提交 55b96287 编写于 作者: Q qiaolongfei

support rnn

上级 ac712688
......@@ -73,6 +73,7 @@ from paddle.trainer_config_helpers.config_parser_utils import \
parse_network_config as __parse__
from paddle.trainer_config_helpers.default_decorators import wrap_name_default
import activation
import data_type
__all__ = [
......@@ -97,10 +98,11 @@ def parse_network(*outputs):
class Layer(object):
def __init__(self, name, parent_layers):
def __init__(self, name, parent_layers, step_input=None):
assert isinstance(parent_layers, dict)
assert isinstance(name, basestring)
self.name = name
self.step_input = step_input
self.__parent_layers__ = parent_layers
def to_proto(self, context):
......@@ -116,8 +118,14 @@ class Layer(object):
else:
v1_layer = map(lambda x: x.to_proto(context=context),
self.__parent_layers__[layer_name])
if layer_name == "input" and self.step_input is not None:
v1_layer.insert(0, self.step_input)
kwargs[layer_name] = v1_layer
# memory may have the same name with some layer
if isinstance(self, MemoryV2):
return self.to_proto_impl(**kwargs)
if self.name not in context:
context[self.name] = self.to_proto_impl(**kwargs)
return context[self.name]
......@@ -133,7 +141,7 @@ def __convert_to_v2__(method_name, name_prefix, parent_names):
wrapper = None
class V2LayerImpl(Layer):
def __init__(self, name=None, **kwargs):
def __init__(self, name=None, step_input=None, **kwargs):
parent_layers = dict()
other_kwargs = dict()
for pname in parent_names:
......@@ -143,7 +151,7 @@ def __convert_to_v2__(method_name, name_prefix, parent_names):
if key not in parent_names:
other_kwargs[key] = kwargs[key]
super(V2LayerImpl, self).__init__(name, parent_layers)
super(V2LayerImpl, self).__init__(name, parent_layers, step_input)
self.__other_kwargs__ = other_kwargs
if wrapper is not None:
......@@ -186,6 +194,22 @@ class DataLayerV2(Layer):
return getattr(conf_helps, self.__method_name__)(name=self.name, **args)
class MemoryV2(Layer):
def __init__(self, name, size, **kwargs):
self.name = name
self.size = size
self.__kwargs__ = kwargs
super(MemoryV2, self).__init__(name=name, parent_layers=dict())
def to_proto_impl(self, **kwargs):
args = dict()
for each in kwargs:
args[each] = kwargs[each]
for each in self.__kwargs__:
args[each] = self.__kwargs__[each]
return conf_helps.memory(name=self.name, size=self.size, **args)
data = DataLayerV2
fc = __convert_to_v2__('fc_layer', name_prefix='fc', parent_names=['input'])
max_id = __convert_to_v2__(
......@@ -198,6 +222,13 @@ cross_entropy_cost = __convert_to_v2__(
'cross_entropy',
name_prefix='cross_entropy',
parent_names=['input', 'label'])
embedding = __convert_to_v2__(
'embedding_layer', name_prefix='embedding', parent_names=['input'])
last_seq = __convert_to_v2__(
'last_seq', name_prefix='last_seq', parent_names=['input'])
recurrent_group = __convert_to_v2__(
'recurrent_group', name_prefix='recurrent_layer', parent_names=['input'])
memory = MemoryV2
if __name__ == '__main__':
pixel = data(name='pixel', type=data_type.dense_vector(784))
......@@ -208,8 +239,48 @@ if __name__ == '__main__':
cost1 = classification_cost(input=inference, label=label)
cost2 = cross_entropy_cost(input=inference, label=label)
print parse_network(cost1)
print parse_network(cost2)
print parse_network(cost1, cost2)
print parse_network(cost2)
print parse_network(inference, maxid)
mem = memory(name="rnn_state", size=10)
# print parse_network(cost1)
# print parse_network(cost2)
# print parse_network(cost1, cost2)
# print parse_network(cost2)
# print parse_network(inference, maxid)
dict_dim = 10
word_dim = 8
hidden_dim = 8
label_dim = 3
def step(y):
mem = conf_helps.memory(name="rnn_state", size=hidden_dim)
out = conf_helps.fc_layer(
input=[y, mem],
size=hidden_dim,
act=activation.Tanh(),
bias_attr=True,
name="rnn_state")
return out
def test():
data1 = conf_helps.data_layer(name="word", size=dict_dim)
embd = conf_helps.embedding_layer(input=data1, size=word_dim)
conf_helps.recurrent_group(name="rnn", step=step, input=embd)
# print __parse__(test)
# yyyyyyyy
def new_step(y):
mem = memory(name="rnn_state", size=hidden_dim)
out = fc(input=[mem],
step_input=y,
size=hidden_dim,
act=activation.Tanh(),
bias_attr=True,
name="rnn_state")
return out.to_proto(dict())
data1 = data(name="word", type=data_type.integer_value(dict_dim))
embd = embedding(input=data1, size=word_dim)
aaa = recurrent_group(name="rnn", step=new_step, input=embd)
print parse_network(aaa)
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册