test_matmul_op.py 13.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
import paddle.fluid.core as core
M
Markus Kliegl 已提交
18 19
import unittest
import numpy as np
20
from op_test import OpTest
21
import paddle
22 23
import paddle.fluid as fluid
from paddle.fluid import Program, program_guard
M
Markus Kliegl 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69


def generate_compatible_shapes(dim_X, dim_Y, transpose_X, transpose_Y):
    BATCH_SIZE = 2
    M = 3
    N = 4
    K = 5
    if (dim_X == 1 and transpose_X) or (dim_Y == 1 and transpose_Y):
        K = 1
    if dim_X == 1:
        if transpose_X:
            shape_X = [M]
        else:
            shape_X = [K]
    if dim_Y == 1:
        if transpose_Y:
            shape_Y = [N]
        else:
            shape_Y = [K]
    if dim_X >= 2:
        if transpose_X:
            shape_X = [K, M]
        else:
            shape_X = [M, K]
    if dim_X == 3:
        shape_X = [BATCH_SIZE] + shape_X
    if dim_Y >= 2:
        if transpose_Y:
            shape_Y = [N, K]
        else:
            shape_Y = [K, N]
    if dim_Y == 3:
        shape_Y = [BATCH_SIZE] + shape_Y
    return shape_X, shape_Y


def reference_matmul(X, Y, transpose_X=False, transpose_Y=False):
    """Reference forward implementation using np.matmul."""
    # np.matmul does not support the transpose flags, so we manually
    # transpose X and Y appropriately.
    if transpose_X:
        if X.ndim == 1:
            X = X.reshape((X.size, 1))
        elif X.ndim == 2:
            X = X.T
        else:
C
chengduoZH 已提交
70 71 72
            dim = [i for i in range(len(X.shape))]
            dim[-1], dim[len(X.shape) - 2] = dim[len(X.shape) - 2], dim[-1]
            X = np.transpose(X, tuple(dim))
M
Markus Kliegl 已提交
73 74 75 76
    if transpose_Y:
        if Y.ndim == 1:
            Y = Y.reshape((1, Y.size))
        else:
C
chengduoZH 已提交
77 78 79 80
            dim = [i for i in range(len(Y.shape))]
            dim[-1], dim[len(Y.shape) - 2] = dim[len(Y.shape) - 2], dim[-1]
            Y = np.transpose(Y, tuple(dim))

M
Markus Kliegl 已提交
81 82 83 84 85 86 87 88 89 90 91
    Out = np.matmul(X, Y)
    if not Out.shape:
        # We do not support 0-dimensional Tensors (scalars). So where
        # np.matmul outputs a scalar, we must convert to a Tensor of
        # shape (1, ) instead.
        # Everywhere else, we are compatible with np.matmul.
        Out = np.array([Out], dtype="float32")
    return Out


class Generator(object):
92

M
Markus Kliegl 已提交
93 94 95 96 97 98 99 100 101 102 103 104 105
    def setUp(self):
        self.op_type = "matmul"
        X = np.random.random(self.shape_X).astype("float32")
        Y = np.random.random(self.shape_Y).astype("float32")
        Out = reference_matmul(X, Y, self.transpose_X, self.transpose_Y)
        self.inputs = {'X': X, 'Y': Y}
        self.attrs = {
            'transpose_X': self.transpose_X,
            'transpose_Y': self.transpose_Y
        }
        self.outputs = {'Out': Out}

    def test_check_output(self):
106
        self.check_output()
M
Markus Kliegl 已提交
107 108

    def test_check_grad_normal(self):
109
        self.check_grad(['X', 'Y'], 'Out', max_relative_error=1e-3)
M
Markus Kliegl 已提交
110 111

    def test_check_grad_ignore_x(self):
112 113 114 115
        self.check_grad(['Y'],
                        'Out',
                        max_relative_error=1e-3,
                        no_grad_set=set("X"))
M
Markus Kliegl 已提交
116 117

    def test_check_grad_ignore_y(self):
118 119 120 121
        self.check_grad(['X'],
                        'Out',
                        max_relative_error=1e-3,
                        no_grad_set=set('Y'))
M
Markus Kliegl 已提交
122 123


124
class TestMatmulOpError(unittest.TestCase):
125

126 127 128 129 130 131
    def test_errors(self):
        with program_guard(Program(), Program()):
            # The inputs type of matmul_op must be Variable.
            input1 = 12
            self.assertRaises(TypeError, fluid.layers.matmul, input1, input1)
            # The inputs dtype of matmul_op must be float32, float64.
132 133 134
            input2 = fluid.layers.data(name='input2',
                                       shape=[10, 10],
                                       dtype="int32")
135
            self.assertRaises(TypeError, fluid.layers.matmul, input2, input2)
136 137 138
            input3 = fluid.layers.data(name='input3',
                                       shape=[2, 2],
                                       dtype="float16")
139 140 141
            fluid.layers.matmul(input3, input3)


