Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
37589933
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
37589933
编写于
2月 28, 2017
作者:
Y
Yu Yang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Simplify layer.v2
上级
c679003d
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
61 addition
and
98 deletion
+61
-98
python/paddle/trainer_config_helpers/default_decorators.py
python/paddle/trainer_config_helpers/default_decorators.py
+4
-0
python/paddle/trainer_config_helpers/layers.py
python/paddle/trainer_config_helpers/layers.py
+6
-0
python/paddle/v2/layer.py
python/paddle/v2/layer.py
+50
-93
python/paddle/v2/tests/test_layer.py
python/paddle/v2/tests/test_layer.py
+1
-5
未找到文件。
python/paddle/trainer_config_helpers/default_decorators.py
浏览文件 @
37589933
...
...
@@ -52,6 +52,10 @@ def wrap_param_default(param_names=None,
kwargs
[
name
]
=
default_factory
(
func
)
return
func
(
*
args
,
**
kwargs
)
if
hasattr
(
func
,
'argspec'
):
__wrapper__
.
argspec
=
func
.
argspec
else
:
__wrapper__
.
argspec
=
inspect
.
getargspec
(
func
)
return
__wrapper__
return
__impl__
...
...
python/paddle/trainer_config_helpers/layers.py
浏览文件 @
37589933
...
...
@@ -14,6 +14,7 @@
import
functools
import
collections
import
inspect
from
paddle.trainer.config_parser
import
*
from
.activations
import
LinearActivation
,
SigmoidActivation
,
TanhActivation
,
\
...
...
@@ -316,6 +317,11 @@ def layer_support(*attrs):
val
.
check
(
method
.
__name__
)
return
method
(
*
args
,
**
kwargs
)
if
hasattr
(
method
,
'argspec'
):
wrapper
.
argspec
=
method
.
argspec
else
:
wrapper
.
argspec
=
inspect
.
getargspec
(
method
)
return
wrapper
return
decorator
...
...
python/paddle/v2/layer.py
浏览文件 @
37589933
...
...
@@ -67,6 +67,7 @@ paddle.v2.parameters.create, no longer exposed to users.
"""
import
collections
import
inspect
import
paddle.trainer_config_helpers
as
conf_helps
from
paddle.trainer_config_helpers.config_parser_utils
import
\
...
...
@@ -74,26 +75,14 @@ from paddle.trainer_config_helpers.config_parser_utils import \
from
paddle.trainer_config_helpers.default_decorators
import
wrap_name_default
from
paddle.trainer_config_helpers.default_decorators
import
wrap_act_default
from
paddle.trainer_config_helpers.default_decorators
import
wrap_bias_attr_default
from
paddle.trainer_config_helpers.default_decorators
import
\
wrap_bias_attr_default
from
paddle.trainer_config_helpers.layers
import
layer_support
import
data_type
import
activation
import
attr
__all__
=
[
'parse_network'
,
'data'
,
'fc'
,
'conv_shift'
,
'img_conv'
,
'img_pool'
,
'spp'
,
'maxout'
,
'img_cmrnorm'
,
'batch_norm'
,
'sum_to_one_norm'
,
'recurrent'
,
'lstmemory'
,
'grumemory'
,
'pool'
,
'last_seq'
,
'first_seq'
,
'concat'
,
'seq_concat'
,
'block_expand'
,
'expand'
,
'repeat'
,
'seq_reshape'
,
'addto'
,
'linear_comb'
,
'interpolation'
,
'bilinear_interp'
,
'power'
,
'scaling'
,
'slope_intercept'
,
'tensor'
,
'cos_sim'
,
'trans'
,
'max_id'
,
'sampling_id'
,
'pad'
,
'classification_cost'
,
'cross_entropy_cost'
,
'cross_entropy_with_selfnorm_cost'
,
'regression_cost'
,
'multi_binary_label_cross_entropy_cost'
,
'rank_cost'
,
'lambda_cost'
,
'sum_cost'
,
'huber_cost'
,
'crf'
,
'crf_decoding'
,
'ctc'
,
'warp_ctc'
,
'nce'
,
'hsigmoid'
,
'eos'
]
__all__
=
[
'parse_network'
,
'data'
]
__projection_names__
=
filter
(
lambda
x
:
x
.
endswith
(
'_projection'
),
dir
(
conf_helps
))
...
