test_matmul_op.py 12.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

M
Markus Kliegl 已提交
15 16
import unittest
import numpy as np
17
from op_test import OpTest
18
import paddle
19 20
import paddle.fluid as fluid
from paddle.fluid import Program, program_guard
M
Markus Kliegl 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66


def generate_compatible_shapes(dim_X, dim_Y, transpose_X, transpose_Y):
    BATCH_SIZE = 2
    M = 3
    N = 4
    K = 5
    if (dim_X == 1 and transpose_X) or (dim_Y == 1 and transpose_Y):
        K = 1
    if dim_X == 1:
        if transpose_X:
            shape_X = [M]
        else:
            shape_X = [K]
    if dim_Y == 1:
        if transpose_Y:
            shape_Y = [N]
        else:
            shape_Y = [K]
    if dim_X >= 2:
        if transpose_X:
            shape_X = [K, M]
        else:
            shape_X = [M, K]
    if dim_X == 3:
        shape_X = [BATCH_SIZE] + shape_X
    if dim_Y >= 2:
        if transpose_Y:
            shape_Y = [N, K]
        else:
            shape_Y = [K, N]
    if dim_Y == 3:
        shape_Y = [BATCH_SIZE] + shape_Y
    return shape_X, shape_Y


def reference_matmul(X, Y, transpose_X=False, transpose_Y=False):
    """Reference forward implementation using np.matmul."""
    # np.matmul does not support the transpose flags, so we manually
    # transpose X and Y appropriately.
    if transpose_X:
        if X.ndim == 1:
            X = X.reshape((X.size, 1))
        elif X.ndim == 2:
            X = X.T
        else:
C
chengduoZH 已提交
67 68 69
            dim = [i for i in range(len(X.shape))]
            dim[-1], dim[len(X.shape) - 2] = dim[len(X.shape) - 2], dim[-1]
            X = np.transpose(X, tuple(dim))
M
Markus Kliegl 已提交
70 71 72 73
    if transpose_Y:
        if Y.ndim == 1:
            Y = Y.reshape((1, Y.size))
        else:
C
chengduoZH 已提交
74 75 76 77
            dim = [i for i in range(len(Y.shape))]
            dim[-1], dim[len(Y.shape) - 2] = dim[len(Y.shape) - 2], dim[-1]
            Y = np.transpose(Y, tuple(dim))

M
Markus Kliegl 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
    Out = np.matmul(X, Y)
    if not Out.shape:
        # We do not support 0-dimensional Tensors (scalars). So where
        # np.matmul outputs a scalar, we must convert to a Tensor of
        # shape (1, ) instead.
        # Everywhere else, we are compatible with np.matmul.
        Out = np.array([Out], dtype="float32")
    return Out


class Generator(object):
    def setUp(self):
        self.op_type = "matmul"
        X = np.random.random(self.shape_X).astype("float32")
        Y = np.random.random(self.shape_Y).astype("float32")
        Out = reference_matmul(X, Y, self.transpose_X, self.transpose_Y)
        self.inputs = {'X': X, 'Y': Y}
        self.attrs = {
            'transpose_X': self.transpose_X,
97
            'transpose_Y': self.transpose_Y,
M
Markus Kliegl 已提交
98 99 100 101
        }
        self.outputs = {'Out': Out}

    def test_check_output(self):
102
        self.check_output()
M
Markus Kliegl 已提交
103 104

    def test_check_grad_normal(self):
105
        self.check_grad(['X', 'Y'], 'Out', max_relative_error=1e-3)
M
Markus Kliegl 已提交
106 107

    def test_check_grad_ignore_x(self):
108 109 110
        self.check_grad(
            ['Y'], 'Out', max_relative_error=1e-3, no_grad_set=set("X")
        )
M
Markus Kliegl 已提交
111 112

    def test_check_grad_ignore_y(self):
113 114 115
        self.check_grad(
            ['X'], 'Out', max_relative_error=1e-3, no_grad_set=set('Y')
        )
M
Markus Kliegl 已提交
116 117


118
class TestMatmulOpError(unittest.TestCase):
119 120 121 122 123 124
    def test_errors(self):
        with program_guard(Program(), Program()):
            # The inputs type of matmul_op must be Variable.
            input1 = 12
            self.assertRaises(TypeError, fluid.layers.matmul, input1, input1)
            # The inputs dtype of matmul_op must be float32, float64.
125 126 127
            input2 = fluid.layers.data(
                name='input2', shape=[10, 10], dtype="int32"
            )
128
            self.assertRaises(TypeError, fluid.layers.matmul, input2, input2)
129 130 131
            input3 = fluid.layers.data(
                name='input3', shape=[2, 2], dtype="float16"
            )
132 133 134
            fluid.layers.matmul(input3, input3)


135 136 137
# Negative dimension generation
def generate_negative_dims(in_shape):
    from itertools import combinations
138

139 140 141 142 143 144 145
    size = len(in_shape)
    indexs = list()
    shapes = list()
    for i in range(size):
        indexs.extend(list(combinations([j for j in range(size)], i + 1)))
    for idx in indexs:
        shapes.append(
146 147
            [in_shape[i] if i not in idx else -1 for i in range(size)]
        )
148 149 150 151 152 153 154 155 156 157 158 159 160
    return shapes