142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
# Negative dimension generation
def generate_negative_dims(in_shape):
    from itertools import combinations
    size = len(in_shape)
    indexs = list()
    shapes = list()
    for i in range(size):
        indexs.extend(list(combinations([j for j in range(size)], i + 1)))
    for idx in indexs:
        shapes.append(
            [in_shape[i] if i not in idx else -1 for i in range(size)])
    return shapes


# Build program with inputs sizes that contain negative numbers
def test_negative_dims_program(obj):
    for shape_x in generate_negative_dims(obj.shape_X):
        for shape_y in generate_negative_dims(obj.shape_Y):
            X = np.random.random(obj.shape_X).astype("float32")
            Y = np.random.random(obj.shape_Y).astype("float32")
            Ref = reference_matmul(X, Y, obj.transpose_X, obj.transpose_Y)
            with program_guard(Program(), Program()):
                x = fluid.data(name='x', shape=shape_x, dtype='float32')
                y = fluid.data(name='y', shape=shape_y, dtype='float32')
                output = fluid.layers.matmul(x, y, obj.transpose_X,
                                             obj.transpose_Y)
                obj.assertEqual(len(Ref.shape), len(output.shape))
                for idx in range(len(Ref.shape)):
                    if output.shape[idx] != -1:
                        obj.assertEqual(Ref.shape[idx], output.shape[idx])
                exe = fluid.Executor(fluid.CPUPlace())
                res, = exe.run(fluid.default_main_program(),
174 175 176 177
                               feed={
                                   'x': X,
                                   'y': Y
                               },
178 179 180 181 182 183 184 185 186 187
                               fetch_list=[output])
                np.allclose(res, Ref, atol=1e-5)


# Generate program api cases for all negative possibilities
def api_test(dim_x, dim_y, trans_x, trans_y):
    test_name = ('TestMatMulAPI_dimX_{}_dim_Y_{}_transX_{}_transY_{}'.format(
        dim_x, dim_y, trans_x, trans_y))
    shape_x, shape_y = generate_compatible_shapes(dim_x, dim_y, trans_x,
                                                  trans_y)
188 189 190 191 192 193 194 195
    globals()[test_name] = type(
        test_name, (unittest.TestCase, ), {
            'shape_X': shape_x,
            'shape_Y': shape_y,
            'transpose_X': trans_x,
            'transpose_Y': trans_y,
            'test_propram': test_negative_dims_program,
        })
196 197 198


# Generate operators cases for all possibilities
Y
Yu Yang 已提交
199 200 201 202 203
def inject_test(dim_x, dim_y, trans_x, trans_y):
    test_name = ('TestMatMulOp_dimX_{}_dim_Y_{}_transX_{}_transY_{}'.format(
        dim_x, dim_y, trans_x, trans_y))
    shape_x, shape_y = generate_compatible_shapes(dim_x, dim_y, trans_x,
                                                  trans_y)
204 205 206 207 208 209 210
    globals()[test_name] = type(
        test_name, (Generator, OpTest), {
            'shape_X': shape_x,
            'shape_Y': shape_y,
            'transpose_X': trans_x,
            'transpose_Y': trans_y,
        })
Y
Yu Yang 已提交
211 212 213 214 215 216 217


for dim_X in (1, 2, 3):
    for dim_Y in (1, 2, 3):
        for transose_x in (False, True):
            for transose_y in (False, True):
                inject_test(dim_X, dim_Y, transose_x, transose_y)
218
                api_test(dim_X, dim_Y, transose_x, transose_y)
C
chengduoZH 已提交
219 220


221
# Test case more batch_size and N, M, K
222 223
def generate_compatible_shapes_batch(dim_X, dim_Y, transpose_X, transpose_Y,
                                     batch_size):
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
    BATCH_SIZE = 2
    M = 3
    N = 4
    K = 5
    if (dim_X == 1 and transpose_X) or (dim_Y == 1 and transpose_Y):
        K = 1
    if dim_X == 1:
        if transpose_X:
            shape_X = [M]
        else:
            shape_X = [K]
    if dim_Y == 1:
        if transpose_Y:
            shape_Y = [N]
        else:
            shape_Y = [K]
    if dim_X >= 2:
        if transpose_X:
            shape_X = [K, M]
        else:
            shape_X = [M, K]
    if dim_X == 3:
        shape_X = [BATCH_SIZE] + shape_X
    if dim_Y >= 2:
        if transpose_Y:
            shape_Y = [N, K]
        else:
            shape_Y = [K, N]
    if dim_Y == 3:
        shape_Y = [BATCH_SIZE] + shape_Y
    return shape_X, shape_Y


