rnn.py 78.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

F
Feiyu Chan 已提交
15
import math
16
from collections.abc import Sequence
17
from functools import partial, reduce
F
Feiyu Chan 已提交
18

19
import numpy as np
20

F
Feiyu Chan 已提交
21
import paddle
22
from paddle import _C_ops, _legacy_C_ops, framework, in_dynamic_mode
23
from paddle.common_ops_import import Variable
24
from paddle.fluid.data_feeder import check_type, check_variable_and_dtype
25
from paddle.fluid.dygraph.base import NON_PERSISTABLE_VAR_NAME_SUFFIX
26 27 28 29 30 31
from paddle.fluid.framework import (
    _non_static_mode,
    default_startup_program,
    in_dygraph_mode,
    program_guard,
)
32
from paddle.fluid.layers import control_flow
Z
zhiboniu 已提交
33
from paddle.framework import core
34 35
from paddle.nn import functional as F
from paddle.nn import initializer as I
L
liu zhengxi 已提交
36
from paddle.tensor.manipulation import tensor_array_to_tensor
37

38
from .container import LayerList
39
from .layers import Layer
Z
zhiboniu 已提交
40

41 42
__all__ = []

F
Feiyu Chan 已提交
43

44 45 46 47 48 49 50
def rnn(
    cell,
    inputs,
    initial_states=None,
    sequence_length=None,
    time_major=False,
    is_reverse=False,
51
    **kwargs,
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
):
    r"""
    rnn creates a recurrent neural network specified by RNNCell `cell`,
    which performs :code:`cell.call()` (for dygraph mode :code:`cell.forward`)
    repeatedly until reaches to the maximum length of `inputs`.

    Parameters:
        cell(RNNCellBase): An instance of `RNNCellBase`.
        inputs(Tensor): the input sequences.
            If time_major is True, the shape is
            `[time_steps, batch_size, input_size]`
            else the shape is `[batch_size, time_steps, input_size]`.
        initial_states(Tensor|tuple|list, optional): the initial state of the
            rnn cell. Tensor or a possibly nested structure of tensors. If not
            provided, `cell.get_initial_states` would be called to produce
            the initial state. Defaults to None.
        sequence_length (Tensor, optional): shape `[batch_size]`, dtype: int64
            or int32. The valid lengths of input sequences. Defaults to None.
            If `sequence_length` is not None, the inputs are treated as
            padded sequences. In each input sequence, elements whose time step
            index are not less than the valid length are treated as paddings.
        time_major (bool, optional): Whether the first dimension of the input means the
            time steps. Defaults to False.
        is_reverse (bool, optional): Indicate whether to calculate in the reverse
            order of input sequences. Defaults to False.
        **kwargs: Additional keyword arguments to pass to `forward` of the cell.

    Returns:
        outputs (Tensor|list|tuple): the output sequence. Tensor or nested
            structure of Tensors.
            If `time_major` is True, the shape of each tensor in outpus is
            `[time_steps, batch_size, hidden_size]`, else
            `[batch_size, time_steps, hidden_size]`.
        final_states (Tensor|list|tuple): final states. A (possibly nested structure of)
            tensor[s], representing the final state for RNN. It has the same
            structure of intial state. Each tensor in final states has the same
            shape and dtype as the corresponding tensor in initial states.

    Examples:

        .. code-block:: python

            import paddle
            paddle.disable_static()

            cell = paddle.nn.SimpleRNNCell(16, 32)

            inputs = paddle.rand((4, 23, 16))
            prev_h = paddle.randn((4, 32))
            outputs, final_states = paddle.nn.layer.rnn(cell, inputs, prev_h)

    """

    if _non_static_mode():
        return _rnn_dynamic_graph(
            cell,
            inputs,
            initial_states,
            sequence_length,
            time_major,
            is_reverse,
113
            **kwargs,
114 115 116 117 118 119 120 121 122
        )
    else:
        return _rnn_static_graph(
            cell,
            inputs,
            initial_states,
            sequence_length,
            time_major,
            is_reverse,
123
            **kwargs,
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
        )


class ArrayWrapper:
    def __init__(self, x):
        self.array = [x]

    def append(self, x):
        self.array.append(x)
        return self

    def __getitem__(self, item):
        return self.array.__getitem__(item)


def _maybe_copy(state, new_state, step_mask):
    """update rnn state or just pass the old state through"""
    new_state = paddle.tensor.math._multiply_with_axis(
        new_state, step_mask, axis=0
    ) + paddle.tensor.math._multiply_with_axis(state, (1 - step_mask), axis=0)
    return new_state


def _transpose_batch_time(x):
    perm = [1, 0] + list(range(2, len(x.shape)))
    return paddle.transpose(x, perm)


def _rnn_dynamic_graph(
    cell,
    inputs,
    initial_states=None,
    sequence_length=None,
    time_major=False,
    is_reverse=False,
159
    **kwargs,
160 161
):
    time_step_index = 0 if time_major else 1
162
    flat_inputs = paddle.utils.flatten(inputs)
163 164 165 166 167 168 169 170
    time_steps = flat_inputs[0].shape[time_step_index]

    if initial_states is None:
        initial_states = cell.get_initial_states(
            batch_ref=inputs, batch_dim_idx=1 if time_major else 0
        )

    if not time_major:
171
        inputs = paddle.utils.map_structure(_transpose_batch_time, inputs)
172 173

    if sequence_length is not None:
174
        mask = paddle.static.nn.sequence_lod.sequence_mask(
175 176 177 178 179
            sequence_length, maxlen=time_steps, dtype=inputs.dtype
        )
        mask = paddle.transpose(mask, [1, 0])

    if is_reverse:
180 181 182
        inputs = paddle.utils.map_structure(
            lambda x: paddle.reverse(x, axis=[0]), inputs
        )
183 184 185 186 187 188 189 190 191
        mask = (
            paddle.reverse(mask, axis=[0])
            if sequence_length is not None
            else None
        )

    states = initial_states
    outputs = []
    for i in range(time_steps):
192
        step_inputs = paddle.utils.map_structure(lambda x: x[i], inputs)
193 194
        step_outputs, new_states = cell(step_inputs, states, **kwargs)
        if sequence_length is not None:
195
            new_states = paddle.utils.map_structure(
196 197 198 199
                partial(_maybe_copy, step_mask=mask[i]), states, new_states
            )
        states = new_states
        outputs = (
200
            paddle.utils.map_structure(lambda x: ArrayWrapper(x), step_outputs)
201
            if i == 0
202
            else paddle.utils.map_structure(
203 204 205 206
                lambda x, x_array: x_array.append(x), step_outputs, outputs
            )
        )

207
    final_outputs = paddle.utils.map_structure(
208 209 210 211
        lambda x: paddle.stack(x.array, axis=time_step_index), outputs
    )

    if is_reverse:
212
        final_outputs = paddle.utils.map_structure(
213 214 215 216 217 218 219 220 221 222 223 224 225 226
            lambda x: paddle.reverse(x, axis=time_step_index), final_outputs
        )

    final_states = new_states
    return final_outputs, final_states


def _rnn_static_graph(
    cell,
    inputs,
    initial_states=None,
    sequence_length=None,
    time_major=False,
    is_reverse=False,
227
    **kwargs,
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
):
    check_type(inputs, 'inputs', (Variable, list, tuple), 'rnn')
    if isinstance(inputs, (list, tuple)):
        for i, input_x in enumerate(inputs):
            check_variable_and_dtype(
                input_x, 'inputs[' + str(i) + ']', ['float32', 'float64'], 'rnn'
            )
    check_type(
        initial_states,
        'initial_states',
        (Variable, list, tuple, type(None)),
        'rnn',
    )

    check_type(
        sequence_length, 'sequence_length', (Variable, type(None)), 'rnn'
    )

    def _switch_grad(x, stop=False):
        x.stop_gradient = stop
        return x

    if initial_states is None:
        initial_states = cell.get_initial_states(
            batch_ref=inputs, batch_dim_idx=1 if time_major else 0
        )
254
    initial_states = paddle.utils.map_structure(_switch_grad, initial_states)
255 256

    if not time_major:
257
        inputs = paddle.utils.map_structure(_transpose_batch_time, inputs)
258

259
    max_seq_len = paddle.shape(paddle.utils.flatten(inputs)[0])[0]
260
    if sequence_length:
261
        mask = paddle.static.nn.sequence_lod.sequence_mask(
262 263
            sequence_length,
            maxlen=max_seq_len,
264
            dtype=paddle.utils.flatten(initial_states)[0].dtype,
265 266 267
        )
        mask = paddle.transpose(mask, [1, 0])
    if is_reverse:
268 269 270
        inputs = paddle.utils.map_structure(
            lambda x: paddle.reverse(x, axis=[0]), inputs
        )
271 272
        mask = paddle.reverse(mask, axis=[0]) if sequence_length else None

H
hong 已提交
273
    with paddle.fluid.framework.device_guard("cpu"):
J
JYChen 已提交
274
        start_i = paddle.zeros([], dtype="int64")
H
hong 已提交
275 276 277 278 279 280
        end = max_seq_len

        end = paddle.cast(end, "int64")
        cond = start_i < end
    while_op = control_flow.While(cond)

281 282 283
    out_array = paddle.tensor.create_array(
        dtype=paddle.utils.flatten(inputs)[0].dtype
    )
H
hong 已提交
284

285
    init_array = paddle.utils.map_structure(
H
hong 已提交
286 287 288
        lambda x: paddle.tensor.create_array(dtype=x.dtype), initial_states
    )

289
    paddle.utils.map_structure(
H
hong 已提交
290 291 292 293 294 295 296 297 298
        lambda x, y: paddle.tensor.array_write(x, start_i, y),
        initial_states,
        init_array,
    )

    with while_op.block():

        step_in = inputs[start_i]
        # step_in = paddle.fluid.layers.Print( step_in, message="step in")
299
        pre_state = paddle.utils.map_structure(
H
hong 已提交
300 301 302 303 304
            lambda x: paddle.tensor.array_read(x, start_i), init_array
        )
        # pre_state = paddle.fluid.layers.Print( pre_state, message="pre")
        outputs, new_states = cell(step_in, pre_state, **kwargs)
        assert isinstance(outputs, paddle.fluid.framework.Variable)
305
        paddle.utils.assert_same_structure(new_states, pre_state)
306
        if sequence_length:
H
hong 已提交
307 308 309 310 311 312
            step_mask = paddle.unsqueeze(mask[start_i], 1)
            # paddle.fluid.layers.Print( step_mask, message="mask")
            # new_states = map_structure(
            #     partial(_maybe_copy, step_mask=step_mask),
            #     pre_state, new_states
            # )
313
            new_states = paddle.utils.map_structure(
H
hong 已提交
314 315 316
                lambda x, y: (x * step_mask + y * (1.0 - step_mask)),
                new_states,
                pre_state,
317 318
            )

H
hong 已提交
319 320 321 322 323
        paddle.tensor.array_write(outputs, start_i, out_array)

        with paddle.fluid.framework.device_guard("cpu"):

            start_i = paddle.tensor.increment(x=start_i, value=1)
324
        paddle.utils.map_structure(
H
hong 已提交
325 326 327 328 329 330 331
            lambda x, y: paddle.tensor.array_write(x, start_i, y),
            new_states,
            init_array,
        )

        with paddle.fluid.framework.device_guard("cpu"):
            new_cond = paddle.tensor.less_than(start_i, end)
332
            paddle.assign(new_cond, cond)
H
hong 已提交
333

