test_matmul_op.py 8.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

M
Markus Kliegl 已提交
15
import unittest
16

M
Markus Kliegl 已提交
17
import numpy as np
W
wanghuancoder 已提交
18
from eager_op_test import OpTest, paddle_static_guard
19

20
import paddle
21
from paddle import fluid
M
Markus Kliegl 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67


def generate_compatible_shapes(dim_X, dim_Y, transpose_X, transpose_Y):
    BATCH_SIZE = 2
    M = 3
    N = 4
    K = 5
    if (dim_X == 1 and transpose_X) or (dim_Y == 1 and transpose_Y):
        K = 1
    if dim_X == 1:
        if transpose_X:
            shape_X = [M]
        else:
            shape_X = [K]
    if dim_Y == 1:
        if transpose_Y:
            shape_Y = [N]
        else:
            shape_Y = [K]
    if dim_X >= 2:
        if transpose_X:
            shape_X = [K, M]
        else:
            shape_X = [M, K]
    if dim_X == 3:
        shape_X = [BATCH_SIZE] + shape_X
    if dim_Y >= 2:
        if transpose_Y:
            shape_Y = [N, K]
        else:
            shape_Y = [K, N]
    if dim_Y == 3:
        shape_Y = [BATCH_SIZE] + shape_Y
    return shape_X, shape_Y


def reference_matmul(X, Y, transpose_X=False, transpose_Y=False):
    """Reference forward implementation using np.matmul."""
    # np.matmul does not support the transpose flags, so we manually
    # transpose X and Y appropriately.
    if transpose_X:
        if X.ndim == 1:
            X = X.reshape((X.size, 1))
        elif X.ndim == 2:
            X = X.T
        else:
68
            dim = list(range(len(X.shape)))
C
chengduoZH 已提交
69 70
            dim[-1], dim[len(X.shape) - 2] = dim[len(X.shape) - 2], dim[-1]
            X = np.transpose(X, tuple(dim))
M
Markus Kliegl 已提交
71 72 73 74
    if transpose_Y:
        if Y.ndim == 1:
            Y = Y.reshape((1, Y.size))
        else:
75
            dim = list(range(len(Y.shape)))
C
chengduoZH 已提交
76 77 78
            dim[-1], dim[len(Y.shape) - 2] = dim[len(Y.shape) - 2], dim[-1]
            Y = np.transpose(Y, tuple(dim))

M
Markus Kliegl 已提交
79 80 81 82 83 84 85 86 87 88
    Out = np.matmul(X, Y)
    if not Out.shape:
        # We do not support 0-dimensional Tensors (scalars). So where
        # np.matmul outputs a scalar, we must convert to a Tensor of
        # shape (1, ) instead.
        # Everywhere else, we are compatible with np.matmul.
        Out = np.array([Out], dtype="float32")
    return Out


89
class Generator:
M
Markus Kliegl 已提交
90 91 92 93 94 95 96 97
    def setUp(self):
        self.op_type = "matmul"
        X = np.random.random(self.shape_X).astype("float32")
        Y = np.random.random(self.shape_Y).astype("float32")
        Out = reference_matmul(X, Y, self.transpose_X, self.transpose_Y)
        self.inputs = {'X': X, 'Y': Y}
        self.attrs = {
            'transpose_X': self.transpose_X,
98
            'transpose_Y': self.transpose_Y,
M
Markus Kliegl 已提交
99 100 101 102
        }
        self.outputs = {'Out': Out}

    def test_check_output(self):
103
        self.check_output(check_cinn=True)
M
Markus Kliegl 已提交
104 105

    def test_check_grad_normal(self):
106 107 108
        self.check_grad(
            ['X', 'Y'], 'Out', max_relative_error=1e-3, check_cinn=True
        )
M
Markus Kliegl 已提交
109 110

    def test_check_grad_ignore_x(self):
111
        self.check_grad(
112 113 114 115 116
            ['Y'],
            'Out',
            max_relative_error=1e-3,
            no_grad_set=set("X"),
            check_cinn=True,
117
        )
M
Markus Kliegl 已提交
118 119

    def test_check_grad_ignore_y(self):
120
        self.check_grad(
121 122 123 124 125
            ['X'],
            'Out',
            max_relative_error=1e-3,
            no_grad_set=set('Y'),
            check_cinn=True,
126
        )
M
Markus Kliegl 已提交
127 128