C
chengduoZH 已提交
257
# Test case n-dim
258
def generate_compatible_shapes_ndim(dim, transpose_X, transpose_Y):
C
chengduoZH 已提交
259 260 261 262 263 264 265
    M = 2
    N = 4
    K = 3
    shape_X = [2 for _ in range(dim - 2)]
    shape_Y = [2 for _ in range(dim - 2)]

    if transpose_X:
C
chengduoZH 已提交
266
        shape_X += [K, M]
C
chengduoZH 已提交
267
    else:
C
chengduoZH 已提交
268
        shape_X += [M, K]
C
chengduoZH 已提交
269 270

    if transpose_Y:
C
chengduoZH 已提交
271
        shape_Y += [N, K]
C
chengduoZH 已提交
272
    else:
C
chengduoZH 已提交
273
        shape_Y += [K, N]
C
chengduoZH 已提交
274 275 276 277

    return shape_X, shape_Y


Y
Yu Yang 已提交
278
# # Test case n-dim
C
chengduoZH 已提交
279 280 281 282 283 284
for dim in [4]:
    for transpose_X in [False, True]:
        for transpose_Y in [False, True]:
            test_name = (
                'TestMatMulOp_dimX_{}_dim_Y_{}_transX_{}_transY_{}'.format(
                    dim, dim, transpose_X, transpose_Y))
285 286 287 288 289 290 291 292 293
            shape_X, shape_Y = generate_compatible_shapes_ndim(
                dim, transpose_X, transpose_Y)
            globals()[test_name] = type(
                test_name, (Generator, OpTest), {
                    'shape_X': shape_X,
                    'shape_Y': shape_Y,
                    'transpose_X': transpose_X,
                    'transpose_Y': transpose_Y,
                })
C
chengduoZH 已提交
294

295 296

class API_TestMm(unittest.TestCase):
297

298 299
    def test_out(self):
        with fluid.program_guard(fluid.Program()):
300 301 302
            x = fluid.data(name="x", shape=[2], dtype="float64")
            y = fluid.data(name='y', shape=[2], dtype='float64')
            res = fluid.data(name="output", shape=[1], dtype="float64")
303 304
            result = paddle.mm(x, y)
            exe = fluid.Executor(fluid.CPUPlace())
305 306
            data1 = np.random.rand(2)
            data2 = np.random.rand(2)
307
            np_res = exe.run(feed={'x': data1, 'y': data2}, fetch_list=[result])
308 309
            expected_result = np.matmul(data1.reshape(1, 2),
                                        data2.reshape(2, 1))
310

311
        self.assertTrue(
312
            np.allclose(np_res, expected_result, atol=1e-5), "two value is\
313
            {}\n{}, check diff!".format(np_res, expected_result))
314

315 316 317 318 319 320 321 322 323 324 325 326 327
    def test_dygraph_without_out(self):
        device = fluid.CPUPlace()
        with fluid.dygraph.guard(device):
            input_array1 = np.random.rand(3, 4).astype("float64")
            input_array2 = np.random.rand(4, 3).astype("float64")
            data1 = fluid.dygraph.to_variable(input_array1)
            data2 = fluid.dygraph.to_variable(input_array2)
            out = paddle.mm(data1, data2)
            expected_result = np.matmul(input_array1, input_array2)
        self.assertTrue(np.allclose(expected_result, out.numpy()))


class Test_API_Matmul(unittest.TestCase):
328

329 330 331 332 333 334 335 336 337 338 339
    def test_dygraph_without_out(self):
        device = fluid.CPUPlace()
        with fluid.dygraph.guard(device):
            input_array1 = np.random.rand(3, 4).astype("float64")
            input_array2 = np.random.rand(4, 3).astype("float64")
            data1 = fluid.dygraph.to_variable(input_array1)
            data2 = fluid.dygraph.to_variable(input_array2)
            out = paddle.matmul(data1, data2)
            expected_result = np.matmul(input_array1, input_array2)
        self.assertTrue(np.allclose(expected_result, out.numpy()))

340 341

class API_TestMmError(unittest.TestCase):
342

343
    def test_errors(self):
344

345 346 347 348 349 350 351 352 353 354
        def test_error1():
            with fluid.program_guard(fluid.Program(), fluid.Program()):
                data1 = fluid.data(name="data1", shape=[10, 2], dtype="float32")
                data2 = fluid.data(name="data2", shape=[3, 10], dtype="float32")
                paddle.mm(data1, data2)

        self.assertRaises(ValueError, test_error1)

        def test_error2():
            with fluid.program_guard(fluid.Program(), fluid.Program()):
355 356 357 358 359 360
                data1 = fluid.data(name="data1",
                                   shape=[-1, 10, 2],
                                   dtype="float32")
                data2 = fluid.data(name="data2",
                                   shape=[-1, 2, 10],
                                   dtype="float32")
361 362 363 364 365 366
                paddle.mm(data1, data2)

        test_error2()

        def test_error3():
            with fluid.program_guard(fluid.Program(), fluid.Program()):
367 368 369 370 371 372
                data1 = fluid.data(name="data1",
                                   shape=[10, 10, 2],
                                   dtype="float32")
                data2 = fluid.data(name="data2",
                                   shape=[3, 2, 10],
                                   dtype="float32")
373 374 375 376 377
                paddle.mm(data1, data2)

        self.assertRaises(ValueError, test_error3)


M
Markus Kliegl 已提交
378 379
if __name__ == "__main__":
    unittest.main()