L
liu zhengxi 已提交
334
    out, _ = tensor_array_to_tensor(out_array, axis=0, use_stack=True)
335

336
    all_state = paddle.utils.map_structure(
L
liu zhengxi 已提交
337
        lambda x: tensor_array_to_tensor(x, axis=0, use_stack=True)[0],
H
hong 已提交
338 339 340
        init_array,
    )
    final_outputs = out
341
    final_states = paddle.utils.map_structure(lambda x: x[-1], all_state)
342 343

    if is_reverse:
344
        final_outputs = paddle.utils.map_structure(
345 346 347 348
            lambda x: paddle.reverse(x, axis=[0]), final_outputs
        )

    if not time_major:
349 350 351
        final_outputs = paddle.utils.map_structure(
            _transpose_batch_time, final_outputs
        )
352 353 354 355 356 357 358 359 360 361 362

    return (final_outputs, final_states)


def birnn(
    cell_fw,
    cell_bw,
    inputs,
    initial_states=None,
    sequence_length=None,
    time_major=False,
363
    **kwargs,
364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
):
    r"""
    birnn creates a bidirectional recurrent neural network specified by
    RNNCell `cell_fw` and `cell_bw`, which performs :code:`cell.call()`
    (for dygraph mode :code:`cell.forward`) repeatedly until reaches to
    the maximum length of `inputs` and then concat the outputs for both RNNs
    along the last axis.

    Parameters:
        cell_fw(RNNCellBase): An instance of `RNNCellBase`.
        cell_bw(RNNCellBase): An instance of `RNNCellBase`.
        inputs(Tensor): the input sequences.
            If time_major is True, the shape is
            `[time_steps, batch_size, input_size]`
            else the shape is `[batch_size, time_steps, input_size]`.
        initial_states(tuple, optional): A tuple of initial states of
            `cell_fw` and `cell_bw`.
            If not provided, `cell.get_initial_states` would be called to
            produce initial state for each cell. Defaults to None.
        sequence_length (Tensor, optional): shape `[batch_size]`, dtype: int64
            or int32. The valid lengths of input sequences. Defaults to None.
            If `sequence_length` is not None, the inputs are treated as
            padded sequences. In each input sequence, elements whose time step
            index are not less than the valid length are treated as paddings.
        time_major (bool): Whether the first dimension of the input means the
            time steps. Defaults to False.
        **kwargs: Additional keyword arguments to pass to `forward` of each cell.

    Returns:
        outputs (Tensor): the outputs of the bidirectional RNN. It is the
            concatenation of the outputs from the forward RNN and backward
            RNN along the last axis.
            If time major is True, the shape is `[time_steps, batch_size, size]`,
            else the shape is `[batch_size, time_steps, size]`, where size is
            `cell_fw.hidden_size + cell_bw.hidden_size`.
        final_states (tuple): A tuple of the final states of the forward
            cell and backward cell.

    Examples:

        .. code-block:: python

            import paddle
            paddle.disable_static()

            cell_fw = paddle.nn.LSTMCell(16, 32)
            cell_bw = paddle.nn.LSTMCell(16, 32)

            inputs = paddle.rand((4, 23, 16))
            hf, cf = paddle.rand((4, 32)), paddle.rand((4, 32))
            hb, cb = paddle.rand((4, 32)), paddle.rand((4, 32))
            initial_states = ((hf, cf), (hb, cb))
            outputs, final_states = paddle.nn.layer.birnn(
                cell_fw, cell_bw, inputs, initial_states)

    """

    if initial_states is None:
        states_fw = cell_fw.get_initial_states(
            batch_ref=inputs, batch_dim_idx=1 if time_major else 0
        )
        states_bw = cell_fw.get_initial_states(
            batch_ref=inputs, batch_dim_idx=1 if time_major else 0
        )
    else:
        states_fw, states_bw = initial_states
    outputs_fw, states_fw = rnn(
        cell_fw,
        inputs,
        states_fw,
        sequence_length,
        time_major=time_major,
436
        **kwargs,
437 438 439 440 441 442 443 444 445
    )

    outputs_bw, states_bw = rnn(
        cell_bw,
        inputs,
        states_bw,
        sequence_length,
        time_major=time_major,
        is_reverse=True,
446
        **kwargs,
447 448
    )

449
    outputs = paddle.utils.map_structure(
450 451 452 453 454 455 456
        lambda x, y: paddle.concat([x, y], -1), outputs_fw, outputs_bw
    )

    final_states = (states_fw, states_bw)
    return outputs, final_states


F
Feiyu Chan 已提交
457 458 459 460 461
def split_states(states, bidirectional=False, state_components=1):
    r"""
    Split states of RNN network into possibly nested list or tuple of
    states of each RNN cells of the RNN network.

462
    Parameters:
F
Feiyu Chan 已提交
463 464
        states (Tensor|tuple|list): the concatenated states for RNN network.
            When `state_components` is 1, states in a Tensor with shape
465 466 467 468 469 470 471 472 473 474 475
            `(L*D, N, C)` where `L` is the number of layers of the RNN
            network, `D` is the number of directions of the RNN network(1
            for unidirectional RNNs and 2 for bidirectional RNNs), `N` is
            the batch size of the input to the RNN network, `C` is the
            hidden size of the RNN network.

            When `state_components` is larger than 1, `states` is a tuple of
            `state_components` Tensors that meet the requirements described
            above.

            For SimpleRNNs and GRUs, `state_components` is 1, and for LSTMs,
F
Feiyu Chan 已提交
476
            `state_components` is 2.
477
        bidirectional (bool): whether the state is of a bidirectional RNN
F
Feiyu Chan 已提交
478 479 480
            network. Defaults to False.
        state_components (int): the number of the components of the states. see
            `states` above. Defaults to 1.
481

F
Feiyu Chan 已提交
482
    Returns:
483 484 485
        A nested list or tuple of RNN cell states.
        If `bidirectional` is True, it can be indexed twice to get an RNN
        cell state. The first index indicates the layer, the second index
F
Feiyu Chan 已提交
486 487 488 489
        indicates the direction.
        If `bidirectional` is False, it can be indexed once to get an RNN
        cell state. The index indicates the layer.
        Note that if `state_components` is larger than 1, an RNN cell state
490
        can be indexed one more time to get a tensor of shape(N, C), where
F
Feiyu Chan 已提交
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
        `N` is the batch size of the input to the RNN cell, and `C` is the
        hidden size of the RNN cell.
    """
    if state_components == 1:
        states = paddle.unstack(states)
        if not bidirectional:
            return states
        else:
            return list(zip(states[::2], states[1::2]))
    else:
        assert len(states) == state_components
        states = tuple([paddle.unstack(item) for item in states])
        if not bidirectional:
            return list(zip(*states))
        else:
            states = list(zip(*states))
            return list(zip(states[::2], states[1::2]))


def concat_states(states, bidirectional=False, state_components=1):
    r"""
512
    Concatenate a possibly nested list or tuple of RNN cell states into a
F
Feiyu Chan 已提交
513 514
    compact form.

515
    Parameters:
516 517 518 519
        states (list|tuple): a possibly nested list or tuple of RNN cell
            states.
            If `bidirectional` is True, it can be indexed twice to get an
            RNN cell state. The first index indicates the layer, the second
F
Feiyu Chan 已提交
520 521 522
            index indicates the direction.
            If `bidirectional` is False, it can be indexed once to get an RNN
            cell state. The index indicates the layer.
523 524 525 526 527
            Note that if `state_components` is larger than 1, an RNN cell
            state can be indexed one more time to get a tensor of shape(N, C),
            where `N` is the batch size of the input to the RNN cell, and
            `C` is the hidden size of the RNN cell.
        bidirectional (bool): whether the state is of a bidirectional RNN
F
Feiyu Chan 已提交
528 529 530
            network. Defaults to False.
        state_components (int): the number of the components of the states. see
            `states` above. Defaults to 1.
531

F
Feiyu Chan 已提交
532 533 534
    Returns:
        Concatenated states for RNN network.
        When `state_components` is 1, states in a Tensor with shape
535 536 537 538
        `(L\*D, N, C)` where `L` is the number of layers of the RNN
        network, `D` is the number of directions of the RNN network(1 for
        unidirectional RNNs and 2 for bidirectional RNNs), `N` is the batch
        size of the input to the RNN network, `C` is the hidden size of the
F
Feiyu Chan 已提交
539
        RNN network.
540

F
Feiyu Chan 已提交
541 542
    """
    if state_components == 1:
543
        return paddle.stack(paddle.utils.flatten(states))
F
Feiyu Chan 已提交
544
    else:
545
        states = paddle.utils.flatten(states)
F
Feiyu Chan 已提交
546 547 548
        componnets = []
        for i in range(state_components):
            componnets.append(states[i::state_components])
549
        return tuple([paddle.stack(item) for item in componnets])
F
Feiyu Chan 已提交
550 551 552 553 554 555 556 557 558


class RNNCellBase(Layer):
    r"""
    RNNCellBase is the base class for abstraction representing the calculations
    mapping the input and state to the output and new state. It is suitable to
    and mostly used in RNN.
    """

559 560 561
    def get_initial_states(
        self, batch_ref, shape=None, dtype=None, init_value=0.0, batch_dim_idx=0
    ):
F
Feiyu Chan 已提交
562 563 564
        r"""
        Generate initialized states according to provided shape, data type and
        value.
565 566

        Parameters:
567 568 569
            batch_ref (Tensor): A tensor, which shape would be used to
                determine the batch size, which is used to generate initial
                states. For `batch_ref`'s shape d, `d[batch_dim_idx]` is
F
Feiyu Chan 已提交
570
                treated as batch size.
571 572 573 574
            shape (list|tuple, optional): A (possibly nested structure of) shape[s],
                where a shape is a list/tuple of integer. `-1` (for batch size)
                will be automatically prepended if a shape does not starts with
                it. If None, property `state_shape` will be used. Defaults to
F
Feiyu Chan 已提交
575
                None.
576 577 578 579 580
            dtype (str|list|tuple, optional): A (possibly nested structure of)
                data type[s]. The structure must be same as that of `shape`,
                except when all tensors' in states has the same data type, a
                single data type can be used. If None and property `cell.state_shape`
                is not available, current default floating type of paddle is
F
Feiyu Chan 已提交
581
                used. Defaults to None.
582
            init_value (float, optional): A float value used to initialize states.
F
Feiyu Chan 已提交
583
                Defaults to 0.
584
            batch_dim_idx (int, optional): An integer indicating which
F
Feiyu Chan 已提交
585
                dimension of the of `batch_ref` represents batch. Defaults to 0.
586

