Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
632ad5c9
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
632ad5c9
编写于
2月 27, 2017
作者:
Q
qiaolongfei
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
support sequence_rnn_multi_input
上级
3d28291d
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
178 addition
and
60 deletion
+178
-60
demo/mnist/api_train_v2.py
demo/mnist/api_train_v2.py
+0
-3
python/paddle/trainer/config_parser.py
python/paddle/trainer/config_parser.py
+4
-2
python/paddle/v2/layer.py
python/paddle/v2/layer.py
+26
-4
python/paddle/v2/tests/CMakeLists.txt
python/paddle/v2/tests/CMakeLists.txt
+5
-1
python/paddle/v2/tests/test_layer.py
python/paddle/v2/tests/test_layer.py
+0
-50
python/paddle/v2/tests/test_rnn_layer.py
python/paddle/v2/tests/test_rnn_layer.py
+143
-0
未找到文件。
demo/mnist/api_train_v2.py
浏览文件 @
632ad5c9
...
...
@@ -3,9 +3,6 @@ import paddle.v2 as paddle
import
mnist_util
import
pudb
pudb
.
set_trace
()
def
train_reader
():
train_file
=
'./data/raw_data/train'
...
...
python/paddle/trainer/config_parser.py
浏览文件 @
632ad5c9
...
...
@@ -3474,6 +3474,8 @@ def update_g_config():
for
name
in
g_config
.
model_config
.
output_layer_names
:
assert
name
in
g_layer_map
,
\
'input name "%s" does not correspond to a layer name'
%
name
for
hook
in
_parse_config_hooks
:
hook
()
return
g_config
...
...
@@ -3485,8 +3487,8 @@ def parse_config(trainer_config, config_arg_str):
passed to config script as a dictionary CONFIG_ARGS
'''
init_config_environment
()
for
hook
in
_parse_config_hooks
:
hook
()
#
for hook in _parse_config_hooks:
#
hook()
config_args
=
{}
...
...
python/paddle/v2/layer.py
浏览文件 @
632ad5c9
...
...
@@ -124,11 +124,13 @@ class Layer(object):
return
self
.
to_proto_impl
(
**
kwargs
)
# memory may have the same name with some layer
if
isinstance
(
self
,
MemoryV2
)
or
isinstance
(
self
,
LayerOutputV2
)
:
if
isinstance
(
self
,
MemoryV2
):
return
self
.
to_proto_impl
(
**
kwargs
)
# store v1 API's layer_output in context with the key of it's name.
if
self
.
name
not
in
context
:
context
[
self
.
name
]
=
self
.
to_proto_impl
(
**
kwargs
)
return
context
[
self
.
name
]
def
to_proto_impl
(
self
,
**
kwargs
):
...
...
@@ -200,8 +202,19 @@ class MemoryV2(Layer):
def
__init__
(
self
,
name
,
size
,
**
kwargs
):
self
.
name
=
name
self
.
size
=
size
self
.
__kwargs__
=
kwargs
super
(
MemoryV2
,
self
).
__init__
(
name
=
name
,
parent_layers
=
dict
())
parent_names
=
[
'boot_layer'
]
parent_layers
=
dict
()
other_kwargs
=
dict
()
for
pname
in
parent_names
:
if
kwargs
.
has_key
(
pname
):
parent_layers
[
pname
]
=
kwargs
[
pname
]
for
key
in
kwargs
.
keys
():
if
key
not
in
parent_names
:
other_kwargs
[
key
]
=
kwargs
[
key
]
super
(
MemoryV2
,
self
).
__init__
(
name
=
name
,
parent_layers
=
parent_layers
)
self
.
__kwargs__
=
other_kwargs
def
to_proto_impl
(
self
,
**
kwargs
):
args
=
dict
()
...
...
@@ -209,10 +222,16 @@ class MemoryV2(Layer):
args
[
each
]
=
kwargs
[
each
]
for
each
in
self
.
__kwargs__
:
args
[
each
]
=
self
.
__kwargs__
[
each
]
return
conf_helps
.
memory
(
name
=
self
.
name
,
size
=
self
.
size
,
**
args
)
class
LayerOutputV2
(
Layer
):
"""
LayerOutputV2 is used to store the result of LayerOutput in v1 api.
It will not store it's parents because layer_output has been parsed already.
"""
def
__init__
(
self
,
layer_output
):
assert
isinstance
(
layer_output
,
conf_helps
.
LayerOutput
)
self
.
layer_output
=
layer_output
...
...
@@ -239,8 +258,11 @@ class RecurrentGroupV2(Layer):
super
(
RecurrentGroupV2
,
self
).
__init__
(
name
=
name
,
parent_layers
=
parent_layers
)
wrapper
=
wrap_name_default
(
name_prefix
=
'recurrent_group'
)
__init__
=
wrapper
(
__init__
)
def
to_proto_impl
(
self
,
**
kwargs
):
def
in_args_converter
(
in_args
):
def
in_args_converter
(
*
in_args
):
if
not
isinstance
(
in_args
,
collections
.