...
@@ -288,83 +277,51 @@ data = DataLayerV2
AggregateLevel
=
conf_helps
.
layers
.
AggregateLevel
ExpandLevel
=
conf_helps
.
layers
.
ExpandLevel
layer_list
=
[
# [V2LayerImpl, V1_method_name, parent_names]
# fully connected layers
[
'fc'
,
'fc_layer'
,
[
'input'
]],
# conv layers
[
'conv_shift'
,
'conv_shift_layer'
,
[
'a'
,
'b'
]],
[
'img_conv'
,
'img_conv_layer'
,
[
'input'
]],
# image pooling layers
[
'img_pool'
,
'img_pool_layer'
,
[
'input'
]],
[
'spp'
,
'spp_layer'
,
[
'input'
]],
[
'maxout'
,
'maxout_layer'
,
[
'input'
]],
# norm layers
[
'img_cmrnorm'
,
'img_cmrnorm_layer'
,
[
'input'
]],
[
'batch_norm'
,
'batch_norm_layer'
,
[
'input'
]],
[
'sum_to_one_norm'
,
'sum_to_one_norm_layer'
,
[
'input'
]],
# recurrent layers
[
'recurrent'
,
'recurrent_layer'
,
[
'input'
]],
[
'lstmemory'
,
'lstmemory'
,
[
'input'
]],
[
'grumemory'
,
'grumemory'
,
[
'input'
]],
# aggregate layers
[
'pool'
,
'pooling_layer'
,
[
'input'
]],
[
'last_seq'
,
'last_seq'
,
[
'input'
]],
[
'first_seq'
,
'first_seq'
,
[
'input'
]],
[
'concat'
,
'concat_layer'
,
[
'input'
]],
[
'seq_concat'
,
'seq_concat_layer'
,
[
'a'
,
'b'
]],
# reshaping layers
[
'block_expand'
,
'block_expand_layer'
,
[
'input'
]],
[
'expand'
,
'expand_layer'
,
[
'input'
,
'expand_as'
]],
[
'repeat'
,
'repeat_layer'
,
[
'input'
]],
[
'rotate'
,
'rotate_layer'
,
[
'input'
]],
[
'seq_reshape'
,
'seq_reshape_layer'
,
[
'input'
]],
# math layers
[
'addto'
,
'addto_layer'
,
[
'input'
]],
[
'linear_comb'
,
'linear_comb_layer'
,
[
'weights'
,
'vectors'
]],
[
'interpolation'
,
'interpolation_layer'
,
[
'input'
,
'weight'
]],
[
'bilinear_interp'
,
'bilinear_interp_layer'
,
[
'input'
]],
[
'power'
,
'power_layer'
,
[
'input'
,
'weight'
]],
[
'scaling'
,
'scaling_layer'
,
[
'input'
,
'weight'
]],
[
'slope_intercept'
,
'slope_intercept_layer'
,
[
'input'
]],
[
'tensor'
,
'tensor_layer'
,
[
'a'
,
'b'
]],
[
'cos_sim'
,
'cos_sim'
,
[
'a'
,
'b'
]],
[
'trans'
,
'trans_layer'
,
[
'input'
]],
# sampling layers
[
'max_id'
,
'maxid_layer'
,
[
'input'
]],
[
'sampling_id'
,
'sampling_id_layer'
,
[
'input'
]],
# slicing and joining layers
[
'pad'
,
'pad_layer'
,
[
'input'
]],
# cost layers
[
'classification_cost'
,
'classification_cost'
,
[
'input'
,
'label'
,
'weight'
]
],
[
'regression_cost'
,
'regression_cost'
,
[
'input'
,
'label'
,
'weight'
]],
[
'cross_entropy_cost'
,
'cross_entropy'
,
[
'input'
,
'label'
]],
[
'cross_entropy_with_selfnorm_cost'
,
'cross_entropy_with_selfnorm'
,
[
'input'
,
'label'
]
],
[
'multi_binary_label_cross_entropy_cost'
,
'multi_binary_label_cross_entropy'
,
[
'input'
,
'label'
]
],
[
'rank_cost'
,
'rank_cost'
,
[
'left'
,
'right'
,
'label'
,
'weight'
]],
[
'lambda_cost'
,
'lambda_cost'
,
[
'input'
,
'score'
]],
[
'sum_cost'
,
'sum_cost'
,
[
'input'
]],
[
'huber_cost'
,
'huber_cost'
,
[
'input'
,
'label'
]],
[
'crf'
,
'crf_layer'
,
[
'input'
,
'label'
]],
[
'crf_decoding'
,
'crf_decoding_layer'
,
[
'input'
]],
[
'ctc'
,
'ctc_layer'
,
[
'input'
,
'label'
]],
[
'warp_ctc'
,
'warp_ctc_layer'
,
[
'input'
,
'label'
]],
[
'nce'
,
'nce_layer'
,
[
'input'
,
'label'
]],
[
'hsigmoid'
,
'hsigmoid'
,
[
'input'
,
'label'
]],
# check layers
[
'eos'
,
'eos_layer'
,
[
'input'
]]
]
for
l
in
layer_list
:
globals
()[
l
[
0
]]
=
__convert_to_v2__
(
l
[
1
],
l
[
2
])
def
__layer_name_mapping__
(
inname
):
if
inname
in
[
'data_layer'
,
'memory'
,
'mixed_layer'
]:
# Do Not handle these layers
return
elif
inname
==
'maxid_layer'
:
return
'max_id'
elif
inname
.