F
Feiyu Chan 已提交
587
        Returns:
588
            init_states (Tensor|tuple|list): tensor of the provided shape and
F
Feiyu Chan 已提交
589 590 591 592
                dtype, or list of tensors that each satisfies the requirements,
                packed in the same structure as `shape` and `type` does.
        """
        # TODO: use inputs and batch_size
593
        batch_ref = paddle.utils.flatten(batch_ref)[0]
F
Feiyu Chan 已提交
594 595 596

        def _is_shape_sequence(seq):
            """For shape, list/tuple of integer is the finest-grained objection"""
597
            if isinstance(seq, (list, tuple)):
598 599 600
                if reduce(
                    lambda flag, x: isinstance(x, int) and flag, seq, True
                ):
F
Feiyu Chan 已提交
601 602 603 604
                    return False
            # TODO: Add check for the illegal
            if isinstance(seq, dict):
                return True
605
            return isinstance(seq, Sequence) and not isinstance(seq, str)
F
Feiyu Chan 已提交
606

607
        class Shape:
F
Feiyu Chan 已提交
608 609 610 611 612
            def __init__(self, shape):
                self.shape = shape if shape[0] == -1 else ([-1] + list(shape))

        # nested structure of shapes
        states_shapes = self.state_shape if shape is None else shape
613 614 615 616 617 618
        is_sequence_ori = paddle.utils.layers_utils.is_sequence
        paddle.utils.layers_utils.is_sequence = _is_shape_sequence
        states_shapes = paddle.utils.map_structure(
            lambda shape: Shape(shape), states_shapes
        )
        paddle.utils.layers_utils.is_sequence = is_sequence_ori
F
Feiyu Chan 已提交
619 620 621 622 623 624

        # nested structure of dtypes
        try:
            states_dtypes = self.state_dtype if dtype is None else dtype
        except NotImplementedError:
            states_dtypes = framework.get_default_dtype()
625 626 627 628 629
        if len(paddle.utils.flatten(states_dtypes)) == 1:
            dtype = paddle.utils.flatten(states_dtypes)[0]
            states_dtypes = paddle.utils.map_structure(
                lambda shape: dtype, states_shapes
            )
F
Feiyu Chan 已提交
630

631
        init_states = paddle.utils.map_structure(
632 633 634 635 636 637 638 639 640 641
            lambda shape, dtype: paddle.fluid.layers.fill_constant_batch_size_like(
                input=batch_ref,
                shape=shape.shape,
                dtype=dtype,
                value=init_value,
                input_dim_idx=batch_dim_idx,
            ),
            states_shapes,
            states_dtypes,
        )
F
Feiyu Chan 已提交
642 643 644 645 646 647 648
        return init_states

    @property
    def state_shape(self):
        r"""
        Abstract method (property).
        Used to initialize states.
649
        A (possiblely nested structure of) shape[s], where a shape is a
F
Feiyu Chan 已提交
650 651 652 653 654 655 656
        list/tuple of integers (-1 for batch size would be automatically
        inserted into a shape if shape is not started with it).
        Not necessary to be implemented if states are not initialized by
        `get_initial_states` or the `shape` argument is provided when using
        `get_initial_states`.
        """
        raise NotImplementedError(
657 658
            "Please add implementaion for `state_shape` in the used cell."
        )
F
Feiyu Chan 已提交
659 660 661 662 663 664 665 666 667 668 669 670 671 672

    @property
    def state_dtype(self):
        r"""
        Abstract method (property).
        Used to initialize states.
        A (possiblely nested structure of) data types[s]. The structure must be
        same as that of `shape`, except when all tensors' in states has the same
        data type, a signle data type can be used.
        Not necessary to be implemented if states are not initialized
        by `get_initial_states` or the `dtype` argument is provided when using
        `get_initial_states`.
        """
        raise NotImplementedError(
673 674
            "Please add implementaion for `state_dtype` in the used cell."
        )
F
Feiyu Chan 已提交
675 676 677 678


class SimpleRNNCell(RNNCellBase):
    r"""
679
    Elman RNN (SimpleRNN) cell. Given the inputs and previous states, it
F
Feiyu Chan 已提交
680 681 682 683 684
    computes the outputs and updates states.

    The formula used is as follows:

    .. math::
685
        h_{t} & = act(W_{ih}x_{t} + b_{ih} + W_{hh}h_{t-1} + b_{hh})
686

F
Feiyu Chan 已提交
687
        y_{t} & = h_{t}
688

689
    where :math:`act` is for :attr:`activation`.
F
Feiyu Chan 已提交
690

691
    Please refer to `Finding Structure in Time
F
Feiyu Chan 已提交
692
    <https://crl.ucsd.edu/~elman/Papers/fsit.pdf>`_ for more details.
693

694
    Parameters:
F
Feiyu Chan 已提交
695 696
        input_size (int): The input size.
        hidden_size (int): The hidden size.
697
        activation (str, optional): The activation in the SimpleRNN cell.
F
Feiyu Chan 已提交
698
            It can be `tanh` or `relu`. Defaults to `tanh`.
699
        weight_ih_attr (ParamAttr, optional): The parameter attribute for
700
            :math:`weight_ih`. Default: None.
701
        weight_hh_attr(ParamAttr, optional): The parameter attribute for
702
            :math:`weight_hh`. Default: None.
703
        bias_ih_attr (ParamAttr, optional): The parameter attribute for the
704
            :math:`bias_ih`. Default: None.
705
        bias_hh_attr (ParamAttr, optional): The parameter attribute for the
706
            :math:`bias_hh`. Default: None.
707
        name (str, optional): Name for the operation (optional, default is
F
Feiyu Chan 已提交
708 709
            None). For more information, please refer to :ref:`api_guide_Name`.

710 711 712 713 714
    Variables:
        - **weight_ih** (Parameter): shape (hidden_size, input_size), input to hidden weight, corresponding to :math:`W_{ih}` in the formula.
        - **weight_hh** (Parameter): shape (hidden_size, hidden_size), hidden to hidden weight, corresponding to :math:`W_{hh}` in the formula.
        - **bias_ih** (Parameter): shape (hidden_size, ), input to hidden bias, corresponding to :math:`b_{ih}` in the formula.
        - **bias_hh** (Parameter): shape (hidden_size, ), hidden to hidden bias, corresponding to :math:`b_{hh}` in the formula.
715

F
Feiyu Chan 已提交
716
    Inputs:
717 718
        - **inputs** (Tensor): shape `[batch_size, input_size]`, the input, corresponding to :math:`x_{t}` in the formula.
        - **states** (Tensor, optional): shape `[batch_size, hidden_size]`, the previous hidden state, corresponding to :math:`h_{t-1}` in the formula. When states is None, zero state is used. Defaults to None.
F
Feiyu Chan 已提交
719 720

    Returns:
721 722
        - **outputs** (Tensor): shape `[batch_size, hidden_size]`, the output, corresponding to :math:`h_{t}` in the formula.
        - **states** (Tensor): shape `[batch_size, hidden_size]`, the new hidden state, corresponding to :math:`h_{t}` in the formula.
723

F
Feiyu Chan 已提交
724
    Notes:
725
        All the weights and bias are initialized with `Uniform(-std, std)` by default. Where std = :math:`\frac{1}{\sqrt{hidden\_size}}`. For more information about parameter initialization, please refer to :ref:`api_fluid_ParamAttr`.
F
Feiyu Chan 已提交
726 727 728 729 730 731 732 733 734 735 736 737

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.randn((4, 16))
            prev_h = paddle.randn((4, 32))

            cell = paddle.nn.SimpleRNNCell(16, 32)
            y, h = cell(x, prev_h)
738 739 740
            print(y.shape)

            #[4,32]
F
Feiyu Chan 已提交
741 742 743

    """

744 745 746 747 748 749 750 751 752 753 754
    def __init__(
        self,
        input_size,
        hidden_size,
        activation="tanh",
        weight_ih_attr=None,
        weight_hh_attr=None,
        bias_ih_attr=None,
        bias_hh_attr=None,
        name=None,
    ):
755
        super().__init__()
756 757
        if hidden_size <= 0:
            raise ValueError(
758 759 760 761
                "hidden_size of {} must be greater than 0, but now equals to {}".format(
                    self.__class__.__name__, hidden_size
                )
            )
F
Feiyu Chan 已提交
762 763 764 765
        std = 1.0 / math.sqrt(hidden_size)
        self.weight_ih = self.create_parameter(
            (hidden_size, input_size),
            weight_ih_attr,
766 767
            default_initializer=I.Uniform(-std, std),
        )
F
Feiyu Chan 已提交
768 769 770
        self.weight_hh = self.create_parameter(
            (hidden_size, hidden_size),
            weight_hh_attr,
771 772
            default_initializer=I.Uniform(-std, std),
        )
F
Feiyu Chan 已提交
773
        self.bias_ih = self.create_parameter(
774
            (hidden_size,),
F
Feiyu Chan 已提交
775 776
            bias_ih_attr,
            is_bias=True,
777 778
            default_initializer=I.Uniform(-std, std),
        )
F
Feiyu Chan 已提交
779
        self.bias_hh = self.create_parameter(
780
            (hidden_size,),
F
Feiyu Chan 已提交
781 782
            bias_hh_attr,
            is_bias=True,
783 784
            default_initializer=I.Uniform(-std, std),
        )
F
Feiyu Chan 已提交
785 786 787 788 789 790

        self.input_size = input_size
        self.hidden_size = hidden_size
        if activation not in ["tanh", "relu"]:
            raise ValueError(
                "activation for SimpleRNNCell should be tanh or relu, "
791 792
                "but get {}".format(activation)
            )
F
Feiyu Chan 已提交
793
        self.activation = activation
794
        self._activation_fn = paddle.tanh if activation == "tanh" else F.relu
F
Feiyu Chan 已提交
795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810

    def forward(self, inputs, states=None):
        if states is None:
            states = self.get_initial_states(inputs, self.state_shape)
        pre_h = states
        i2h = paddle.matmul(inputs, self.weight_ih, transpose_y=True)
        if self.bias_ih is not None:
            i2h += self.bias_ih
        h2h = paddle.matmul(pre_h, self.weight_hh, transpose_y=True)
        if self.bias_hh is not None:
            h2h += self.bias_hh
        h = self._activation_fn(i2h + h2h)
        return h, h

    @property
    def state_shape(self):
811
        return (self.hidden_size,)
F
Feiyu Chan 已提交
812

813 814
    def extra_repr(self):
        s = '{input_size}, {hidden_size}'
815
        if self.activation != "tanh":
816 817 818
            s += ', activation={activation}'
        return s.format(**self.__dict__)

F
Feiyu Chan 已提交
819 820 821

class LSTMCell(RNNCellBase):
    r"""
822
    Long-Short Term Memory(LSTM) RNN cell. Given the inputs and previous states,
F
Feiyu Chan 已提交
823 824 825 826 827 828
    it computes the outputs and updates states.

