提交 40427979 编写于 作者: Q qiaolongfei

refine code

上级 c49644a4
......@@ -41,10 +41,12 @@ def main():
trainer.train(
train_data_reader=train_reader,
topology=[cost],
topology=cost,
parameters=parameters,
event_handler=event_handler,
batch_size=32) # batch size should be refactor in Data reader
batch_size=32, # batch size should be refactor in Data reader
reader_dict={images.name: 0,
label.name: 1})
if __name__ == '__main__':
......
......@@ -23,7 +23,7 @@ class DataFeeder(DataProviderConverter):
"""
DataFeeder converts the data returned by paddle.reader into a data structure
of Arguments which is defined in the API. The paddle.reader usually returns
a list of mini-batch data entries. Each data entry in the list is one sampe.
a list of mini-batch data entries. Each data entry in the list is one sample.
Each sample is a list or a tuple with one feature or multiple features.
DataFeeder converts this mini-batch data entries into Arguments in order
to feed it to C++ interface.
......
......@@ -13,10 +13,10 @@
# limitations under the License.
from paddle.trainer.PyDataProvider2 import \
InputType, dense_vector, sparse_binary_vector,\
InputType, DataType, dense_vector, sparse_binary_vector,\
sparse_vector, integer_value, integer_value_sequence
__all__ = [
'InputType', 'dense_vector', 'sparse_binary_vector', 'sparse_vector',
'integer_value', 'integer_value_sequence'
'InputType', 'DataType', 'dense_vector', 'sparse_binary_vector',
'sparse_vector', 'integer_value', 'integer_value_sequence'
]
......@@ -284,6 +284,7 @@ def mixed(size=0,
return MixedLayerV2(size, input, name, act, bias_attr, layer_attr)
LayerV2 = Layer
data = DataLayerV2
AggregateLevel = conf_helps.layers.AggregateLevel
ExpandLevel = conf_helps.layers.ExpandLevel
......
......@@ -2,7 +2,7 @@ import numpy as np
import py_paddle.swig_paddle as api
from paddle.proto.ParameterConfig_pb2 import ParameterConfig
import topology as v2_topology
from topology import Topology
__all__ = ['Parameters', 'create']
......@@ -13,7 +13,7 @@ def create(layers):
:param layers:
:return:
"""
topology = v2_topology.Topology(layers)
topology = Topology(layers)
pool = Parameters()
for param in topology.proto().parameters:
pool.__append_config__(param)
......
......@@ -8,5 +8,5 @@ add_test(NAME test_v2_api
add_test(NAME topology_test
COMMAND ${PROJ_ROOT}/paddle/.set_python_path.sh -d ${PROJ_ROOT}/python/
${PYTHON_EXECUTABLE} ${PROJ_ROOT}/python/paddle/v2/tests/topology_test.py
${PYTHON_EXECUTABLE} ${PROJ_ROOT}/python/paddle/v2/tests/test_topology.py
WORKING_DIRECTORY ${PROJ_ROOT}/python/paddle)
......@@ -30,14 +30,19 @@ class TestTopology(unittest.TestCase):
act=conf_helps.SoftmaxActivation())
cost = layer.classification_cost(input=inference, label=label)
topo = topology.Topology(cost)
type = topo.data_type()
self.assertEqual(len(type), 2)
self.assertEqual(type[0][0], "pixel")
self.assertEqual(type[0][1].type, data_type.DataType.Dense)
self.assertEqual(type[0][1].dim, 784)
self.assertEqual(type[1][0], "label")
self.assertEqual(type[1][1].type, data_type.DataType.Index)
self.assertEqual(type[1][1].dim, 10)
data_types = topo.data_type()
self.assertEqual(len(data_types), 2)
pixel_data_type = filter(lambda type: type[0] == "pixel", data_types)
self.assertEqual(len(pixel_data_type), 1)
pixel_data_type = pixel_data_type[0]
self.assertEqual(pixel_data_type[1].type, data_type.DataType.Dense)
self.assertEqual(pixel_data_type[1].dim, 784)
label_data_type = filter(lambda type: type[0] == "label", data_types)
self.assertEqual(len(label_data_type), 1)
label_data_type = label_data_type[0]
self.assertEqual(label_data_type[1].type, data_type.DataType.Index)
self.assertEqual(label_data_type[1].dim, 10)
def test_get_layer(self):
pixel = layer.data(name='pixel', type=data_type.dense_vector(784))
......
