Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
623d24ad
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
623d24ad
编写于
2月 24, 2017
作者:
D
dangqingqing
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
convert mixed layer, projection and operator
上级
4311bfed
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
239 addition
and
15 deletion
+239
-15
python/paddle/trainer_config_helpers/layers.py
python/paddle/trainer_config_helpers/layers.py
+2
-0
python/paddle/v2/data_type.py
python/paddle/v2/data_type.py
+2
-2
python/paddle/v2/layer.py
python/paddle/v2/layer.py
+235
-13
未找到文件。
python/paddle/trainer_config_helpers/layers.py
浏览文件 @
623d24ad
...
...
@@ -112,6 +112,7 @@ __all__ = [
'priorbox_layer'
,
'spp_layer'
,
'pad_layer'
,
'layer_support'
,
]
...
...
@@ -708,6 +709,7 @@ class MixedLayerType(LayerOutput):
# update the size which might be computed inside MixedLayer
# according to the operator's output size
self
.
size
=
ml
.
config
.
size
self
.
finalized
=
True
@
wrap_name_default
(
"mixed"
)
...
...
python/paddle/v2/data_type.py
浏览文件 @
623d24ad
...
...
@@ -14,9 +14,9 @@
from
paddle.trainer.PyDataProvider2
import
\
InputType
,
dense_vector
,
sparse_binary_vector
,
\
sparse_vector
,
integer_value
sparse_vector
,
integer_value
,
integer_value_sequence
__all__
=
[
'InputType'
,
'dense_vector'
,
'sparse_binary_vector'
,
'sparse_vector'
,
'integer_value'
'integer_value'
,
'integer_value_sequence'
]
python/paddle/v2/layer.py
浏览文件 @
623d24ad
...
...
@@ -72,16 +72,38 @@ import paddle.trainer_config_helpers as conf_helps
from
paddle.trainer_config_helpers.config_parser_utils
import
\
parse_network_config
as
__parse__
from
paddle.trainer_config_helpers.default_decorators
import
wrap_name_default
from
paddle.trainer_config_helpers.default_decorators
import
wrap_act_default
from
paddle.trainer_config_helpers.default_decorators
import
wrap_bias_attr_default
from
paddle.trainer_config_helpers.layers
import
layer_support
import
data_type
import
activation
import
attr
#import pudb;pudb.set_trace()
__all__
=
[
'parse_network'
,
'data'
,
'fc'
,
'max_id'
,
'classification_cost'
,
'cross_entropy_cost'
,
'cross_entropy_with_selfnorm_cost'
,
'regression_cost'
,
'multi_binary_label_cross_entropy_cost'
,
'rank_cost'
,
'lambda_cost'
,
'sum_cost'
,
'huber_cost'
'parse_network'
,
'data'
,
'fc'
,
'max_id'
,
'classification_cost'
,
'cross_entropy_cost'
,
'cross_entropy_with_selfnorm_cost'
,
'regression_cost'
,
'multi_binary_label_cross_entropy_cost'
,
'rank_cost'
,
'lambda_cost'
,
'sum_cost'
,
'huber_cost'
'full_matrix_projection'
,
'trans_full_matrix_projection'
,
'table_projection'
,
'identity_projection'
,
'scaling_projection'
,
'dotmul_projection'
,
'context_projection'
,
'conv_projection'
,
]
...
...
@@ -101,9 +123,8 @@ def parse_network(*outputs):
class
Layer
(
object
):
def
__init__
(
self
,
name
,
parent_layers
):
def
__init__
(
self
,
name
=
None
,
parent_layers
=
None
):
assert
isinstance
(
parent_layers
,
dict
)
assert
isinstance
(
name
,
basestring
)
self
.
name
=
name
self
.
__parent_layers__
=
parent_layers
...
...
@@ -122,6 +143,9 @@ class Layer(object):
self
.
__parent_layers__
[
layer_name
])
kwargs
[
layer_name
]
=
v1_layer
if
self
.
name
is
None
:
return
self
.
to_proto_impl
(
**
kwargs
)
if
self
.
name
not
in
context
:
context
[
self
.
name
]
=
self
.
to_proto_impl
(
**
kwargs
)
return
context
[
self
.
name
]
...
...
@@ -130,7 +154,7 @@ class Layer(object):
raise
NotImplementedError
()
def
__convert_to_v2__
(
method_name
,
name_prefix
,
parent_names
):
def
__convert_to_v2__
(
method_name
,
name_prefix
=
None
,
parent_names
=
None
):
if
name_prefix
is
not
None
:
wrapper
=
wrap_name_default
(
name_prefix
=
name_prefix
)
else
:
...
...
@@ -160,7 +184,7 @@ def __convert_to_v2__(method_name, name_prefix, parent_names):
args
[
each
]
=
kwargs
[
each
]
for
each
in
self
.
__other_kwargs__
:
args
[
each
]
=
self
.