    The formula used is as follows:

    .. math::
        i_{t} & = \sigma(W_{ii}x_{t} + b_{ii} + W_{hi}h_{t-1} + b_{hi})
829

F
Feiyu Chan 已提交
830
        f_{t} & = \sigma(W_{if}x_{t} + b_{if} + W_{hf}h_{t-1} + b_{hf})
831

F
Feiyu Chan 已提交
832
        o_{t} & = \sigma(W_{io}x_{t} + b_{io} + W_{ho}h_{t-1} + b_{ho})
833 834 835 836 837 838 839

        \widetilde{c}_{t} & = \tanh (W_{ig}x_{t} + b_{ig} + W_{hg}h_{t-1} + b_{hg})

        c_{t} & = f_{t} * c_{t-1} + i_{t} * \widetilde{c}_{t}

        h_{t} & = o_{t} * \tanh(c_{t})

F
Feiyu Chan 已提交
840 841
        y_{t} & = h_{t}

842
    where :math:`\sigma` is the sigmoid fucntion, and * is the elemetwise
F
Feiyu Chan 已提交
843 844 845 846 847
    multiplication operator.

    Please refer to `An Empirical Exploration of Recurrent Network Architectures
    <http://proceedings.mlr.press/v37/jozefowicz15.pdf>`_ for more details.

848
    Parameters:
F
Feiyu Chan 已提交
849 850
        input_size (int): The input size.
        hidden_size (int): The hidden size.
851
        weight_ih_attr(ParamAttr, optional): The parameter attribute for
F
Feiyu Chan 已提交
852
            `weight_ih`. Default: None.
853
        weight_hh_attr(ParamAttr, optional): The parameter attribute for
F
Feiyu Chan 已提交
854
            `weight_hh`. Default: None.
855
        bias_ih_attr (ParamAttr, optional): The parameter attribute for the
F
Feiyu Chan 已提交
856
            `bias_ih`. Default: None.
857
        bias_hh_attr (ParamAttr, optional): The parameter attribute for the
F
Feiyu Chan 已提交
858
            `bias_hh`. Default: None.
859
        name (str, optional): Name for the operation (optional, default is
F
Feiyu Chan 已提交
860 861
            None). For more information, please refer to :ref:`api_guide_Name`.

862 863 864 865 866
    Variables:
        - **weight_ih** (Parameter): shape (4 * hidden_size, input_size), input to hidden weight, which corresponds to the concatenation of :math:`W_{ii}, W_{if}, W_{ig}, W_{io}` in the formula.
        - **weight_hh** (Parameter): shape (4 * hidden_size, hidden_size), hidden to hidden weight, which corresponds to the concatenation of :math:`W_{hi}, W_{hf}, W_{hg}, W_{ho}` in the formula.
        - **bias_ih** (Parameter): shape (4 * hidden_size, ), input to hidden bias, which corresponds to the concatenation of :math:`b_{ii}, b_{if}, b_{ig}, b_{io}` in the formula.
        - **bias_hh** (Parameter): shape (4 * hidden_size, ), hidden to hidden bias, swhich corresponds to the concatenation of :math:`b_{hi}, b_{hf}, b_{hg}, b_{ho}` in the formula.
F
Feiyu Chan 已提交
867 868

    Inputs:
869
        - **inputs** (Tensor): shape `[batch_size, input_size]`, the input, corresponding to :math:`x_t` in the formula.
870
        - **states** (list|tuple, optional): a list/tuple of two tensors, each of shape `[batch_size, hidden_size]`, the previous hidden state, corresponding to :math:`h_{t-1}, c_{t-1}` in the formula. When states is None, zero state is used. Defaults to None.
F
Feiyu Chan 已提交
871 872

    Returns:
873 874
        - **outputs** (Tensor): shape `[batch_size, hidden_size]`, the output, corresponding to :math:`h_{t}` in the formula.
        - **states** (tuple): a tuple of two tensors, each of shape `[batch_size, hidden_size]`, the new hidden states, corresponding to :math:`h_{t}, c_{t}` in the formula.
F
Feiyu Chan 已提交
875 876

    Notes:
877 878
        All the weights and bias are initialized with `Uniform(-std, std)` by
        default. Where std = :math:`\frac{1}{\sqrt{hidden\_size}}`. For more
879
        information about parameter initialization, please refer to :ref:`api_fluid_ParamAttr`.
F
Feiyu Chan 已提交
880 881 882 883 884 885 886 887 888 889 890 891 892 893

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.randn((4, 16))
            prev_h = paddle.randn((4, 32))
            prev_c = paddle.randn((4, 32))

            cell = paddle.nn.LSTMCell(16, 32)
            y, (h, c) = cell(x, (prev_h, prev_c))

894 895 896 897 898 899 900 901
            print(y.shape)
            print(h.shape)
            print(c.shape)

            #[4,32]
            #[4,32]
            #[4,32]

F
Feiyu Chan 已提交
902 903
    """

904 905 906 907 908 909 910 911 912 913
    def __init__(
        self,
        input_size,
        hidden_size,
        weight_ih_attr=None,
        weight_hh_attr=None,
        bias_ih_attr=None,
        bias_hh_attr=None,
        name=None,
    ):
914
        super().__init__()
915 916
        if hidden_size <= 0:
            raise ValueError(
917 918 919 920
                "hidden_size of {} must be greater than 0, but now equals to {}".format(
                    self.__class__.__name__, hidden_size
                )
            )
F
Feiyu Chan 已提交
921 922 923 924
        std = 1.0 / math.sqrt(hidden_size)
        self.weight_ih = self.create_parameter(
            (4 * hidden_size, input_size),
            weight_ih_attr,
925 926
            default_initializer=I.Uniform(-std, std),
        )
F
Feiyu Chan 已提交
927 928 929
        self.weight_hh = self.create_parameter(
            (4 * hidden_size, hidden_size),
            weight_hh_attr,
930 931
            default_initializer=I.Uniform(-std, std),
        )
F
Feiyu Chan 已提交
932
        self.bias_ih = self.create_parameter(
933
            (4 * hidden_size,),
F
Feiyu Chan 已提交
934 935
            bias_ih_attr,
            is_bias=True,
936 937
            default_initializer=I.Uniform(-std, std),
        )
F
Feiyu Chan 已提交
938
        self.bias_hh = self.create_parameter(
939
            (4 * hidden_size,),
F
Feiyu Chan 已提交
940 941
            bias_hh_attr,
            is_bias=True,
942 943
            default_initializer=I.Uniform(-std, std),
        )
F
Feiyu Chan 已提交
944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973

        self.hidden_size = hidden_size
        self.input_size = input_size
        self._gate_activation = F.sigmoid
        self._activation = paddle.tanh

    def forward(self, inputs, states=None):
        if states is None:
            states = self.get_initial_states(inputs, self.state_shape)
        pre_hidden, pre_cell = states
        gates = paddle.matmul(inputs, self.weight_ih, transpose_y=True)
        if self.bias_ih is not None:
            gates = gates + self.bias_ih
        gates += paddle.matmul(pre_hidden, self.weight_hh, transpose_y=True)
        if self.bias_hh is not None:
            gates = gates + self.bias_hh

        chunked_gates = paddle.split(gates, num_or_sections=4, axis=-1)

        i = self._gate_activation(chunked_gates[0])
        f = self._gate_activation(chunked_gates[1])
        o = self._gate_activation(chunked_gates[3])
        c = f * pre_cell + i * self._activation(chunked_gates[2])
        h = o * self._activation(c)

        return h, (h, c)

    @property
    def state_shape(self):
        r"""
974 975 976
        The `state_shape` of LSTMCell is a tuple with two shapes:
        `((hidden_size, ), (hidden_size,))`. (-1 for batch size would be
        automatically inserted into shape). These two shapes correspond
F
Feiyu Chan 已提交
977 978
        to :math:`h_{t-1}` and :math:`c_{t-1}` separately.
        """
979
        return ((self.hidden_size,), (self.hidden_size,))
F
Feiyu Chan 已提交
980

981 982 983
    def extra_repr(self):
        return '{input_size}, {hidden_size}'.format(**self.__dict__)

F
Feiyu Chan 已提交
984 985 986

class GRUCell(RNNCellBase):
    r"""
987
    Gated Recurrent Unit (GRU) RNN cell. Given the inputs and previous states,
F
Feiyu Chan 已提交
988 989 990 991
    it computes the outputs and updates states.

    The formula for GRU used is as follows:

992
    ..  math::
F
Feiyu Chan 已提交
993

994
        r_{t} & = \sigma(W_{ir}x_{t} + b_{ir} + W_{hr}h_{t-1} + b_{hr})
995

996
        z_{t} & = \sigma(W_{iz}x_{t} + b_{iz} + W_{hz}h_{t-1} + b_{hz})
997

998
        \widetilde{h}_{t} & = \tanh(W_{ic}x_{t} + b_{ic} + r_{t} * (W_{hc}h_{t-1} + b_{hc}))
999 1000 1001

        h_{t} & = z_{t} * h_{t-1} + (1 - z_{t}) * \widetilde{h}_{t}

F
Feiyu Chan 已提交
1002
        y_{t} & = h_{t}
1003 1004

    where :math:`\sigma` is the sigmoid fucntion, and * is the elemetwise
F
Feiyu Chan 已提交
1005 1006 1007 1008 1009 1010
    multiplication operator.

    Please refer to `An Empirical Exploration of Recurrent Network Architectures
    <http://proceedings.mlr.press/v37/jozefowicz15.pdf>`_ for more details.

    Parameters:
1011
        input_size (int): The input size.
F
Feiyu Chan 已提交
1012
        hidden_size (int): The hidden size.
1013
        weight_ih_attr(ParamAttr, optional): The parameter attribute for
F
Feiyu Chan 已提交
1014
            `weight_ih`. Default: None.
1015
        weight_hh_attr(ParamAttr, optional): The parameter attribute for
F
Feiyu Chan 已提交
1016
            `weight_hh`. Default: None.
1017
        bias_ih_attr (ParamAttr, optional): The parameter attribute for the
F
Feiyu Chan 已提交
1018
            `bias_ih`. Default: None.
1019
        bias_hh_attr (ParamAttr, optional): The parameter attribute for the
F
Feiyu Chan 已提交
1020
            `bias_hh`. Default: None.
1021
        name (str, optional): Name for the operation (optional, default is
F
Feiyu Chan 已提交
1022 1023
            None). For more information, please refer to :ref:`api_guide_Name`.