# Build program with inputs sizes that contain negative numbers
def test_negative_dims_program(obj):
    for shape_x in generate_negative_dims(obj.shape_X):
        for shape_y in generate_negative_dims(obj.shape_Y):
            X = np.random.random(obj.shape_X).astype("float32")
            Y = np.random.random(obj.shape_Y).astype("float32")
            Ref = reference_matmul(X, Y, obj.transpose_X, obj.transpose_Y)
            with program_guard(Program(), Program()):
                x = fluid.data(name='x', shape=shape_x, dtype='float32')
                y = fluid.data(name='y', shape=shape_y, dtype='float32')
161 162 163
                output = fluid.layers.matmul(
                    x, y, obj.transpose_X, obj.transpose_Y
                )
164 165 166 167 168
                obj.assertEqual(len(Ref.shape), len(output.shape))
                for idx in range(len(Ref.shape)):
                    if output.shape[idx] != -1:
                        obj.assertEqual(Ref.shape[idx], output.shape[idx])
                exe = fluid.Executor(fluid.CPUPlace())
169 170 171 172 173
                (res,) = exe.run(
                    fluid.default_main_program(),
                    feed={'x': X, 'y': Y},
                    fetch_list=[output],
                )
174 175 176 177 178
                np.allclose(res, Ref, atol=1e-5)


# Generate program api cases for all negative possibilities
def api_test(dim_x, dim_y, trans_x, trans_y):
179 180 181 182 183 184
    test_name = 'TestMatMulAPI_dimX_{}_dim_Y_{}_transX_{}_transY_{}'.format(
        dim_x, dim_y, trans_x, trans_y
    )
    shape_x, shape_y = generate_compatible_shapes(
        dim_x, dim_y, trans_x, trans_y
    )
185
    globals()[test_name] = type(
186 187 188
        test_name,
        (unittest.TestCase,),
        {
189 190 191 192 193
            'shape_X': shape_x,
            'shape_Y': shape_y,
            'transpose_X': trans_x,
            'transpose_Y': trans_y,
            'test_propram': test_negative_dims_program,
194 195
        },
    )
196 197 198


# Generate operators cases for all possibilities
Y
Yu Yang 已提交
199
def inject_test(dim_x, dim_y, trans_x, trans_y):
200 201 202 203 204 205
    test_name = 'TestMatMulOp_dimX_{}_dim_Y_{}_transX_{}_transY_{}'.format(
        dim_x, dim_y, trans_x, trans_y
    )
    shape_x, shape_y = generate_compatible_shapes(
        dim_x, dim_y, trans_x, trans_y
    )
206
    globals()[test_name] = type(
207 208 209
        test_name,
        (Generator, OpTest),
        {
210 211 212 213
            'shape_X': shape_x,
            'shape_Y': shape_y,
            'transpose_X': trans_x,
            'transpose_Y': trans_y,
214 215
        },
    )
Y
Yu Yang 已提交
216 217 218 219 220 221 222


for dim_X in (1, 2, 3):
    for dim_Y in (1, 2, 3):
        for transose_x in (False, True):
            for transose_y in (False, True):
                inject_test(dim_X, dim_Y, transose_x, transose_y)
223
                api_test(dim_X, dim_Y, transose_x, transose_y)
C
chengduoZH 已提交
224 225


226
# Test case more batch_size and N, M, K
227 228 229
def generate_compatible_shapes_batch(
    dim_X, dim_Y, transpose_X, transpose_Y, batch_size
):
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
    BATCH_SIZE = 2
    M = 3
    N = 4
    K = 5
    if (dim_X == 1 and transpose_X) or (dim_Y == 1 and transpose_Y):
        K = 1
    if dim_X == 1:
        if transpose_X:
            shape_X = [M]
        else:
            shape_X = [K]
    if dim_Y == 1:
        if transpose_Y:
            shape_Y = [N]
        else:
            shape_Y = [K]
    if dim_X >= 2:
        if transpose_X:
            shape_X = [K, M]
        else:
            shape_X = [M, K]
    if dim_X == 3:
        shape_X = [BATCH_SIZE] + shape_X
    if dim_Y >= 2:
        if transpose_Y:
            shape_Y = [N, K]
        else:
            shape_Y = [K, N]
    if dim_Y == 3:
        shape_Y = [BATCH_SIZE] + shape_Y
    return shape_X, shape_Y


