提交 623d24ad 编写于 作者: D dangqingqing

convert mixed layer, projection and operator

上级 4311bfed
......@@ -112,6 +112,7 @@ __all__ = [
'priorbox_layer',
'spp_layer',
'pad_layer',
'layer_support',
]
......@@ -708,6 +709,7 @@ class MixedLayerType(LayerOutput):
# update the size which might be computed inside MixedLayer
# according to the operator's output size
self.size = ml.config.size
self.finalized = True
@wrap_name_default("mixed")
......
......@@ -14,9 +14,9 @@
from paddle.trainer.PyDataProvider2 import \
InputType, dense_vector, sparse_binary_vector,\
sparse_vector, integer_value
sparse_vector, integer_value, integer_value_sequence
__all__ = [
'InputType', 'dense_vector', 'sparse_binary_vector', 'sparse_vector',
'integer_value'
'integer_value', 'integer_value_sequence'
]
......@@ -72,16 +72,38 @@ import paddle.trainer_config_helpers as conf_helps
from paddle.trainer_config_helpers.config_parser_utils import \
parse_network_config as __parse__
from paddle.trainer_config_helpers.default_decorators import wrap_name_default
from paddle.trainer_config_helpers.default_decorators import wrap_act_default
from paddle.trainer_config_helpers.default_decorators import wrap_bias_attr_default
from paddle.trainer_config_helpers.layers import layer_support
import data_type
import activation
import attr
#import pudb;pudb.set_trace()
__all__ = [
'parse_network', 'data', 'fc', 'max_id', 'classification_cost',
'cross_entropy_cost', 'cross_entropy_with_selfnorm_cost', 'regression_cost',
'multi_binary_label_cross_entropy_cost', 'rank_cost', 'lambda_cost',
'sum_cost', 'huber_cost'
'parse_network',
'data',
'fc',
'max_id',
'classification_cost',
'cross_entropy_cost',
'cross_entropy_with_selfnorm_cost',
'regression_cost',
'multi_binary_label_cross_entropy_cost',
'rank_cost',
'lambda_cost',
'sum_cost',
'huber_cost'
'full_matrix_projection',
'trans_full_matrix_projection',
'table_projection',
'identity_projection',
'scaling_projection',
'dotmul_projection',
'context_projection',
'conv_projection',
]
......@@ -101,9 +123,8 @@ def parse_network(*outputs):
class Layer(object):
def __init__(self, name, parent_layers):
def __init__(self, name=None, parent_layers=None):
assert isinstance(parent_layers, dict)
assert isinstance(name, basestring)
self.name = name
self.__parent_layers__ = parent_layers
......@@ -122,6 +143,9 @@ class Layer(object):
self.__parent_layers__[layer_name])
kwargs[layer_name] = v1_layer
if self.name is None:
return self.to_proto_impl(**kwargs)
if self.name not in context:
context[self.name] = self.to_proto_impl(**kwargs)
return context[self.name]
......@@ -130,7 +154,7 @@ class Layer(object):
raise NotImplementedError()
def __convert_to_v2__(method_name, name_prefix, parent_names):
def __convert_to_v2__(method_name, name_prefix=None, parent_names=None):
if name_prefix is not None:
wrapper = wrap_name_default(name_prefix=name_prefix)
else:
......@@ -160,7 +184,7 @@ def __convert_to_v2__(method_name, name_prefix, parent_names):
args[each] = kwargs[each]
for each in self.__other_kwargs__:
args[each] = self.__other_kwargs__[each]
return getattr(conf_helps, method_name)(name=self.name, **args)
return getattr(conf_helps, method_name)(**args)
return V2LayerImpl
......@@ -191,6 +215,81 @@ class DataLayerV2(Layer):
return getattr(conf_helps, self.__method_name__)(name=self.name, **args)
class MixedLayerV2(Layer):
"""
This class is use to support `with` grammar. If not, the following code
could convert mixed_layer simply.