1024 1025 1026 1027 1028
    Variables:
        - **weight_ih** (Parameter): shape (3 * hidden_size, input_size), input to hidden weight, which corresponds to the concatenation of :math:`W_{ir}, W_{iz}, W_{ic}` in the formula.
        - **weight_hh** (Parameter): shape (3 * hidden_size, hidden_size), hidden to hidden weight, which corresponds to the concatenation of :math:`W_{hr}, W_{hz}, W_{hc}` in the formula.
        - **bias_ih** (Parameter): shape (3 * hidden_size, ), input to hidden bias, which corresponds to the concatenation of :math:`b_{ir}, b_{iz}, b_{ic}` in the formula.
        - **bias_hh** (Parameter): shape (3 * hidden_size, ), hidden to hidden bias, swhich corresponds to the concatenation of :math:`b_{hr}, b_{hz}, b_{hc}` in the formula.
F
Feiyu Chan 已提交
1029 1030

    Inputs:
1031 1032
        - **inputs** (Tensor): A tensor with shape `[batch_size, input_size]`, corresponding to :math:`x_t` in the formula.
        - **states** (Tensor): A tensor with shape `[batch_size, hidden_size]`, corresponding to :math:`h_{t-1}` in the formula.
F
Feiyu Chan 已提交
1033 1034

    Returns:
1035 1036
        - **outputs** (Tensor): shape `[batch_size, hidden_size]`, the output, corresponding to :math:`h_{t}` in the formula.
        - **states** (Tensor): shape `[batch_size, hidden_size]`, the new hidden state, corresponding to :math:`h_{t}` in the formula.
1037

F
Feiyu Chan 已提交
1038
    Notes:
1039 1040
        All the weights and bias are initialized with `Uniform(-std, std)` by
        default. Where std = :math:`\frac{1}{\sqrt{hidden\_size}}`. For more
1041
        information about parameter initialization, please refer to s:ref:`api_fluid_ParamAttr`.
F
Feiyu Chan 已提交
1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.randn((4, 16))
            prev_h = paddle.randn((4, 32))

            cell = paddle.nn.GRUCell(16, 32)
            y, h = cell(x, prev_h)

1055 1056 1057 1058 1059 1060
            print(y.shape)
            print(h.shape)

            #[4,32]
            #[4,32]

F
Feiyu Chan 已提交
1061 1062
    """

1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
    def __init__(
        self,
        input_size,
        hidden_size,
        weight_ih_attr=None,
        weight_hh_attr=None,
        bias_ih_attr=None,
        bias_hh_attr=None,
        name=None,
    ):
1073
        super().__init__()
1074 1075
        if hidden_size <= 0:
            raise ValueError(
1076 1077 1078 1079
                "hidden_size of {} must be greater than 0, but now equals to {}".format(
                    self.__class__.__name__, hidden_size
                )
            )
F
Feiyu Chan 已提交
1080 1081 1082 1083
        std = 1.0 / math.sqrt(hidden_size)
        self.weight_ih = self.create_parameter(
            (3 * hidden_size, input_size),
            weight_ih_attr,
1084 1085
            default_initializer=I.Uniform(-std, std),
        )
F
Feiyu Chan 已提交
1086 1087 1088
        self.weight_hh = self.create_parameter(
            (3 * hidden_size, hidden_size),
            weight_hh_attr,
1089 1090
            default_initializer=I.Uniform(-std, std),
        )
F
Feiyu Chan 已提交
1091
        self.bias_ih = self.create_parameter(
1092
            (3 * hidden_size,),
F
Feiyu Chan 已提交
1093 1094
            bias_ih_attr,
            is_bias=True,
1095 1096
            default_initializer=I.Uniform(-std, std),
        )
F
Feiyu Chan 已提交
1097
        self.bias_hh = self.create_parameter(
1098
            (3 * hidden_size,),
F
Feiyu Chan 已提交
1099 1100
            bias_hh_attr,
            is_bias=True,
1101 1102
            default_initializer=I.Uniform(-std, std),
        )
F
Feiyu Chan 已提交
1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137

        self.hidden_size = hidden_size
        self.input_size = input_size
        self._gate_activation = F.sigmoid
        self._activation = paddle.tanh

    def forward(self, inputs, states=None):
        if states is None:
            states = self.get_initial_states(inputs, self.state_shape)

        pre_hidden = states
        x_gates = paddle.matmul(inputs, self.weight_ih, transpose_y=True)
        if self.bias_ih is not None:
            x_gates = x_gates + self.bias_ih
        h_gates = paddle.matmul(pre_hidden, self.weight_hh, transpose_y=True)
        if self.bias_hh is not None:
            h_gates = h_gates + self.bias_hh

        x_r, x_z, x_c = paddle.split(x_gates, num_or_sections=3, axis=1)
        h_r, h_z, h_c = paddle.split(h_gates, num_or_sections=3, axis=1)

        r = self._gate_activation(x_r + h_r)
        z = self._gate_activation(x_z + h_z)
        c = self._activation(x_c + r * h_c)  # apply reset gate after mm
        h = (pre_hidden - c) * z + c

        return h, h

    @property
    def state_shape(self):
        r"""
        The `state_shape` of GRUCell is a shape `[hidden_size]` (-1 for batch
        size would be automatically inserted into shape). The shape corresponds
        to the shape of :math:`h_{t-1}`.
        """
1138
        return (self.hidden_size,)
F
Feiyu Chan 已提交
1139

1140 1141 1142
    def extra_repr(self):
        return '{input_size}, {hidden_size}'.format(**self.__dict__)

F
Feiyu Chan 已提交
1143 1144 1145

class RNN(Layer):
    r"""
1146 1147
    Wrapper for RNN, which creates a recurrent neural network with an RNN cell.
    It performs :code:`cell.forward()` repeatedly until reaches to the maximum
F
Feiyu Chan 已提交
1148 1149
    length of `inputs`.

1150
    Parameters:
F
Feiyu Chan 已提交
1151 1152 1153 1154 1155 1156 1157
        cell(RNNCellBase): An instance of `RNNCellBase`.
        is_reverse (bool, optional): Indicate whether to calculate in the reverse
            order of input sequences. Defaults to False.
        time_major (bool): Whether the first dimension of the input means the
            time steps. Defaults to False.

    Inputs:
1158 1159 1160
        - **inputs** (Tensor): A (possibly nested structure of) tensor[s]. The input sequences. If time major is False, the shape is `[batch_size, time_steps, input_size]`. If time major is True, the shape is `[time_steps, batch_size, input_size]` where `input_size` is the input size of the cell.
        - **initial_states** (Tensor|list|tuple, optional): Tensor of a possibly nested structure of tensors, representing the initial state for the rnn cell. If not provided, `cell.get_initial_states` would be called to produce the initial states. Defaults to None.
        - **sequence_length** (Tensor, optional): shape `[batch_size]`, dtype: int64 or int32. The valid lengths of input sequences. Defaults to None.If `sequence_length` is not None, the inputs are treated as padded sequences. In each input sequence, elements whose time step index are not less than the valid length are treated as paddings.
1161
        - **kwargs**: Additional keyword arguments to pass to `forward` of the cell.
F
Feiyu Chan 已提交
1162 1163

    Returns:
1164 1165
        - **outputs** (Tensor|list|tuple): the output sequences. If `time_major` is True, the shape is `[time_steps, batch_size, hidden_size]`, else `[batch_size, time_steps, hidden_size]`.
        - **final_states** (Tensor|list|tuple): final states of the cell. Tensor or a possibly nested structure of tensors which has the same structure with intial state. Each tensor in final states has the same shape and dtype as the corresponding tensor in initial states.
1166

F
Feiyu Chan 已提交
1167
    Notes:
V
Vegetable dog 已提交
1168
        This class is a low-level API for wrapping rnn cell into a RNN network.
1169 1170
        Users should take care of the state of the cell. If `initial_states` is
        passed to the `forward` method, make sure that it satisfies the
F
Feiyu Chan 已提交
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
        requirements of the cell.

    Examples:

        .. code-block:: python

            import paddle

            inputs = paddle.rand((4, 23, 16))
            prev_h = paddle.randn((4, 32))

            cell = paddle.nn.SimpleRNNCell(16, 32)
            rnn = paddle.nn.RNN(cell)
            outputs, final_states = rnn(inputs, prev_h)

1186 1187 1188 1189 1190 1191
            print(outputs.shape)
            print(final_states.shape)

            #[4,23,32]
            #[4,32]

F
Feiyu Chan 已提交
1192 1193 1194
    """

    def __init__(self, cell, is_reverse=False, time_major=False):
1195
        super().__init__()
F
Feiyu Chan 已提交
1196 1197 1198 1199 1200 1201 1202
        self.cell = cell
        if not hasattr(self.cell, "call"):
            # for non-dygraph mode, `rnn` api uses cell.call
            self.cell.call = self.cell.forward
        self.is_reverse = is_reverse
        self.time_major = time_major

1203 1204 1205
    def forward(
        self, inputs, initial_states=None, sequence_length=None, **kwargs
    ):
1206
        final_outputs, final_states = rnn(
1207 1208 1209 1210 1211 1212
            self.cell,
            inputs,
            initial_states=initial_states,
            sequence_length=sequence_length,
            time_major=self.time_major,
            is_reverse=self.is_reverse,
1213
            **kwargs,
1214
        )
F
Feiyu Chan 已提交
1215 1216 1217 1218 1219
        return final_outputs, final_states


class BiRNN(Layer):
    r"""
1220 1221 1222
    Wrapper for bidirectional RNN, which builds a bidiretional RNN given the
    forward rnn cell and backward rnn cell. A BiRNN applies forward RNN and
    backward RNN with coresponding cells separately and concats the outputs
F
Feiyu Chan 已提交
1223 1224
    along the last axis.

1225
    Parameters:
F
Feiyu Chan 已提交
1226 1227
        cell_fw (RNNCellBase): A RNNCellBase instance used for forward RNN.
        cell_bw (RNNCellBase): A RNNCellBase instance used for backward RNN.
1228
        time_major (bool, optional): Whether the first dimension of the input means the
F
Feiyu Chan 已提交
1229 1230 1231
            time steps. Defaults to False.

    Inputs:
1232 1233 1234 1235
        - **inputs** (Tensor): the input sequences of both RNN. If time_major is True, the shape of is `[time_steps, batch_size, input_size]`, else the shape is `[batch_size, time_steps, input_size]`, where input_size is the input size of both cells.
        - **initial_states** (list|tuple, optional): A tuple/list of the initial states of the forward cell and backward cell. Defaults to None. If not provided, `cell.get_initial_states` would be called to produce the initial states for each cell. Defaults to None.
        - **sequence_length** (Tensor, optional): shape `[batch_size]`, dtype: int64 or int32. The valid lengths of input sequences. Defaults to None. If `sequence_length` is not None, the inputs are treated as padded sequences. In each input sequence, elements whose time step index are not less than the valid length are treated as paddings.
        - **kwargs**: Additional keyword arguments. Arguments passed to `forward` for each cell.
F
Feiyu Chan 已提交
1236 1237

    Outputs:
1238
        - **outputs** (Tensor): the outputs of the bidirectional RNN. It is the concatenation of the outputs from the forward RNN and backward RNN along the last axis. If time major is True, the shape is `[time_steps, batch_size, size]`, else the shape is `[batch_size, time_steps, size]`, where size is `cell_fw.hidden_size + cell_bw.hidden_size`.
1239
        - **final_states** (tuple): A tuple of the final states of the forward cell and backward cell.
F
Feiyu Chan 已提交
1240 1241

    Notes:
1242 1243 1244
        This class is a low level API for wrapping rnn cells into a BiRNN
        network. Users should take care of the states of the cells.
        If `initial_states` is passed to the `forward` method, make sure that
F
Feiyu Chan 已提交
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
        it satisfies the requirements of the cells.