C
chengduoZH 已提交
129
# Test case n-dim
130
def generate_compatible_shapes_ndim(dim, transpose_X, transpose_Y):
C
chengduoZH 已提交
131 132 133 134 135 136 137
    M = 2
    N = 4
    K = 3
    shape_X = [2 for _ in range(dim - 2)]
    shape_Y = [2 for _ in range(dim - 2)]

    if transpose_X:
C
chengduoZH 已提交
138
        shape_X += [K, M]
C
chengduoZH 已提交
139
    else:
C
chengduoZH 已提交
140
        shape_X += [M, K]
C
chengduoZH 已提交
141 142

    if transpose_Y:
C
chengduoZH 已提交
143
        shape_Y += [N, K]
C
chengduoZH 已提交
144
    else:
C
chengduoZH 已提交
145
        shape_Y += [K, N]
C
chengduoZH 已提交
146 147 148 149

    return shape_X, shape_Y


Y
Yu Yang 已提交
150
# # Test case n-dim
C
chengduoZH 已提交
151 152 153 154 155
for dim in [4]:
    for transpose_X in [False, True]:
        for transpose_Y in [False, True]:
            test_name = (
                'TestMatMulOp_dimX_{}_dim_Y_{}_transX_{}_transY_{}'.format(
156 157 158
                    dim, dim, transpose_X, transpose_Y
                )
            )
159
            shape_X, shape_Y = generate_compatible_shapes_ndim(
160 161
                dim, transpose_X, transpose_Y
            )
162
            globals()[test_name] = type(
163 164 165
                test_name,
                (Generator, OpTest),
                {
166 167 168 169
                    'shape_X': shape_X,
                    'shape_Y': shape_Y,
                    'transpose_X': transpose_X,
                    'transpose_Y': transpose_Y,
170 171
                },
            )
C
chengduoZH 已提交
172

173 174 175

class API_TestMm(unittest.TestCase):
    def test_out(self):
W
wanghuancoder 已提交
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
        with paddle_static_guard():
            with fluid.program_guard(fluid.Program()):
                x = paddle.static.data(name="x", shape=[2], dtype="float64")
                y = paddle.static.data(name='y', shape=[2], dtype='float64')
                res = paddle.static.data(
                    name="output", shape=[1], dtype="float64"
                )
                result = paddle.mm(x, y)
                exe = fluid.Executor(fluid.CPUPlace())
                data1 = np.random.rand(2)
                data2 = np.random.rand(2)
                np_res = exe.run(
                    feed={'x': data1, 'y': data2}, fetch_list=[result]
                )
                expected_result = np.matmul(
                    data1.reshape(1, 2), data2.reshape(2, 1)
                )
193

W
wanghuancoder 已提交
194 195 196 197 198 199 200 201 202
            np.testing.assert_allclose(
                np_res,
                expected_result,
                rtol=1e-05,
                atol=1e-05,
                err_msg='two value is            {}\n{}, check diff!'.format(
                    np_res, expected_result
                ),
            )
203

204 205 206 207 208 209 210 211 212
    def test_dygraph_without_out(self):
        device = fluid.CPUPlace()
        with fluid.dygraph.guard(device):
            input_array1 = np.random.rand(3, 4).astype("float64")
            input_array2 = np.random.rand(4, 3).astype("float64")
            data1 = fluid.dygraph.to_variable(input_array1)
            data2 = fluid.dygraph.to_variable(input_array2)
            out = paddle.mm(data1, data2)
            expected_result = np.matmul(input_array1, input_array2)
213
        np.testing.assert_allclose(expected_result, out.numpy(), rtol=1e-05)
214 215 216 217 218 219 220 221 222 223 224 225


class Test_API_Matmul(unittest.TestCase):
    def test_dygraph_without_out(self):
        device = fluid.CPUPlace()
        with fluid.dygraph.guard(device):
            input_array1 = np.random.rand(3, 4).astype("float64")
            input_array2 = np.random.rand(4, 3).astype("float64")
            data1 = fluid.dygraph.to_variable(input_array1)
            data2 = fluid.dygraph.to_variable(input_array2)
            out = paddle.matmul(data1, data2)
            expected_result = np.matmul(input_array1, input_array2)
226
        np.testing.assert_allclose(expected_result, out.numpy(), rtol=1e-05)
227

228 229 230

class API_TestMmError(unittest.TestCase):
    def test_errors(self):
W
wanghuancoder 已提交
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
        with paddle_static_guard():

            def test_error1():
                with fluid.program_guard(fluid.Program(), fluid.Program()):
                    data1 = paddle.static.data(
                        name="data1", shape=[10, 2], dtype="float32"
                    )
                    data2 = paddle.static.data(
                        name="data2", shape=[3, 10], dtype="float32"
                    )
                    paddle.mm(data1, data2)

            self.assertRaises(ValueError, test_error1)

            def test_error2():
                with fluid.program_guard(fluid.Program(), fluid.Program()):
                    data1 = paddle.static.data(
                        name="data1", shape=[-1, 10, 2], dtype="float32"
                    )
                    data2 = paddle.static.data(
                        name="data2", shape=[-1, 2, 10], dtype="float32"
                    )
                    paddle.mm(data1, data2)

            test_error2()

            def test_error3():
                with fluid.program_guard(fluid.Program(), fluid.Program()):
                    data1 = paddle.static.data(
                        name="data1", shape=[10, 10, 2], dtype="float32"
                    )
                    data2 = paddle.static.data(
                        name="data2", shape=[3, 2, 10], dtype="float32"
                    )
                    paddle.mm(data1, data2)

            self.assertRaises(ValueError, test_error3)
268 269


M
Markus Kliegl 已提交
270 271
if __name__ == "__main__":
    unittest.main()