__other_kwargs__
[
each
]
return
getattr
(
conf_helps
,
method_name
)(
name
=
self
.
name
,
**
args
)
return
getattr
(
conf_helps
,
method_name
)(
**
args
)
return
V2LayerImpl
...
...
@@ -191,6 +215,81 @@ class DataLayerV2(Layer):
return
getattr
(
conf_helps
,
self
.
__method_name__
)(
name
=
self
.
name
,
**
args
)
class
MixedLayerV2
(
Layer
):
"""
This class is use to support `with` grammar. If not, the following code
could convert mixed_layer simply.
mixed = __convert_to_v2__(
'mixed_layer', name_prefix='mixed', parent_names=['input'])
"""
class
AddToSealedMixedLayerExceptionV2
(
Exception
):
def
__init__
(
self
):
Exception
.
__init__
(
self
)
def
__init__
(
self
,
size
=
0
,
input
=
None
,
name
=
None
,
act
=
None
,
bias_attr
=
None
,
layer_attr
=
None
):
self
.
__method_name__
=
'mixed_layer'
self
.
finalized
=
False
self
.
__parent_layers__
=
dict
()
other_kwargs
=
dict
()
self
.
input_name
=
'input'
self
.
__parent_layers__
[
self
.
input_name
]
=
[]
if
input
is
not
None
:
self
.
__parent_layers__
[
self
.
input_name
]
=
input
self
.
name
=
name
other_kwargs
[
'size'
]
=
size
other_kwargs
[
'act'
]
=
act
other_kwargs
[
'bias_attr'
]
=
bias_attr
other_kwargs
[
'layer_attr'
]
=
layer_attr
Layer
.
__init__
(
self
,
name
,
self
.
__parent_layers__
)
self
.
__other_kwargs__
=
other_kwargs
def
__iadd__
(
self
,
other
):
if
not
self
.
finalized
:
self
.
__parent_layers__
[
self
.
input_name
].
append
(
other
)
return
self
else
:
raise
MixedLayerTypeV2
.
AddToSealedMixedLayerExceptionV2
()
def
__enter__
(
self
):
assert
len
(
self
.
__parent_layers__
[
self
.
input_name
])
==
0
return
self
def
__exit__
(
self
,
*
args
,
**
kwargs
):
self
.
finalized
=
True
def
to_proto_impl
(
self
,
**
kwargs
):
args
=
dict
()
for
each
in
kwargs
:
args
[
each
]
=
kwargs
[
each
]
for
each
in
self
.
__other_kwargs__
:
args
[
each
]
=
self
.
__other_kwargs__
[
each
]
return
getattr
(
conf_helps
,
self
.
__method_name__
)(
name
=
self
.
name
,
**
args
)
@
wrap_name_default
(
"mixed"
)
@
wrap_act_default
(
act
=
conf_helps
.
LinearActivation
())
@
wrap_bias_attr_default
(
has_bias
=
False
)
@
layer_support
(
conf_helps
.
layers
.
ERROR_CLIPPING
,
conf_helps
.
layers
.
DROPOUT
)
def
mixed
(
size
=
0
,
name
=
None
,
input
=
None
,
act
=
None
,
bias_attr
=
False
,
layer_attr
=
None
):
return
MixedLayerV2
(
size
,
input
,
name
,
act
,
bias_attr
,
layer_attr
)
data
=
DataLayerV2
fc
=
__convert_to_v2__
(
'fc_layer'
,
name_prefix
=
'fc'
,
parent_names
=
[
'input'
])
max_id
=
__convert_to_v2__
(
...
...
@@ -226,12 +325,124 @@ sum_cost = __convert_to_v2__(
huber_cost
=
__convert_to_v2__
(
'huber_cost'
,
name_prefix
=
'huber_cost'
,
parent_names
=
[
'input'
,
'label'
])
if
__name__
==
'__main__'
:
pixel
=
data
(
name
=
'pixel'
,
type
=
data_type
.
dense_vector
(
784
))
label
=
data
(
name
=
'label'
,
type
=
data_type
.
integer_value
(
10
))
weight
=
data
(
name
=
'weight'
,
type
=
data_type
.
dense_vector
(
10
))
score
=
data
(
name
=
'score'
,
type
=
data_type
.
dense_vector
(
1
))
# convert projection
projection_list
=
[
# [V1_method_name], all the parent_names is `input`
'full_matrix_projection'
,
'trans_full_matrix_projection'
,
'table_projection'
,
'scaling_projection'
,
'dotmul_projection'
,
'context_projection'
,
'conv_projection'
,
'identity_projection'
,
]
for
prj
in
projection_list
:
globals
()[
prj
]
=
__convert_to_v2__
(
prj
,
parent_names
=
[
'input'
])
# convert operator
operator_list
=
[
# [V1_method_name, parent_names],
[
'dotmul_operator'
,
[
'a'
,
'b'
]],
[
'conv_operator'
,
[
'img'
,
'filter'
]]
]
for
op
in
operator_list
:
globals
()[
op
[
0
]]
=
__convert_to_v2__
(
op
[
0
],
parent_names
=
op
[
1
])
def
test_projection
():
"""
TODO: move to tests file
"""
input
=
data
(
name
=
'data'
,
type
=
data_type
.
dense_vector
(
784
))
word
=
data
(
name
=
'word'
,
type
=
data_type
.
integer_value_sequence
(
10000
))
fc0
=
fc
(
input
=
input
,
size
=
100
,
act
=
conf_helps
.