    Examples:

        .. code-block:: python

            import paddle

            cell_fw = paddle.nn.LSTMCell(16, 32)
            cell_bw = paddle.nn.LSTMCell(16, 32)
            rnn = paddle.nn.BiRNN(cell_fw, cell_bw)

            inputs = paddle.rand((2, 23, 16))
            outputs, final_states = rnn(inputs)

1260 1261 1262 1263 1264 1265
            print(outputs.shape)
            print(final_states[0][0].shape,len(final_states),len(final_states[0]))

            #[4,23,64]
            #[2,32] 2 2

F
Feiyu Chan 已提交
1266 1267 1268
    """

    def __init__(self, cell_fw, cell_bw, time_major=False):
1269
        super().__init__()
F
Feiyu Chan 已提交
1270 1271 1272
        self.cell_fw = cell_fw
        self.cell_bw = cell_bw
        if cell_fw.input_size != cell_bw.input_size:
1273 1274 1275 1276 1277 1278
            raise ValueError(
                "input size of forward cell({}) does not equals"
                "that of backward cell({})".format(
                    cell_fw.input_size, cell_bw.input_size
                )
            )
F
Feiyu Chan 已提交
1279 1280 1281 1282 1283 1284
        for cell in [self.cell_fw, self.cell_bw]:
            if not hasattr(cell, "call"):
                # for non-dygraph mode, `rnn` api uses cell.call
                cell.call = cell.forward
        self.time_major = time_major

1285 1286 1287
    def forward(
        self, inputs, initial_states=None, sequence_length=None, **kwargs
    ):
F
Feiyu Chan 已提交
1288
        if isinstance(initial_states, (list, tuple)):
1289 1290 1291
            assert (
                len(initial_states) == 2
            ), "length of initial_states should be 2 when it is a list/tuple"
F
Feiyu Chan 已提交
1292

1293
        outputs, final_states = birnn(
1294 1295 1296 1297 1298 1299
            self.cell_fw,
            self.cell_bw,
            inputs,
            initial_states,
            sequence_length,
            self.time_major,
1300
            **kwargs,
1301
        )
F
Feiyu Chan 已提交
1302 1303 1304
        return outputs, final_states


1305
class RNNBase(LayerList):
F
Feiyu Chan 已提交
1306
    r"""
1307 1308
    RNNBase class for RNN networks. It provides `forward`, `flatten_parameters`
    and other common methods for SimpleRNN, LSTM and GRU.
F
Feiyu Chan 已提交
1309 1310
    """

1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
    def __init__(
        self,
        mode,
        input_size,
        hidden_size,
        num_layers=1,
        direction="forward",
        time_major=False,
        dropout=0.0,
        weight_ih_attr=None,
        weight_hh_attr=None,
        bias_ih_attr=None,
        bias_hh_attr=None,
    ):
1325
        super().__init__()
1326
        bidirectional_list = ["bidirectional", "bidirect"]
1327 1328 1329 1330
        self.mode = mode
        self.input_size = input_size
        self.hidden_size = hidden_size
        self.dropout = dropout
1331
        self.num_directions = 2 if direction in bidirectional_list else 1
1332 1333 1334 1335 1336 1337 1338 1339
        self.time_major = time_major
        self.num_layers = num_layers
        self.state_components = 2 if mode == "LSTM" else 1

        kwargs = {
            "weight_ih_attr": weight_ih_attr,
            "weight_hh_attr": weight_hh_attr,
            "bias_ih_attr": bias_ih_attr,
1340
            "bias_hh_attr": bias_hh_attr,
1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
        }

        if mode == "LSTM":
            rnn_cls = LSTMCell
        elif mode == "GRU":
            rnn_cls = GRUCell
        else:
            rnn_cls = SimpleRNNCell
            kwargs["activation"] = self.activation

1351 1352
        if direction in ["forward"]:
            is_reverse = False
1353 1354 1355 1356 1357
            cell = rnn_cls(input_size, hidden_size, **kwargs)
            self.append(RNN(cell, is_reverse, time_major))
            for i in range(1, num_layers):
                cell = rnn_cls(hidden_size, hidden_size, **kwargs)
                self.append(RNN(cell, is_reverse, time_major))
1358
        elif direction in bidirectional_list:
1359 1360 1361 1362 1363 1364 1365 1366 1367
            cell_fw = rnn_cls(input_size, hidden_size, **kwargs)
            cell_bw = rnn_cls(input_size, hidden_size, **kwargs)
            self.append(BiRNN(cell_fw, cell_bw, time_major))
            for i in range(1, num_layers):
                cell_fw = rnn_cls(2 * hidden_size, hidden_size, **kwargs)
                cell_bw = rnn_cls(2 * hidden_size, hidden_size, **kwargs)
                self.append(BiRNN(cell_fw, cell_bw, time_major))
        else:
            raise ValueError(
1368
                "direction should be forward or bidirect (or bidirectional), "
1369 1370
                "received direction = {}".format(direction)
            )
1371

1372
        self.could_use_cudnn = True
1373
        self.could_use_cudnn &= len(self.parameters()) == num_layers * 4 * (
1374 1375
            2 if direction in bidirectional_list else 1
        )
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386

        # Expose params as RNN's attribute, which can make it compatible when
        # replacing small ops composed rnn with cpp rnn kernel.
        # Moreover, `jit.to_static` assumes params are added by current layer
        # and wouldn't include sublayer's params in current layer, which also
        # requires these params are added to current layer for `jit.save`.
        param_names = []
        for layer in range(self.num_layers):
            for direction in range(self.num_directions):
                suffix = '_reverse' if direction == 1 else ''
                param_names.extend(['weight_ih_l{}{}', 'weight_hh_l{}{}'])
1387
                if bias_ih_attr is not False:
1388
                    param_names.append('bias_ih_l{}{}')
1389
                if bias_hh_attr is not False:
1390
                    param_names.append('bias_hh_l{}{}')
1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410
                param_names = [x.format(layer, suffix) for x in param_names]
        for name, param in zip(param_names, self.parameters()):
            setattr(self, name, param)

        self.flatten_parameters()

    def flatten_parameters(self):
        """
        Resets parameter data pointer to address in continuous memory block for
        cudnn usage.
        """
        if self.could_use_cudnn:
            # layer.parameters() is depth first and ordered
            # for i in layer: for j in direct: w_ih, w_hh, b_ih, b_hh
            # need to reorganize to cudnn param layout:
            # all bias following all weights
            params = self.parameters(include_sublayers=False)
            shape = [np.prod(param.shape) for param in params]
            self._all_weights = [None] * len(params)
            for i, param in enumerate(params):
1411 1412 1413 1414 1415
                offset = (
                    0
                    if i % 4 < 2
                    else (2 * self.num_layers * self.num_directions)
                )
1416 1417 1418 1419 1420 1421 1422
                layer_idx = i // 4
                self._all_weights[offset + layer_idx * 2 + i % 2] = param
            # Wrap using a list to avoid registed into params and saving, maybe
            # need a better way to handle this later. Use `create_parameter` to
            # add both to main_program and startup_program for static-graph.
            # Use Constant initializer to avoid make effect on random generator.
            self._flat_weight = [
1423 1424 1425 1426 1427
                self.create_parameter(
                    shape=[np.sum(shape)],
                    dtype=params[0].dtype,
                    default_initializer=I.Constant(0.0),
                )
1428 1429 1430 1431
            ]
            # dropout state may also can be hided and avoid saving
            # should dropout state be persistable for static-graph
            self._dropout_state = self.create_variable(
1432 1433
                dtype=core.VarDesc.VarType.UINT8,
                name=f"dropout_state{NON_PERSISTABLE_VAR_NAME_SUFFIX}",
1434
            )
Z
zhiboniu 已提交
1435
            if in_dynamic_mode():
1436
                with paddle.no_grad():
1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447
                    _legacy_C_ops.coalesce_tensor(
                        self._all_weights,
                        self._all_weights,
                        self._flat_weight[0],
                        "copy_data",
                        True,
                        "use_align",
                        False,
                        "dtype",
                        params[0].dtype,
                    )
1448
                    return
1449
            # for static-graph, append coalesce_tensor into startup program
1450 1451 1452
            with program_guard(
                default_startup_program(), default_startup_program()
            ):
Z
zhiboniu 已提交
1453
                with paddle.no_grad():
1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466
                    self._helper.append_op(
                        type="coalesce_tensor",
                        inputs={"Input": self._all_weights},
                        outputs={
                            "Output": self._all_weights,
                            "FusedOutput": self._flat_weight,
                        },
                        attrs={
                            "copy_data": True,
                            "use_align": False,
                            "dtype": params[0].dtype,
                        },
                    )
1467 1468 1469 1470 1471

    def _cudnn_impl(self, inputs, initial_states, sequence_length):
        if not self.time_major:
            inputs = paddle.tensor.transpose(inputs, [1, 0, 2])

Y
YuanRisheng 已提交
1472 1473
        if in_dygraph_mode():
            out, _, state = _C_ops.rnn(
1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
                inputs,
                initial_states,
                self._all_weights,
                sequence_length,
                self._dropout_state,
                self.dropout,
                self.num_directions == 2,
                self.input_size,
                self.hidden_size,
                self.num_layers,
                self.mode,
                0,
                not self.training,
            )
Y
YuanRisheng 已提交
1488
        elif in_dynamic_mode():
1489
            _, _, out, state = _legacy_C_ops.rnn(
1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
                inputs,
                initial_states,
                self._all_weights,
                sequence_length,
                self._dropout_state,
                self.state_components,
                'dropout_prob',
                self.dropout,
                'is_bidirec',
                self.num_directions == 2,
                'input_size',
                self.input_size,
                'hidden_size',
                self.hidden_size,
                'num_layers',
                self.num_layers,
                'mode',
                self.mode,
                'is_test',
                not self.training,
            )
1511 1512 1513 1514 1515 1516 1517
        else:
            out = self._helper.create_variable_for_type_inference(inputs.dtype)
            state = [
                self._helper.create_variable_for_type_inference(inputs.dtype)
                for i in range(self.state_components)
            ]
            reserve = self._helper.create_variable_for_type_inference(
1518 1519
                dtype=core.VarDesc.VarType.UINT8, stop_gradient=True
            )
1520 1521 1522 1523 1524

            inputs = {
                'Input': inputs,
                'WeightList': self._all_weights,
                'PreState': initial_states,
1525
                'SequenceLength': sequence_length,
1526 1527 1528 1529 1530 1531 1532 1533
            }
            attrs = {
                'dropout_prob': self.dropout,
                'is_bidirec': self.num_directions == 2,
                'input_size': self.input_size,
                'hidden_size': self.hidden_size,
                'num_layers': self.num_layers,
                'mode': self.mode,
1534
                'is_test': not self.training,
1535 1536 1537 1538 1539 1540 1541 1542 1543
            }

            outputs = {
                'Out': out,
                'State': state,
                'Reserve': reserve,
                'DropoutState': self._dropout_state,
            }

1544 1545 1546
            self._helper.append_op(
                type="rnn", inputs=inputs, outputs=outputs, attrs=attrs
            )
1547

1548 1549 1550 1551 1552
        out = (
            paddle.tensor.transpose(out, [1, 0, 2])
            if not self.time_major
            else out
        )
G
Guo Sheng 已提交
1553
        return out, tuple(state) if len(state) > 1 else state[0]
1554