......@@ -49,30 +49,30 @@ class Topology(object):
result_layer = []
def find_layer_by_name(layer, layer_name):
if layer.name == layer_name and len(result_layer) == 0:
if len(result_layer) == 1:
return
elif layer.name == layer_name:
result_layer.append(layer)
for parent_layer in layer.__parent_layers__.values():
find_layer_by_name(parent_layer, layer_name)
else:
for parent_layer in layer.__parent_layers__.values():
find_layer_by_name(parent_layer, layer_name)
for layer in self.layers:
find_layer_by_name(layer, name)
assert len(result_layer) == 1
return result_layer[0]
def data_layer(self):
def data_layers(self):
"""
get all data layer
:return:
"""
data_layers = []
data_layers = set()
def find_data_layer(layer):
assert isinstance(layer, layer.LayerV2)
if isinstance(layer, v2_layer.DataLayerV2):
if len(
filter(lambda data_layer: data_layer.name == layer.name,
data_layers)) == 0:
data_layers.append(layer)
data_layers.add(layer)
for parent_layer in layer.__parent_layers__.values():
find_data_layer(parent_layer)
......@@ -85,14 +85,9 @@ class Topology(object):
"""
get data_type from proto, such as:
[('image', dense_vector(768)), ('label', integer_value(10))]
the order is the same with __model_config__.input_layer_names
"""
data_types_lists = []
for layer_name in self.__model_config__.input_layer_names:
data_types_lists.append(
(layer_name, self.get_layer(layer_name).type))
return data_types_lists
return [(data_layer.name, data_layer.type)
for data_layer in self.data_layers()]
def __check_layer_type__(layer):
......
import collections
import py_paddle.swig_paddle as api
from py_paddle import DataProviderConverter
from data_feeder import DataFeeder
from topology import Topology
from . import event as v2_event
from . import optimizer as v2_optimizer
from . import parameters as v2_parameters
from . import topology as v2_topology
__all__ = ['ITrainer', 'SGD']
......@@ -69,7 +68,6 @@ class SGD(ITrainer):
test_data_reader=None,
event_handler=None,
batch_size=32,
data_types=None,
reader_dict=None):
"""
Training method. Will train num_passes of input data.
......@@ -83,13 +81,12 @@ class SGD(ITrainer):
occurred.
:type event_handler: (BaseEvent) => None
:param batch_size: Not important, will be removed after data refactor.
:param data_types: Not important, will be removed after data refactor.
:return:
"""
if event_handler is None:
event_handler = default_event_handler
topology = v2_topology.Topology(topology)
topology = Topology(topology)
__check_train_args__(**locals())
......@@ -109,10 +106,7 @@ class SGD(ITrainer):
assert isinstance(pass_evaluator, api.Evaluator)
out_args = api.Arguments.createArguments(0)
data_types_lists = [data_type[1] for data_type in topology.data_type()]
converter = DataProviderConverter(input_types=data_types_lists)
feeder = DataFeeder(data_types, reader_dict)
feeder = DataFeeder(topology.data_type(), reader_dict)
for pass_id in xrange(num_passes):
event_handler(v2_event.BeginPass(pass_id))
......@@ -195,7 +189,7 @@ def __check_train_args__(train_data_reader, topology, parameters,
raise ValueError('test_data_reader should be a function, which can '
'return a iterator')
if not isinstance(topology, v2_topology.Topology):
if not isinstance(topology, Topology):
raise ValueError('topology should be a model config')
if not isinstance(parameters, v2_parameters.Parameters):
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册