test_matmul_op.py 8.2 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

M
Markus Kliegl 已提交
15
import unittest
16

M
Markus Kliegl 已提交
17
import numpy as np
W
wanghuancoder 已提交
18
from eager_op_test import OpTest, paddle_static_guard
19

20
import paddle
21
from paddle import fluid
M
Markus Kliegl 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67


def generate_compatible_shapes(dim_X, dim_Y, transpose_X, transpose_Y):
    BATCH_SIZE = 2
    M = 3
    N = 4
    K = 5
    if (dim_X == 1 and transpose_X) or (dim_Y == 1 and transpose_Y):
        K = 1
    if dim_X == 1:
        if transpose_X:
            shape_X = [M]
        else:
            shape_X = [K]
    if dim_Y == 1:
        if transpose_Y:
            shape_Y = [N]
        else:
            shape_Y = [K]
    if dim_X >= 2:
        if transpose_X:
            shape_X = [K, M]
        else:
            shape_X = [M, K]
    if dim_X == 3:
        shape_X = [BATCH_SIZE] + shape_X
    if dim_Y >= 2:
        if transpose_Y:
            shape_Y = [N, K]
        else:
            shape_Y = [K, N]
    if dim_Y == 3:
        shape_Y = [BATCH_SIZE] + shape_Y
    return shape_X, shape_Y


def reference_matmul(X, Y, transpose_X=False, transpose_Y=False):
    """Reference forward implementation using np.matmul."""
    # np.matmul does not support the transpose flags, so we manually
    # transpose X and Y appropriately.
    if transpose_X:
        if X.ndim == 1:
            X = X.reshape((X.size, 1))
        elif X.ndim == 2:
            X = X.T
        else:
68
            dim = list(range(len(X.shape)))
C
chengduoZH 已提交
69 70
            dim[-1], dim[len(X.shape) - 2] = dim[len(X.shape) - 2], dim[-1]
            X = np.transpose(X, tuple(dim))
M
Markus Kliegl 已提交
71 72 73 74
    if transpose_Y:
        if Y.ndim == 1:
            Y = Y.reshape((1, Y.size))
        else:
75
            dim = list(range(len(Y.shape)))
C
chengduoZH 已提交
76 77 78
            dim[-1], dim[len(Y.shape) - 2] = dim[len(Y.shape) - 2], dim[-1]
            Y = np.transpose(Y, tuple(dim))

M
Markus Kliegl 已提交
79 80 81 82
    Out = np.matmul(X, Y)
    return Out


83
class Generator:
M
Markus Kliegl 已提交
84 85 86 87 88 89 90 91
    def setUp(self):
        self.op_type = "matmul"
        X = np.random.random(self.shape_X).astype("float32")
        Y = np.random.random(self.shape_Y).astype("float32")
        Out = reference_matmul(X, Y, self.transpose_X, self.transpose_Y)
        self.inputs = {'X': X, 'Y': Y}
        self.attrs = {
            'transpose_X': self.transpose_X,
92
            'transpose_Y': self.transpose_Y,
M
Markus Kliegl 已提交
93 94 95 96
        }
        self.outputs = {'Out': Out}

    def test_check_output(self):
97
        self.check_output(check_cinn=True)
M
Markus Kliegl 已提交
98 99

    def test_check_grad_normal(self):
100 101 102
        self.check_grad(
            ['X', 'Y'], 'Out', max_relative_error=1e-3, check_cinn=True
        )
M
Markus Kliegl 已提交
103 104

    def test_check_grad_ignore_x(self):
105
        self.check_grad(
106 107 108 109 110
            ['Y'],
            'Out',
            max_relative_error=1e-3,
            no_grad_set=set("X"),
            check_cinn=True,
111
        )
M
Markus Kliegl 已提交
112 113

    def test_check_grad_ignore_y(self):
114
        self.check_grad(
115 116 117 118 119
            ['X'],
            'Out',
            max_relative_error=1e-3,
            no_grad_set=set('Y'),
            check_cinn=True,
120
        )
M
Markus Kliegl 已提交
121 122


C
chengduoZH 已提交
123
# Test case n-dim
124
def generate_compatible_shapes_ndim(dim, transpose_X, transpose_Y):
C
chengduoZH 已提交
125 126 127 128 129 130 131
    M = 2
    N = 4
    K = 3
    shape_X = [2 for _ in range(dim - 2)]
    shape_Y = [2 for _ in range(dim - 2)]

    if transpose_X:
C
chengduoZH 已提交
132
        shape_X += [K, M]
C
chengduoZH 已提交
133
    else:
C
chengduoZH 已提交
134
        shape_X += [M, K]
C
chengduoZH 已提交
135 136

    if transpose_Y:
C
chengduoZH 已提交
137
        shape_Y += [N, K]
C
chengduoZH 已提交
138
    else:
C
chengduoZH 已提交
139
        shape_Y += [K, N]
C
chengduoZH 已提交
140 141 142 143