Sequence
):
in_args
=
[
in_args
]
return
[
LayerOutputV2
(
input
)
for
input
in
in_args
]
...
...
python/paddle/v2/tests/CMakeLists.txt
浏览文件 @
632ad5c9
add_test
(
NAME test_v2_layer
COMMAND
${
PROJ_ROOT
}
/paddle/.set_python_path.sh -d
${
PROJ_ROOT
}
/python/
${
PYTHON_EXECUTABLE
}
${
PROJ_ROOT
}
/python/paddle/v2/tests/test_layer.py
${
PYTHON_EXECUTABLE
}
${
PROJ_ROOT
}
/python/paddle/v2/tests/test_layer.py
)
add_test
(
NAME test_v2_rnn_layer
COMMAND
${
PROJ_ROOT
}
/paddle/.set_python_path.sh -d
${
PROJ_ROOT
}
/python/
${
PYTHON_EXECUTABLE
}
${
PROJ_ROOT
}
/python/paddle/v2/tests/test_rnn_layer.py
)
python/paddle/v2/tests/test_layer.py
浏览文件 @
632ad5c9
...
...
@@ -11,16 +11,12 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
difflib
import
unittest
import
paddle.trainer_config_helpers
as
conf_helps
import
paddle.v2.activation
as
activation
import
paddle.v2.attr
as
attr
import
paddle.v2.data_type
as
data_type
import
paddle.v2.layer
as
layer
from
paddle.trainer_config_helpers.config_parser_utils
import
\
parse_network_config
as
parse_network
pixel
=
layer
.
data
(
name
=
'pixel'
,
type
=
data_type
.
dense_vector
(
784
))
label
=
layer
.
data
(
name
=
'label'
,
type
=
data_type
.
integer_value
(
10
))
...
...
@@ -57,51 +53,5 @@ class CostLayerTest(unittest.TestCase):
print
layer
.
parse_network
(
cost7
,
cost8
,
cost9
,
cost10
,
cost11
)
class
RNNTest
(
unittest
.
TestCase
):
def
test_simple_rnn
(
self
):
dict_dim
=
10
word_dim
=
8
hidden_dim
=
8
def
parse_old_rnn
():
def
step
(
y
):
mem
=
conf_helps
.
memory
(
name
=
"rnn_state"
,
size
=
hidden_dim
)
out
=
conf_helps
.
fc_layer
(
input
=
[
y
,
mem
],
size
=
hidden_dim
,
act
=
activation
.
Tanh
(),
bias_attr
=
True
,
name
=
"rnn_state"
)
return
out
def
test
():
data1
=
conf_helps
.
data_layer
(
name
=
"word"
,
size
=
dict_dim
)
embd
=
conf_helps
.
embedding_layer
(
input
=
data1
,
size
=
word_dim
)
conf_helps
.
recurrent_group
(
name
=
"rnn"
,
step
=
step
,
input
=
embd
)
return
str
(
parse_network
(
test
))
def
parse_new_rnn
():
def
new_step
(
y
):
mem
=
layer
.
memory
(
name
=
"rnn_state"
,
size
=
hidden_dim
)
out
=
layer
.
fc
(
input
=
[
y
,
mem
],
size
=
hidden_dim
,
act
=
activation
.
Tanh
(),
bias_attr
=
True
,
name
=
"rnn_state"
)
return
out
data1
=
layer
.
data
(
name
=
"word"
,
type
=
data_type
.
integer_value
(
dict_dim
))
embd
=
layer
.
embedding
(
input
=
data1
,
size
=
word_dim
)
rnn_layer
=
layer
.
recurrent_group
(
name
=
"rnn"
,
step
=
new_step
,
input
=
embd
)
return
str
(
layer
.
parse_network
(
rnn_layer
))
diff
=
difflib
.
unified_diff
(
parse_old_rnn
().
splitlines
(
1
),
parse_new_rnn
().
splitlines
(
1
))
print
''
.
join
(
diff
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/v2/tests/test_rnn_layer.py
0 → 100644
浏览文件 @
632ad5c9
# Copyright PaddlePaddle contributors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
difflib
import
unittest
import
paddle.trainer_config_helpers
as
conf_helps
import
paddle.v2.activation
as
activation
import
paddle.v2.data_type
as
data_type
import
paddle.v2.layer
as
layer
from
paddle.trainer_config_helpers.config_parser_utils
import
\
parse_network_config
as
parse_network
class
RNNTest
(
unittest
.