C
chengduoZH 已提交
263
# Test case n-dim
264
def generate_compatible_shapes_ndim(dim, transpose_X, transpose_Y):
C
chengduoZH 已提交
265 266 267 268 269 270 271
    M = 2
    N = 4
    K = 3
    shape_X = [2 for _ in range(dim - 2)]
    shape_Y = [2 for _ in range(dim - 2)]

    if transpose_X:
C
chengduoZH 已提交
272
        shape_X += [K, M]
C
chengduoZH 已提交
273
    else:
C
chengduoZH 已提交
274
        shape_X += [M, K]
C
chengduoZH 已提交
275 276

    if transpose_Y:
C
chengduoZH 已提交
277
        shape_Y += [N, K]
C
chengduoZH 已提交
278
    else:
C
chengduoZH 已提交
279
        shape_Y += [K, N]
C
chengduoZH 已提交
280 281 282 283

    return shape_X, shape_Y


Y
Yu Yang 已提交
284
# # Test case n-dim
C
chengduoZH 已提交
285 286 287 288 289
for dim in [4]:
    for transpose_X in [False, True]:
        for transpose_Y in [False, True]:
            test_name = (
                'TestMatMulOp_dimX_{}_dim_Y_{}_transX_{}_transY_{}'.format(
290 291 292
                    dim, dim, transpose_X, transpose_Y
                )
            )
293
            shape_X, shape_Y = generate_compatible_shapes_ndim(
294 295
                dim, transpose_X, transpose_Y
            )
296
            globals()[test_name] = type(
297 298 299
                test_name,
                (Generator, OpTest),
                {
300 301 302 303
                    'shape_X': shape_X,
                    'shape_Y': shape_Y,
                    'transpose_X': transpose_X,
                    'transpose_Y': transpose_Y,
304 305
                },
            )
C
chengduoZH 已提交
306

307 308 309 310

class API_TestMm(unittest.TestCase):
    def test_out(self):
        with fluid.program_guard(fluid.Program()):
311 312 313
            x = fluid.data(name="x", shape=[2], dtype="float64")
            y = fluid.data(name='y', shape=[2], dtype='float64')
            res = fluid.data(name="output", shape=[1], dtype="float64")
314 315
            result = paddle.mm(x, y)
            exe = fluid.Executor(fluid.CPUPlace())
316 317
            data1 = np.random.rand(2)
            data2 = np.random.rand(2)
318
            np_res = exe.run(feed={'x': data1, 'y': data2}, fetch_list=[result])
319 320 321
            expected_result = np.matmul(
                data1.reshape(1, 2), data2.reshape(2, 1)
            )
322

323 324 325 326 327 328
        np.testing.assert_allclose(
            np_res,
            expected_result,
            rtol=1e-05,
            atol=1e-05,
            err_msg='two value is            {}\n{}, check diff!'.format(
329 330 331
                np_res, expected_result
            ),
        )
332

333 334 335 336 337 338 339 340 341
    def test_dygraph_without_out(self):
        device = fluid.CPUPlace()
        with fluid.dygraph.guard(device):
            input_array1 = np.random.rand(3, 4).astype("float64")
            input_array2 = np.random.rand(4, 3).astype("float64")
            data1 = fluid.dygraph.to_variable(input_array1)
            data2 = fluid.dygraph.to_variable(input_array2)
            out = paddle.mm(data1, data2)
            expected_result = np.matmul(input_array1, input_array2)
342
        np.testing.assert_allclose(expected_result, out.numpy(), rtol=1e-05)
343 344 345 346 347 348 349 350 351 352 353 354


class Test_API_Matmul(unittest.TestCase):
    def test_dygraph_without_out(self):
        device = fluid.CPUPlace()
        with fluid.dygraph.guard(device):
            input_array1 = np.random.rand(3, 4).astype("float64")
            input_array2 = np.random.rand(4, 3).astype("float64")
            data1 = fluid.dygraph.to_variable(input_array1)
            data2 = fluid.dygraph.to_variable(input_array2)
            out = paddle.matmul(data1, data2)
            expected_result = np.matmul(input_array1, input_array2)
355
        np.testing.assert_allclose(expected_result, out.numpy(), rtol=1e-05)
356

357 358 359 360 361 362 363 364 365 366 367 368 369

class API_TestMmError(unittest.TestCase):
    def test_errors(self):
        def test_error1():
            with fluid.program_guard(fluid.Program(), fluid.Program()):
                data1 = fluid.data(name="data1", shape=[10, 2], dtype="float32")
                data2 = fluid.data(name="data2", shape=[3, 10], dtype="float32")
                paddle.mm(data1, data2)

        self.assertRaises(ValueError, test_error1)

        def test_error2():
            with fluid.program_guard(fluid.Program(), fluid.Program()):
370 371 372 373 374 375
                data1 = fluid.data(
                    name="data1", shape=[-1, 10, 2], dtype="float32"
                )
                data2 = fluid.data(
                    name="data2", shape=[-1, 2, 10], dtype="float32"
                )
376 377 378 379 380 381
                paddle.mm(data1, data2)

        test_error2()

        def test_error3():
            with fluid.program_guard(fluid.Program(), fluid.Program()):
382 383 384 385 386 387
                data1 = fluid.data(
                    name="data1", shape=[10, 10, 2], dtype="float32"
                )
                data2 = fluid.data(
                    name="data2", shape=[3, 2, 10], dtype="float32"
                )
388 389 390 391 392
                paddle.mm(data1, data2)

        self.assertRaises(ValueError, test_error3)


M
Markus Kliegl 已提交
393 394
if __name__ == "__main__":
    unittest.main()