SigmoidActivation
())
fc1
=
fc
(
input
=
input
,
size
=
200
,
act
=
conf_helps
.
SigmoidActivation
())
mixed0
=
mixed
(
size
=
256
,
input
=
[
full_matrix_projection
(
input
=
fc0
),
full_matrix_projection
(
input
=
fc1
)
])
with
mixed
(
size
=
200
)
as
mixed1
:
mixed1
+=
full_matrix_projection
(
input
=
fc0
)
mixed1
+=
identity_projection
(
input
=
fc1
)
table
=
table_projection
(
input
=
word
)
emb0
=
mixed
(
size
=
512
,
input
=
table
)
with
mixed
(
size
=
512
)
as
emb1
:
emb1
+=
table
scale
=
scaling_projection
(
input
=
fc0
)
scale0
=
mixed
(
size
=
100
,
input
=
scale
)
with
mixed
(
size
=
100
)
as
scale1
:
scale1
+=
scale
dotmul
=
dotmul_projection
(
input
=
fc0
)
dotmul0
=
mixed
(
size
=
100
,
input
=
dotmul
)
with
mixed
(
size
=
100
)
as
dotmul1
:
dotmul1
+=
dotmul
context
=
context_projection
(
input
=
fc0
,
context_len
=
5
)
context0
=
mixed
(
size
=
100
,
input
=
context
)
with
mixed
(
size
=
100
)
as
context1
:
context1
+=
context
conv
=
conv_projection
(
input
=
input
,
filter_size
=
1
,
num_channels
=
1
,
num_filters
=
128
,
stride
=
1
,
padding
=
0
)
conv0
=
mixed
(
input
=
conv
,
bias_attr
=
True
)
with
mixed
(
bias_attr
=
True
)
as
conv1
:
conv1
+=
conv
print
parse_network
(
mixed0
)
print
parse_network
(
mixed1
)
print
parse_network
(
emb0
)
print
parse_network
(
emb1
)
print
parse_network
(
scale0
)
print
parse_network
(
scale1
)
print
parse_network
(
dotmul0
)
print
parse_network
(
dotmul1
)
print
parse_network
(
conv0
)
print
parse_network
(
conv1
)
def
test_operator
():
"""
TODO: move to tests file
"""
ipt0
=
data
(
name
=
'data'
,
type
=
data_type
.
dense_vector
(
784
))
ipt1
=
data
(
name
=
'word'
,
type
=
data_type
.
dense_vector
(
128
))
fc0
=
fc
(
input
=
ipt0
,
size
=
100
,
act
=
conf_helps
.
SigmoidActivation
())
fc1
=
fc
(
input
=
ipt0
,
size
=
100
,
act
=
conf_helps
.
SigmoidActivation
())
dotmul_op
=
dotmul_operator
(
a
=
fc0
,
b
=
fc1
)
dotmul0
=
mixed
(
input
=
dotmul_op
)
with
mixed
()
as
dotmul1
:
dotmul1
+=
dotmul_op
conv
=
conv_operator
(
img
=
ipt0
,
filter
=
ipt1
,
filter_size
=
1
,
num_channels
=
1
,
num_filters
=
128
,
stride
=
1
,
padding
=
0
)
conv0
=
mixed
(
input
=
conv
)
with
mixed
()
as
conv1
:
conv1
+=
conv
print
parse_network
(
dotmul0
)
print
parse_network
(
dotmul1
)
print
parse_network
(
conv0
)
print
parse_network
(
conv1
)
def
test_cost
(
pixel
,
label
,
weight
,
score
):
hidden
=
fc
(
input
=
pixel
,
size
=
100
,
act
=
activation
.
Sigmoid
(),
...
...
@@ -255,3 +466,14 @@ if __name__ == '__main__':
print
parse_network
(
cost5
,
cost6
)
print
parse_network
(
cost7
,
cost8
,
cost9
,
cost10
,
cost11
)
print
parse_network
(
inference
,
maxid
)
if
__name__
==
'__main__'
:
pixel
=
data
(
name
=
'pixel'
,
type
=
data_type
.
dense_vector
(
784
))
label
=
data
(
name
=
'label'
,
type
=
data_type
.
integer_value
(
10
))
weight
=
data
(
name
=
'weight'
,
type
=
data_type
.
dense_vector
(
10
))
score
=
data
(
name
=
'score'
,
type
=
data_type
.
dense_vector
(
1
))
test_cost
(
pixel
,
label
,
weight
,
score
)
test_projection
()
test_operator
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录