F
Feiyu Chan 已提交
1555 1556 1557 1558
    def forward(self, inputs, initial_states=None, sequence_length=None):
        batch_index = 1 if self.time_major else 0
        dtype = inputs.dtype
        if initial_states is None:
1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571
            state_shape = (
                self.num_layers * self.num_directions,
                -1,
                self.hidden_size,
            )
            initial_states = tuple(
                [
                    paddle.fluid.layers.fill_constant_batch_size_like(
                        inputs, state_shape, dtype, 0, batch_index, 1
                    )
                    for _ in range(self.state_components)
                ]
            )
1572
        else:
1573 1574 1575 1576 1577 1578 1579 1580 1581
            initial_states = (
                [initial_states]
                if isinstance(initial_states, paddle.static.Variable)
                else initial_states
            )

        if self.could_use_cudnn and (
            not paddle.device.is_compiled_with_rocm() or sequence_length is None
        ):
1582 1583 1584
            # Add CPU kernel and dispatch in backend later
            return self._cudnn_impl(inputs, initial_states, sequence_length)

1585 1586 1587
        states = split_states(
            initial_states, self.num_directions == 2, self.state_components
        )
F
Feiyu Chan 已提交
1588 1589 1590 1591
        final_states = []

        for i, rnn_layer in enumerate(self):
            if i > 0:
1592 1593 1594 1595 1596 1597
                inputs = F.dropout(
                    inputs,
                    self.dropout,
                    training=self.training,
                    mode="upscale_in_train",
                )
F
Feiyu Chan 已提交
1598 1599 1600 1601
            outputs, final_state = rnn_layer(inputs, states[i], sequence_length)
            final_states.append(final_state)
            inputs = outputs

1602 1603 1604
        final_states = concat_states(
            final_states, self.num_directions == 2, self.state_components
        )
F
Feiyu Chan 已提交
1605 1606
        return outputs, final_states

1607 1608 1609 1610
    def extra_repr(self):
        main_str = '{input_size}, {hidden_size}'
        if self.num_layers != 1:
            main_str += ', num_layers={num_layers}'
1611
        if self.time_major is not False:
1612 1613 1614 1615 1616
            main_str += ', time_major={time_major}'
        if self.dropout != 0:
            main_str += ', dropout={dropout}'
        return main_str.format(**self.__dict__)

F
Feiyu Chan 已提交
1617

1618
class SimpleRNN(RNNBase):
F
Feiyu Chan 已提交
1619
    r"""
1620
    Multilayer Elman network(SimpleRNN). It takes input sequences and initial
F
Feiyu Chan 已提交
1621 1622
    states as inputs, and returns the output sequences and the final states.

1623 1624 1625
    Each layer inside the SimpleRNN maps the input sequences and initial states
    to the output sequences and final states in the following manner: at each
    step, it takes step inputs(:math:`x_{t}`) and previous
F
Feiyu Chan 已提交
1626 1627 1628 1629 1630
    states(:math:`h_{t-1}`) as inputs, and returns step outputs(:math:`y_{t}`)
    and new states(:math:`h_{t}`).

    .. math::

1631
        h_{t} & = act(W_{ih}x_{t} + b_{ih} + W_{hh}h_{t-1} + b_{hh})
1632

F
Feiyu Chan 已提交
1633
        y_{t} & = h_{t}
1634

1635
    where :math:`act` is for :attr:`activation`.
1636 1637

    Using key word arguments to construct is recommended.
F
Feiyu Chan 已提交
1638

1639
    Parameters:
1640 1641 1642
        input_size (int): The input size of :math:`x` for the first layer's cell.
        hidden_size (int): The hidden size of :math:`h` for each layer's cell.
        num_layers (int, optional): Number of recurrent layers. Defaults to 1.
1643 1644
        direction (str, optional): The direction of the network. It can be "forward"
            or "bidirect"(or "bidirectional"). When "bidirect", the way to merge
1645
            outputs of forward and backward is concatenating. Defaults to "forward".
1646 1647
        time_major (bool, optional): Whether the first dimension of the input
            means the time steps. If time_major is True, the shape of Tensor is
1648 1649
            [time_steps,batch_size,input_size], otherwise [batch_size, time_steps,input_size].
            Defaults to False. `time_steps` means the length of input sequence.
1650 1651
        dropout (float, optional): The droput probability. Dropout is applied
            to the input of each layer except for the first layer. The range of
1652
            dropout from 0 to 1. Defaults to 0.
1653
        activation (str, optional): The activation in each SimpleRNN cell. It can be
1654
            `tanh` or `relu`. Defaults to `tanh`.
1655
        weight_ih_attr (ParamAttr, optional): The parameter attribute for
F
Feiyu Chan 已提交
1656
            `weight_ih` of each cell. Defaults to None.
1657
        weight_hh_attr (ParamAttr, optional): The parameter attribute for
F
Feiyu Chan 已提交
1658
            `weight_hh` of each cell. Defaults to None.
1659
        bias_ih_attr (ParamAttr, optional): The parameter attribute for the
F
Feiyu Chan 已提交
1660
            `bias_ih` of each cells. Defaults to None.
1661
        bias_hh_attr (ParamAttr, optional): The parameter attribute for the
F
Feiyu Chan 已提交
1662
            `bias_hh` of each cells. Defaults to None.
1663
        name (str, optional): Name for the operation (optional, default is
F
Feiyu Chan 已提交
1664 1665
            None). For more information, please refer to :ref:`api_guide_Name`.

1666
    Inputs:
1667
        - **inputs** (Tensor): the input sequence. If `time_major` is True, the shape is `[time_steps, batch_size, input_size]`, else, the shape is `[batch_size, time_steps, input_size]`. `time_steps` means the length of the input sequence.
1668 1669
        - **initial_states** (Tensor, optional): the initial state. The shape is `[num_layers * num_directions, batch_size, hidden_size]`. If initial_state is not given, zero initial states are used.
        - **sequence_length** (Tensor, optional): shape `[batch_size]`, dtype: int64 or int32. The valid lengths of input sequences. Defaults to None. If `sequence_length` is not None, the inputs are treated as padded sequences. In each input sequence, elements whose time step index are not less than the valid length are treated as paddings.
F
Feiyu Chan 已提交
1670 1671

    Returns:
1672

1673
        - **outputs** (Tensor): the output sequence. If `time_major` is True, the shape is `[time_steps, batch_size, num_directions * hidden_size]`, else, the shape is `[batch_size, time_steps, num_directions * hidden_size]`. Note that `num_directions` is 2 if direction is "bidirectional" else 1. `time_steps` means the length of the output sequence.
1674

1675
        - **final_states** (Tensor): final states. The shape is `[num_layers * num_directions, batch_size, hidden_size]`. Note that `num_directions` is 2 if direction is "bidirectional" (the index of forward states are 0, 2, 4, 6... and the index of backward states are 1, 3, 5, 7...), else 1.
1676 1677 1678 1679 1680 1681

    Variables:
        - **weight_ih_l[k]**: the learnable input-hidden weights of the k-th layer. If `k = 0`, the shape is `[hidden_size, input_size]`. Otherwise, the shape is `[hidden_size, num_directions * hidden_size]`.
        - **weight_hh_l[k]**: the learnable hidden-hidden weights of the k-th layer, with shape `[hidden_size, hidden_size]`.
        - **bias_ih_l[k]**: the learnable input-hidden bias of the k-th layer, with shape `[hidden_size]`.
        - **bias_hh_l[k]**: the learnable hidden-hidden bias of the k-th layer, with shape `[hidden_size]`.
1682

F
Feiyu Chan 已提交
1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694
    Examples:

        .. code-block:: python

            import paddle

            rnn = paddle.nn.SimpleRNN(16, 32, 2)

            x = paddle.randn((4, 23, 16))
            prev_h = paddle.randn((2, 4, 32))
            y, h = rnn(x, prev_h)

1695 1696 1697 1698 1699 1700
            print(y.shape)
            print(h.shape)

            #[4,23,32]
            #[2,4,32]

F
Feiyu Chan 已提交
1701 1702
    """

1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717
    def __init__(
        self,
        input_size,
        hidden_size,
        num_layers=1,
        direction="forward",
        time_major=False,
        dropout=0.0,
        activation="tanh",
        weight_ih_attr=None,
        weight_hh_attr=None,
        bias_ih_attr=None,
        bias_hh_attr=None,
        name=None,
    ):
1718 1719 1720 1721
        if activation == "tanh":
            mode = "RNN_TANH"
        elif activation == "relu":
            mode = "RNN_RELU"
F
Feiyu Chan 已提交
1722
        else:
1723
            raise ValueError(f"Unknown activation '{activation}'")
1724
        self.activation = activation
1725
        super().__init__(
1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737
            mode,
            input_size,
            hidden_size,
            num_layers,
            direction,
            time_major,
            dropout,
            weight_ih_attr,
            weight_hh_attr,
            bias_ih_attr,
            bias_hh_attr,
        )
F
Feiyu Chan 已提交
1738 1739


1740
class LSTM(RNNBase):
F
Feiyu Chan 已提交
1741
    r"""
1742
    Multilayer LSTM. It takes a sequence and an initial state as inputs, and
F
Feiyu Chan 已提交
1743 1744
    returns the output sequences and the final states.

1745 1746 1747 1748
    Each layer inside the LSTM maps the input sequences and initial states
    to the output sequences and final states in the following manner: at each
    step, it takes step inputs(:math:`x_{t}`) and previous
    states(:math:`h_{t-1}, c_{t-1}`) as inputs, and returns step
F
Feiyu Chan 已提交
1749 1750 1751 1752 1753
    outputs(:math:`y_{t}`) and new states(:math:`h_{t}, c_{t}`).

    .. math::

        i_{t} & = \sigma(W_{ii}x_{t} + b_{ii} + W_{hi}h_{t-1} + b_{hi})
1754

F
Feiyu Chan 已提交
1755
        f_{t} & = \sigma(W_{if}x_{t} + b_{if} + W_{hf}h_{t-1} + b_{hf})
1756

F
Feiyu Chan 已提交
1757
        o_{t} & = \sigma(W_{io}x_{t} + b_{io} + W_{ho}h_{t-1} + b_{ho})
1758 1759 1760 1761 1762 1763 1764

        \widetilde{c}_{t} & = \tanh (W_{ig}x_{t} + b_{ig} + W_{hg}h_{t-1} + b_{hg})

        c_{t} & = f_{t} * c_{t-1} + i_{t} * \widetilde{c}_{t}

        h_{t} & = o_{t} * \tanh(c_{t})

F
Feiyu Chan 已提交
1765 1766
        y_{t} & = h_{t}

1767
    where :math:`\sigma` is the sigmoid fucntion, and * is the elemetwise
F
Feiyu Chan 已提交
1768 1769
    multiplication operator.

1770 1771
    Using key word arguments to construct is recommended.