mixed = __convert_to_v2__(
'mixed_layer', name_prefix='mixed', parent_names=['input'])
"""
class AddToSealedMixedLayerExceptionV2(Exception):
def __init__(self):
Exception.__init__(self)
def __init__(self,
size=0,
input=None,
name=None,
act=None,
bias_attr=None,
layer_attr=None):
self.__method_name__ = 'mixed_layer'
self.finalized = False
self.__parent_layers__ = dict()
other_kwargs = dict()
self.input_name = 'input'
self.__parent_layers__[self.input_name] = []
if input is not None:
self.__parent_layers__[self.input_name] = input
self.name = name
other_kwargs['size'] = size
other_kwargs['act'] = act
other_kwargs['bias_attr'] = bias_attr
other_kwargs['layer_attr'] = layer_attr
Layer.__init__(self, name, self.__parent_layers__)
self.__other_kwargs__ = other_kwargs
def __iadd__(self, other):
if not self.finalized:
self.__parent_layers__[self.input_name].append(other)
return self
else:
raise MixedLayerTypeV2.AddToSealedMixedLayerExceptionV2()
def __enter__(self):
assert len(self.__parent_layers__[self.input_name]) == 0
return self
def __exit__(self, *args, **kwargs):
self.finalized = True
def to_proto_impl(self, **kwargs):
args = dict()
for each in kwargs:
args[each] = kwargs[each]
for each in self.__other_kwargs__:
args[each] = self.__other_kwargs__[each]
return getattr(conf_helps, self.__method_name__)(name=self.name, **args)
@wrap_name_default("mixed")
@wrap_act_default(act=conf_helps.LinearActivation())
@wrap_bias_attr_default(has_bias=False)
@layer_support(conf_helps.layers.ERROR_CLIPPING, conf_helps.layers.DROPOUT)
def mixed(size=0,
name=None,
input=None,
act=None,
bias_attr=False,
layer_attr=None):
return MixedLayerV2(size, input, name, act, bias_attr, layer_attr)
data = DataLayerV2
fc = __convert_to_v2__('fc_layer', name_prefix='fc', parent_names=['input'])
max_id = __convert_to_v2__(
......@@ -226,12 +325,124 @@ sum_cost = __convert_to_v2__(
huber_cost = __convert_to_v2__(
'huber_cost', name_prefix='huber_cost', parent_names=['input', 'label'])
if __name__ == '__main__':
pixel = data(name='pixel', type=data_type.dense_vector(784))
label = data(name='label', type=data_type.integer_value(10))
weight = data(name='weight', type=data_type.dense_vector(10))
score = data(name='score', type=data_type.dense_vector(1))
# convert projection
projection_list = [
# [V1_method_name], all the parent_names is `input`
'full_matrix_projection',
'trans_full_matrix_projection',
'table_projection',
'scaling_projection',
'dotmul_projection',
'context_projection',
'conv_projection',
'identity_projection',
]
for prj in projection_list:
globals()[prj] = __convert_to_v2__(prj, parent_names=['input'])
# convert operator
operator_list = [
# [V1_method_name, parent_names],
['dotmul_operator', ['a', 'b']],
['conv_operator', ['img', 'filter']]
]
for op in operator_list:
globals()[op[0]] = __convert_to_v2__(op[0], parent_names=op[1])
def test_projection():
"""
TODO: move to tests file
"""
input = data(name='data', type=data_type.dense_vector(784))
word = data(name='word', type=data_type.integer_value_sequence(10000))
fc0 = fc(input=input, size=100, act=conf_helps.SigmoidActivation())
fc1 = fc(input=input, size=200, act=conf_helps.SigmoidActivation())
mixed0 = mixed(
size=256,
input=[
full_matrix_projection(input=fc0), full_matrix_projection(input=fc1)
])
with mixed(size=200) as mixed1:
mixed1 += full_matrix_projection(input=fc0)
mixed1 += identity_projection(input=fc1)
table = table_projection(input=word)
emb0 = mixed(size=512, input=table)
with mixed(size=512) as emb1:
emb1 += table
scale = scaling_projection(input=fc0)
scale0 = mixed(size=100, input=scale)
with mixed(size=100) as scale1:
scale1 += scale
dotmul = dotmul_projection(input=fc0)
dotmul0 = mixed(size=100, input=dotmul)
with mixed(size=100) as dotmul1:
dotmul1 += dotmul
context = context_projection(input=fc0, context_len=5)
context0 = mixed(size=100, input=context)
with mixed(size=100) as context1:
context1 += context
conv = conv_projection(
input=input,
filter_size=1,
num_channels=1,
num_filters=128,
stride=1,
padding=0)
conv0 = mixed(input=conv, bias_attr=True)
with mixed(bias_attr=True) as conv1:
conv1 += conv
print parse_network(mixed0)
print parse_network(mixed1)
print parse_network(emb0)
print parse_network(emb1)
print parse_network(scale0)
print parse_network(scale1)
print parse_network(dotmul0)
print parse_network(dotmul1)
print parse_network(conv0)
print parse_network(conv1)
def test_operator():
"""
TODO: move to tests file
"""
ipt0 = data(name='data', type=data_type.dense_vector(784))
ipt1 = data(name='word', type=data_type.dense_vector(128))
fc0 = fc(input=ipt0, size=100, act=conf_helps.SigmoidActivation())
fc1 = fc(input=ipt0, size=100, act=conf_helps.SigmoidActivation())
dotmul_op = dotmul_operator(a=fc0, b=fc1)
dotmul0 = mixed(input=dotmul_op)
with mixed() as dotmul1:
dotmul1 += dotmul_op
conv = conv_operator(
img=ipt0,
filter=ipt1,
filter_size=1,
num_channels=1,
num_filters=128,
stride=1,
padding=0)
conv0 = mixed(input=conv)
with mixed() as conv1:
conv1 += conv
print parse_network(dotmul0)
print parse_network(dotmul1)
print parse_network(conv0)
print parse_network(conv1)
def test_cost(pixel, label, weight, score):
hidden = fc(input=pixel,
size=100,
act=activation.Sigmoid(),
......@@ -255,3 +466,14 @@ if __name__ == '__main__':
print parse_network(cost5, cost6)
print parse_network(cost7, cost8, cost9, cost10, cost11)
print parse_network(inference, maxid)
if __name__ == '__main__':
pixel = data(name='pixel', type=data_type.dense_vector(784))
label = data(name='label', type=data_type.integer_value(10))
weight = data(name='weight', type=data_type.dense_vector(10))
score = data(name='score', type=data_type.dense_vector(1))
test_cost(pixel, label, weight, score)
test_projection()
test_operator()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册