.values()[0]
        super(RecurrentLayerInput, self).__init__(
            name=self.__parents__[index].name, parent_layers=parent_layers)
        self.__recurrent_name__ = recurrent_name

    def context_name(self):
        return self.__recurrent_name__ + ".begin"

Y
Yu Yang 已提交
323
    def to_proto_impl(self, context, **kwargs):
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
        model_type('recurrent_nn')
        RecurrentLayerGroupWithoutOutLinksBegin(
            name=self.__recurrent_name__,
            in_links=map(lambda x: x.name, self.__parents__))
        return self


class RecurrentLayerOutput(Layer):
    def __init__(self, recurrent_name, index, parent_layers):
        assert len(parent_layers) == 1
        self.__parents__ = parent_layers.values()[0]
        super(RecurrentLayerOutput, self).__init__(
            name=self.__parents__[index].name, parent_layers=parent_layers)
        self.__recurrent_name__ = recurrent_name

    def context_name(self):
        return self.__recurrent_name__ + ".end"

    def to_proto_impl(self, **kwargs):
        for l in self.__parents__:
            RecurrentLayerGroupSetOutLink(l.name)
        RecurrentLayerGroupEnd(name=self.__recurrent_name__)


Q
qiaolongfei 已提交
348
LayerV2 = Layer
Q
qiaolongfei 已提交
349
data = DataLayerV2
L
Luo Tao 已提交
350 351
AggregateLevel = conf_helps.layers.AggregateLevel
ExpandLevel = conf_helps.layers.ExpandLevel
Q
qiaolongfei 已提交
352
memory = MemoryV2
Q
qiaolongfei 已提交
353

Y
Yu Yang 已提交
354 355

def __layer_name_mapping__(inname):
Q
qiaolongfei 已提交
356
    if inname in ['data_layer', 'memory', 'mixed_layer', 'recurrent_group']:
Y
Yu Yang 已提交
357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
        # Do Not handle these layers
        return
    elif inname == 'maxid_layer':
        return 'max_id'
    elif inname.endswith('memory') or inname.endswith(
            '_seq') or inname.endswith('_sim') or inname == 'hsigmoid':
        return inname
    elif inname in [
            'cross_entropy', 'multi_binary_label_cross_entropy',
            'cross_entropy_with_selfnorm'
    ]:
        return inname + "_cost"
    elif inname.endswith('_cost'):
        return inname
    elif inname.endswith("_layer"):
        return inname[:-len("_layer")]


def __layer_name_mapping_parent_names__(inname):
    all_args = getattr(conf_helps, inname).argspec.args
    return filter(
Y
Yu Yang 已提交
378 379 380
        lambda x: x in ['input1', 'input2', 'label', 'input', 'a', 'b',
                        'expand_as',
                        'weights', 'vectors', 'weight', 'score', 'left',
Q
qiaolongfei 已提交
381
                        'right', 'output_mem'],
Y
Yu Yang 已提交
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
        all_args)


def __convert_layer__(_new_name_, _old_name_, _parent_names_):
    global __all__
    __all__.append(_new_name_)
    globals()[new_name] = __convert_to_v2__(_old_name_, _parent_names_)


for each_layer_name in dir(conf_helps):
    new_name = __layer_name_mapping__(each_layer_name)
    if new_name is not None:
        parent_names = __layer_name_mapping_parent_names__(each_layer_name)
        assert len(parent_names) != 0, each_layer_name
        __convert_layer__(new_name, each_layer_name, parent_names)

del parent_names
del new_name
del each_layer_name
Q
qiaolongfei 已提交
401

402
# convert projection
D
dangqingqing 已提交
403
for prj in __projection_names__:
L
Luo Tao 已提交
404 405
    globals()[prj] = __convert_to_v2__(
        prj, parent_names=['input'], is_default_name=False)
406 407 408 409 410 411 412 413

# convert operator
operator_list = [
    # [V1_method_name, parent_names],
    ['dotmul_operator', ['a', 'b']],
    ['conv_operator', ['img', 'filter']]
]
for op in operator_list:
L
Luo Tao 已提交
414 415
    globals()[op[0]] = __convert_to_v2__(
        op[0], parent_names=op[1], is_default_name=False)
Q
qiaolongfei 已提交
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440


@wrap_name_default()
def recurrent_group(step, input, name=None):
    if not isinstance(input, collections.Sequence):
        input = [input]

    non_static_inputs = filter(lambda x: not isinstance(x, StaticInputV2),
                               input)
    actual_input = [
        RecurrentLayerInput(
            recurrent_name=name,
            index=i,
            parent_layers={'recurrent_inputs': non_static_inputs})
        for i in xrange(len(non_static_inputs))
    ]

    def __real_step__(*args):
        rnn_input = list(args)
        static_inputs = filter(lambda x: isinstance(x, StaticInputV2), input)
        for static_input in static_inputs:
            mem_name = "__%s_memory__" % static_input.input.name
            mem = memory(
                name=mem_name,
                is_seq=static_input.is_seq,
Q
qiaolongfei 已提交
441
                size=static_input.input.calculate_size,
Q
qiaolongfei 已提交
442 443 444
                boot_layer=static_input.input)
            with mixed(
                    name=mem_name,
Q
qiaolongfei 已提交
445
                    size=static_input.input.calculate_size,
Q
qiaolongfei 已提交
446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
                    act=activation.Identity()) as mix:
                mix += identity_projection(input=mem)
            rnn_input.insert(input.index(static_input), mix)
        return step(*rnn_input)

    actual_output = __real_step__(*actual_input)

    if not isinstance(actual_output, collections.Sequence):
        actual_output = [actual_output]

    retv = [
        RecurrentLayerOutput(
            recurrent_name=name,
            index=i,
            parent_layers={'recurrent_outputs': actual_output})
        for i in xrange(len(actual_output))
    ]
    if len(retv) == 1:
        return retv[0]
    else:
        return retv