1772
    Parameters:
1773 1774 1775
        input_size (int): The input size of :math:`x` for the first layer's cell.
        hidden_size (int): The hidden size of :math:`h` for each layer's cell.
        num_layers (int, optional): Number of recurrent layers. Defaults to 1.
1776 1777
        direction (str, optional): The direction of the network. It can be "forward"
            or "bidirect"(or "bidirectional"). When "bidirect", the way to merge
1778
            outputs of forward and backward is concatenating. Defaults to "forward".
1779 1780
        time_major (bool, optional): Whether the first dimension of the input
            means the time steps. If time_major is True, the shape of Tensor is
1781 1782
            [time_steps,batch_size,input_size], otherwise [batch_size, time_steps,input_size].
            Defaults to False. `time_steps` means the length of input sequence.
1783 1784
        dropout (float, optional): The droput probability. Dropout is applied
            to the input of each layer except for the first layer. The range of
1785
            dropout from 0 to 1. Defaults to 0.
1786
        weight_ih_attr (ParamAttr, optional): The parameter attribute for
F
Feiyu Chan 已提交
1787
            `weight_ih` of each cell. Default: None.
1788
        weight_hh_attr (ParamAttr, optional): The parameter attribute for
F
Feiyu Chan 已提交
1789
            `weight_hh` of each cell. Default: None.
1790
        bias_ih_attr (ParamAttr, optional): The parameter attribute for the
F
Feiyu Chan 已提交
1791
            `bias_ih` of each cells. Default: None.
1792
        bias_hh_attr (ParamAttr, optional): The parameter attribute for the
F
Feiyu Chan 已提交
1793
            `bias_hh` of each cells. Default: None.
1794
        name (str, optional): Name for the operation (optional, default is
F
Feiyu Chan 已提交
1795 1796 1797
            None). For more information, please refer to :ref:`api_guide_Name`.

    Inputs:
1798
        - **inputs** (Tensor): the input sequence. If `time_major` is True, the shape is `[time_steps, batch_size, input_size]`, else, the shape is `[batch_size, time_steps, input_size]`. `time_steps` means the length of the input sequence.
1799
        - **initial_states** (list|tuple, optional): the initial state, a list/tuple of (h, c), the shape of each is `[num_layers * num_directions, batch_size, hidden_size]`. If initial_state is not given, zero initial states are used.
1800
        - **sequence_length** (Tensor, optional): shape `[batch_size]`, dtype: int64 or int32. The valid lengths of input sequences. Defaults to None. If `sequence_length` is not None, the inputs are treated as padded sequences. In each input sequence, elements whos time step index are not less than the valid length are treated as paddings.
F
Feiyu Chan 已提交
1801 1802

    Returns:
1803

1804
        - **outputs** (Tensor): the output sequence. If `time_major` is True, the shape is `[time_steps, batch_size, num_directions * hidden_size]`, If `time_major` is False, the shape is `[batch_size, time_steps, num_directions * hidden_size]`. Note that `num_directions` is 2 if direction is "bidirectional" else 1. `time_steps` means the length of the output sequence.
1805

1806
        - **final_states** (tuple): the final state, a tuple of two tensors, h and c. The shape of each is `[num_layers * num_directions, batch_size, hidden_size]`. Note that `num_directions` is 2 if direction is "bidirectional" (the index of forward states are 0, 2, 4, 6... and the index of backward states are 1, 3, 5, 7...), else 1.
1807 1808 1809 1810 1811 1812

    Variables:
        - **weight_ih_l[k]**: the learnable input-hidden weights of the k-th layer. If `k = 0`, the shape is `[hidden_size, input_size]`. Otherwise, the shape is `[hidden_size, num_directions * hidden_size]`.
        - **weight_hh_l[k]**: the learnable hidden-hidden weights of the k-th layer, with shape `[hidden_size, hidden_size]`.
        - **bias_ih_l[k]**: the learnable input-hidden bias of the k-th layer, with shape `[hidden_size]`.
        - **bias_hh_l[k]**: the learnable hidden-hidden bias of the k-th layer, swith shape `[hidden_size]`.
1813

F
Feiyu Chan 已提交
1814
    Examples:
1815

F
Feiyu Chan 已提交
1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826
        .. code-block:: python

            import paddle

            rnn = paddle.nn.LSTM(16, 32, 2)

            x = paddle.randn((4, 23, 16))
            prev_h = paddle.randn((2, 4, 32))
            prev_c = paddle.randn((2, 4, 32))
            y, (h, c) = rnn(x, (prev_h, prev_c))

1827 1828 1829 1830 1831 1832 1833 1834
            print(y.shape)
            print(h.shape)
            print(c.shape)

            #[4,23,32]
            #[2,4,32]
            #[2,4,32]

F
Feiyu Chan 已提交
1835 1836
    """

1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850
    def __init__(
        self,
        input_size,
        hidden_size,
        num_layers=1,
        direction="forward",
        time_major=False,
        dropout=0.0,
        weight_ih_attr=None,
        weight_hh_attr=None,
        bias_ih_attr=None,
        bias_hh_attr=None,
        name=None,
    ):
1851
        super().__init__(
1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863
            "LSTM",
            input_size,
            hidden_size,
            num_layers,
            direction,
            time_major,
            dropout,
            weight_ih_attr,
            weight_hh_attr,
            bias_ih_attr,
            bias_hh_attr,
        )
F
Feiyu Chan 已提交
1864 1865


1866
class GRU(RNNBase):
F
Feiyu Chan 已提交
1867
    r"""
1868
    Multilayer GRU. It takes input sequencse and initial states as inputs, and
F
Feiyu Chan 已提交
1869 1870
    returns the output sequences and the final states.

1871 1872 1873 1874
    Each layer inside the GRU maps the input sequences and initial states
    to the output sequences and final states in the following manner: at each
    step, it takes step inputs(:math:`x_{t}`) and previous
    states(:math:`h_{t-1}`) as inputs, and returns step outputs(:math:`y_{t}`)
F
Feiyu Chan 已提交
1875 1876 1877 1878
    and new states(:math:`h_{t}`).

    .. math::

1879
        r_{t} & = \sigma(W_{ir}x_{t} + b_{ir} + W_{hr}h_{t-1} + b_{hr})
1880

1881
        z_{t} & = \sigma(W_{iz}x_{t} + b_{iz} + W_{hz}h_{t-1} + b_{hz})
1882

1883
        \widetilde{h}_{t} & = \tanh(W_{ic}x_{t} + b_{ic} + r_{t} * (W_{hc}h_{t-1} + b_{hc}))
1884 1885 1886

        h_{t} & = z_{t} * h_{t-1} + (1 - z_{t}) * \widetilde{h}_{t}

F
Feiyu Chan 已提交
1887 1888
        y_{t} & = h_{t}

1889
    where :math:`\sigma` is the sigmoid fucntion, and * is the elemetwise
F
Feiyu Chan 已提交
1890 1891
    multiplication operator.

1892 1893
    Using key word arguments to construct is recommended.

1894
    Parameters:
1895 1896 1897
        input_size (int): The input size of :math:`x` for the first layer's cell.
        hidden_size (int): The hidden size of :math:`h` for each layer's cell.
        num_layers (int, optional): Number of recurrent layers. Defaults to 1.
1898 1899
        direction (str, optional): The direction of the network. It can be "forward"
            or "bidirect"(or "bidirectional"). When "bidirect", the way to merge
1900
            outputs of forward and backward is concatenating. Defaults to "forward".
1901 1902
        time_major (bool, optional): Whether the first dimension of the input
            means the time steps. If time_major is True, the shape of Tensor is
1903 1904
            [time_steps,batch_size,input_size], otherwise [batch_size, time_steps,input_size].
            Defaults to False. `time_steps` means the length of input sequence.
1905 1906
        dropout (float, optional): The droput probability. Dropout is applied
            to the input of each layer except for the first layer. The range of
1907
            dropout from 0 to 1. Defaults to 0.
1908
        weight_ih_attr (ParamAttr, optional): The parameter attribute for
F
Feiyu Chan 已提交
1909
            `weight_ih` of each cell. Default: None.
1910
        weight_hh_attr (ParamAttr, optional): The parameter attribute for
F
Feiyu Chan 已提交
1911
            `weight_hh` of each cell. Default: None.
1912
        bias_ih_attr (ParamAttr, optional): The parameter attribute for the
F
Feiyu Chan 已提交
1913
            `bias_ih` of each cells. Default: None.
1914
        bias_hh_attr (ParamAttr, optional): The parameter attribute for the
F
Feiyu Chan 已提交
1915
            `bias_hh` of each cells. Default: None.
1916
        name (str, optional): Name for the operation (optional, default is
F
Feiyu Chan 已提交
1917 1918 1919
            None). For more information, please refer to :ref:`api_guide_Name`.

    Inputs:
1920
        - **inputs** (Tensor): the input sequence. If `time_major` is True, the shape is `[time_steps, batch_size, input_size]`, else, the shape is `[batch_size, time_steps, input_size]`. `time_steps` means the length of the input sequence.
1921 1922
        - **initial_states** (Tensor, optional): the initial state. The shape is `[num_layers * num_directions, batch_size, hidden_size]`. If initial_state is not given, zero initial states are used. Defaults to None.
        - **sequence_length** (Tensor, optional): shape `[batch_size]`, dtype: int64 or int32. The valid lengths of input sequences. Defaults to None. If `sequence_length` is not None, the inputs are treated as padded sequences. In each input sequence, elements whos time step index are not less than the valid length are treated as paddings.
F
Feiyu Chan 已提交
1923 1924

    Returns:
1925

1926
        - **outputs** (Tensor): the output sequence. If `time_major` is True, the shape is `[time_steps, batch_size, num_directions * hidden_size]`, else, the shape is `[batch_size, time_steps, num_directions * hidden_size]`. Note that `num_directions` is 2 if direction is "bidirectional" else 1. `time_steps` means the length of the output sequence.
1927

1928
        - **final_states** (Tensor): final states. The shape is `[num_layers * num_directions, batch_size, hidden_size]`. Note that `num_directions` is 2 if direction is "bidirectional" (the index of forward states are 0, 2, 4, 6... and the index of backward states are 1, 3, 5, 7...), else 1.
1929 1930 1931 1932 1933 1934

    Variables:
        - **weight_ih_l[k]**: the learnable input-hidden weights of the k-th layer. If `k = 0`, the shape is `[hidden_size, input_size]`. Otherwise, the shape is `[hidden_size, num_directions * hidden_size]`.
        - **weight_hh_l[k]**: the learnable hidden-hidden weights of the k-th layer, with shape `[hidden_size, hidden_size]`.
        - **bias_ih_l[k]**: the learnable input-hidden bias of the k-th layer, with shape `[hidden_size]`.
        - **bias_hh_l[k]**: the learnable hidden-hidden bias of the k-th layer, with shape `[hidden_size]`.
1935

F
Feiyu Chan 已提交
1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947
    Examples:

        .. code-block:: python

            import paddle

            rnn = paddle.nn.GRU(16, 32, 2)

            x = paddle.randn((4, 23, 16))
            prev_h = paddle.randn((2, 4, 32))
            y, h = rnn(x, prev_h)

1948 1949 1950 1951 1952 1953
            print(y.shape)
            print(h.shape)

            #[4,23,32]
            #[2,4,32]

F
Feiyu Chan 已提交
1954 1955
    """

1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969
    def __init__(
        self,
        input_size,
        hidden_size,
        num_layers=1,
        direction="forward",
        time_major=False,
        dropout=0.0,
        weight_ih_attr=None,
        weight_hh_attr=None,
        bias_ih_attr=None,
        bias_hh_attr=None,
        name=None,
    ):
1970
        super().__init__(
1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982
            "GRU",
            input_size,
            hidden_size,
            num_layers,
            direction,
            time_major,
            dropout,
            weight_ih_attr,
            weight_hh_attr,
            bias_ih_attr,
            bias_hh_attr,
        )