TestCase
):
def
test_simple_rnn
(
self
):
dict_dim
=
10
word_dim
=
8
hidden_dim
=
8
def
parse_old_rnn
():
def
step
(
y
):
mem
=
conf_helps
.
memory
(
name
=
"rnn_state"
,
size
=
hidden_dim
)
out
=
conf_helps
.
fc_layer
(
input
=
[
y
,
mem
],
size
=
hidden_dim
,
act
=
activation
.
Tanh
(),
bias_attr
=
True
,
name
=
"rnn_state"
)
return
out
def
test
():
data
=
conf_helps
.
data_layer
(
name
=
"word"
,
size
=
dict_dim
)
embd
=
conf_helps
.
embedding_layer
(
input
=
data
,
size
=
word_dim
)
conf_helps
.
recurrent_group
(
name
=
"rnn"
,
step
=
step
,
input
=
embd
)
return
str
(
parse_network
(
test
))
def
parse_new_rnn
():
def
new_step
(
y
):
mem
=
layer
.
memory
(
name
=
"rnn_state"
,
size
=
hidden_dim
)
out
=
layer
.
fc
(
input
=
[
y
,
mem
],
size
=
hidden_dim
,
act
=
activation
.
Tanh
(),
bias_attr
=
True
,
name
=
"rnn_state"
)
return
out
data
=
layer
.
data
(
name
=
"word"
,
type
=
data_type
.
integer_value
(
dict_dim
))
embd
=
layer
.
embedding
(
input
=
data
,
size
=
word_dim
)
rnn_layer
=
layer
.
recurrent_group
(
name
=
"rnn"
,
step
=
new_step
,
input
=
embd
)
return
str
(
layer
.
parse_network
(
rnn_layer
))
diff
=
difflib
.
unified_diff
(
parse_old_rnn
().
splitlines
(
1
),
parse_new_rnn
().
splitlines
(
1
))
print
''
.
join
(
diff
)
def
test_sequence_rnn_multi_input
(
self
):
dict_dim
=
10
word_dim
=
8
hidden_dim
=
8
label_dim
=
3
def
parse_old_rnn
():
def
step
(
y
,
wid
):
z
=
conf_helps
.
embedding_layer
(
input
=
wid
,
size
=
word_dim
)
mem
=
conf_helps
.
memory
(
name
=
"rnn_state"
,
size
=
hidden_dim
)
out
=
conf_helps
.
fc_layer
(
input
=
[
y
,
z
,
mem
],
size
=
hidden_dim
,
act
=
conf_helps
.
TanhActivation
(),
bias_attr
=
True
,
name
=
"rnn_state"
)
return
out
def
test
():
data
=
conf_helps
.
data_layer
(
name
=
"word"
,
size
=
dict_dim
)
label
=
conf_helps
.
data_layer
(
name
=
"label"
,
size
=
label_dim
)
emb
=
conf_helps
.
embedding_layer
(
input
=
data
,
size
=
word_dim
)
out
=
conf_helps
.
recurrent_group
(
name
=
"rnn"
,
step
=
step
,
input
=
[
emb
,
data
])
rep
=
conf_helps
.
last_seq
(
input
=
out
)
prob
=
conf_helps
.
fc_layer
(
size
=
label_dim
,
input
=
rep
,
act
=
conf_helps
.
SoftmaxActivation
(),
bias_attr
=
True
)
conf_helps
.
outputs
(
conf_helps
.
classification_cost
(
input
=
prob
,
label
=
label
))
return
str
(
parse_network
(
test
))
def
parse_new_rnn
():
def
step
(
y
,
wid
):
z
=
layer
.
embedding
(
input
=
wid
,
size
=
word_dim
)
mem
=
layer
.
memory
(
name
=
"rnn_state"
,
size
=
hidden_dim
)
out
=
layer
.
fc
(
input
=
[
y
,
z
,
mem
],
size
=
hidden_dim
,
act
=
activation
.
Tanh
(),
bias_attr
=
True
,
name
=
"rnn_state"
)
return
out
data
=
layer
.
data
(
name
=
"word"
,
type
=
data_type
.
dense_vector
(
dict_dim
))
label
=
layer
.
data
(
name
=
"label"
,
type
=
data_type
.
dense_vector
(
label_dim
))
emb
=
layer
.
embedding
(
input
=
data
,
size
=
word_dim
)
out
=
layer
.
recurrent_group
(
name
=
"rnn"
,
step
=
step
,
input
=
[
emb
,
data
])
rep
=
layer
.
last_seq
(
input
=
out
)
prob
=
layer
.
fc
(
size
=
label_dim
,
input
=
rep
,
act
=
activation
.
Softmax
(),
bias_attr
=
True
)
cost
=
layer
.
classification_cost
(
input
=
prob
,
label
=
label
)
return
str
(
layer
.
parse_network
(
cost
))
diff
=
difflib
.
unified_diff
(
parse_old_rnn
().
splitlines
(
1
),
parse_new_rnn
().
splitlines
(
1
))
print
''
.
join
(
diff
)
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录