endswith
(
'memory'
)
or
inname
.
endswith
(
'_seq'
)
or
inname
.
endswith
(
'_sim'
)
or
inname
==
'hsigmoid'
:
return
inname
elif
inname
in
[
'cross_entropy'
,
'multi_binary_label_cross_entropy'
,
'cross_entropy_with_selfnorm'
]:
return
inname
+
"_cost"
elif
inname
.
endswith
(
'_cost'
):
return
inname
elif
inname
.
endswith
(
"_layer"
):
return
inname
[:
-
len
(
"_layer"
)]
def
__layer_name_mapping_parent_names__
(
inname
):
all_args
=
getattr
(
conf_helps
,
inname
).
argspec
.
args
return
filter
(
lambda
x
:
x
in
[
'input1'
,
'input2'
,
'label'
,
'input'
,
'a'
,
'b'
,
'expand_as'
,
'weights'
,
'vectors'
,
'weight'
,
'score'
,
'left'
,
'right'
],
all_args
)
def
__convert_layer__
(
_new_name_
,
_old_name_
,
_parent_names_
):
global
__all__
__all__
.
append
(
_new_name_
)
globals
()[
new_name
]
=
__convert_to_v2__
(
_old_name_
,
_parent_names_
)
for
each_layer_name
in
dir
(
conf_helps
):
new_name
=
__layer_name_mapping__
(
each_layer_name
)
if
new_name
is
not
None
:
parent_names
=
__layer_name_mapping_parent_names__
(
each_layer_name
)
assert
len
(
parent_names
)
!=
0
,
each_layer_name
__convert_layer__
(
new_name
,
each_layer_name
,
parent_names
)
del
parent_names
del
new_name
del
each_layer_name
# convert projection
for
prj
in
__projection_names__
:
...
...
python/paddle/v2/tests/test_layer.py
浏览文件 @
37589933
...
...
@@ -11,17 +11,13 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
difflib
import
unittest
import
paddle.trainer_config_helpers
as
conf_helps
import
paddle.v2.activation
as
activation
import
paddle.v2.attr
as
attr
import
paddle.v2.data_type
as
data_type
import
paddle.v2.layer
as
layer
import
paddle.v2.pooling
as
pooling
from
paddle.trainer_config_helpers.config_parser_utils
import
\
parse_network_config
as
parse_network
pixel
=
layer
.
data
(
name
=
'pixel'
,
type
=
data_type
.
dense_vector
(
128
))
label
=
layer
.
data
(
name
=
'label'
,
type
=
data_type
.
integer_value
(
10
))
...
...
@@ -70,7 +66,7 @@ class ImageLayerTest(unittest.TestCase):
class
AggregateLayerTest
(
unittest
.
TestCase
):
def
test_aggregate_layer
(
self
):
pool
=
layer
.
pool
(
pool
=
layer
.
pool
ing
(
input
=
pixel
,
pooling_type
=
pooling
.
Avg
(),
agg_level
=
layer
.
AggregateLevel
.
EACH_SEQUENCE
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录