    return shape_X, shape_Y


Y
Yu Yang 已提交
144
# # Test case n-dim
C
chengduoZH 已提交
145 146 147 148 149
for dim in [4]:
    for transpose_X in [False, True]:
        for transpose_Y in [False, True]:
            test_name = (
                'TestMatMulOp_dimX_{}_dim_Y_{}_transX_{}_transY_{}'.format(
150 151 152
                    dim, dim, transpose_X, transpose_Y
                )
            )
153
            shape_X, shape_Y = generate_compatible_shapes_ndim(
154 155
                dim, transpose_X, transpose_Y
            )
156
            globals()[test_name] = type(
157 158 159
                test_name,
                (Generator, OpTest),
                {
160 161 162 163
                    'shape_X': shape_X,
                    'shape_Y': shape_Y,
                    'transpose_X': transpose_X,
                    'transpose_Y': transpose_Y,
164 165
                },
            )
C
chengduoZH 已提交
166

167 168 169

class API_TestMm(unittest.TestCase):
    def test_out(self):
W
wanghuancoder 已提交
170 171 172 173 174 175 176 177 178 179 180
        with paddle_static_guard():
            with fluid.program_guard(fluid.Program()):
                x = paddle.static.data(name="x", shape=[2], dtype="float64")
                y = paddle.static.data(name='y', shape=[2], dtype='float64')
                result = paddle.mm(x, y)
                exe = fluid.Executor(fluid.CPUPlace())
                data1 = np.random.rand(2)
                data2 = np.random.rand(2)
                np_res = exe.run(
                    feed={'x': data1, 'y': data2}, fetch_list=[result]
                )
181
                expected_result = np.matmul(data1, data2)
182

W
wanghuancoder 已提交
183 184 185 186 187 188 189 190 191
            np.testing.assert_allclose(
                np_res,
                expected_result,
                rtol=1e-05,
                atol=1e-05,
                err_msg='two value is            {}\n{}, check diff!'.format(
                    np_res, expected_result
                ),
            )
192

193 194 195 196 197 198 199 200 201
    def test_dygraph_without_out(self):
        device = fluid.CPUPlace()
        with fluid.dygraph.guard(device):
            input_array1 = np.random.rand(3, 4).astype("float64")
            input_array2 = np.random.rand(4, 3).astype("float64")
            data1 = fluid.dygraph.to_variable(input_array1)
            data2 = fluid.dygraph.to_variable(input_array2)
            out = paddle.mm(data1, data2)
            expected_result = np.matmul(input_array1, input_array2)
202
        np.testing.assert_allclose(expected_result, out.numpy(), rtol=1e-05)
203 204 205 206 207 208 209 210 211 212 213 214


class Test_API_Matmul(unittest.TestCase):
    def test_dygraph_without_out(self):
        device = fluid.CPUPlace()
        with fluid.dygraph.guard(device):
            input_array1 = np.random.rand(3, 4).astype("float64")
            input_array2 = np.random.rand(4, 3).astype("float64")
            data1 = fluid.dygraph.to_variable(input_array1)
            data2 = fluid.dygraph.to_variable(input_array2)
            out = paddle.matmul(data1, data2)
            expected_result = np.matmul(input_array1, input_array2)
215
        np.testing.assert_allclose(expected_result, out.numpy(), rtol=1e-05)
216

217 218 219

class API_TestMmError(unittest.TestCase):
    def test_errors(self):
W
wanghuancoder 已提交
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
        with paddle_static_guard():

            def test_error1():
                with fluid.program_guard(fluid.Program(), fluid.Program()):
                    data1 = paddle.static.data(
                        name="data1", shape=[10, 2], dtype="float32"
                    )
                    data2 = paddle.static.data(
                        name="data2", shape=[3, 10], dtype="float32"
                    )
                    paddle.mm(data1, data2)

            self.assertRaises(ValueError, test_error1)

            def test_error2():
                with fluid.program_guard(fluid.Program(), fluid.Program()):
                    data1 = paddle.static.data(
                        name="data1", shape=[-1, 10, 2], dtype="float32"
                    )
                    data2 = paddle.static.data(
                        name="data2", shape=[-1, 2, 10], dtype="float32"
                    )
                    paddle.mm(data1, data2)

            test_error2()

            def test_error3():
                with fluid.program_guard(fluid.Program(), fluid.Program()):
                    data1 = paddle.static.data(
                        name="data1", shape=[10, 10, 2], dtype="float32"
                    )
                    data2 = paddle.static.data(
                        name="data2", shape=[3, 2, 10], dtype="float32"
                    )
                    paddle.mm(data1, data2)

            self.assertRaises(ValueError, test_error3)
257 258


M
Markus Kliegl 已提交
259 260
if __name__ == "__main__":
    unittest.main()