test_matmul_op.py 13.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

M
Markus Kliegl 已提交
15 16
import unittest
import numpy as np
17
from op_test import OpTest
18
import paddle
19 20
import paddle.fluid as fluid
from paddle.fluid import Program, program_guard
M
Markus Kliegl 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66


def generate_compatible_shapes(dim_X, dim_Y, transpose_X, transpose_Y):
    BATCH_SIZE = 2
    M = 3
    N = 4
    K = 5
    if (dim_X == 1 and transpose_X) or (dim_Y == 1 and transpose_Y):
        K = 1
    if dim_X == 1:
        if transpose_X:
            shape_X = [M]
        else:
            shape_X = [K]
    if dim_Y == 1:
        if transpose_Y:
            shape_Y = [N]
        else:
            shape_Y = [K]
    if dim_X >= 2:
        if transpose_X:
            shape_X = [K, M]
        else:
            shape_X = [M, K]
    if dim_X == 3:
        shape_X = [BATCH_SIZE] + shape_X
    if dim_Y >= 2:
        if transpose_Y:
            shape_Y = [N, K]
        else:
            shape_Y = [K, N]
    if dim_Y == 3:
        shape_Y = [BATCH_SIZE] + shape_Y
    return shape_X, shape_Y


def reference_matmul(X, Y, transpose_X=False, transpose_Y=False):
    """Reference forward implementation using np.matmul."""
    # np.matmul does not support the transpose flags, so we manually
    # transpose X and Y appropriately.
    if transpose_X:
        if X.ndim == 1:
            X = X.reshape((X.size, 1))
        elif X.ndim == 2:
            X = X.T
        else:
C
chengduoZH 已提交
67 68 69
            dim = [i for i in range(len(X.shape))]
            dim[-1], dim[len(X.shape) - 2] = dim[len(X.shape) - 2], dim[-1]
            X = np.transpose(X, tuple(dim))
M
Markus Kliegl 已提交
70 71 72 73
    if transpose_Y:
        if Y.ndim == 1:
            Y = Y.reshape((1, Y.size))
        else:
C
chengduoZH 已提交
74 75 76 77
            dim = [i for i in range(len(Y.shape))]
            dim[-1], dim[len(Y.shape) - 2] = dim[len(Y.shape) - 2], dim[-1]
            Y = np.transpose(Y, tuple(dim))

M
Markus Kliegl 已提交
78 79 80 81 82 83 84 85 86 87 88
    Out = np.matmul(X, Y)
    if not Out.shape:
        # We do not support 0-dimensional Tensors (scalars). So where
        # np.matmul outputs a scalar, we must convert to a Tensor of
        # shape (1, ) instead.
        # Everywhere else, we are compatible with np.matmul.
        Out = np.array([Out], dtype="float32")
    return Out


class Generator(object):
89

M
Markus Kliegl 已提交
90 91 92 93 94 95 96 97 98 99 100 101 102
    def setUp(self):
        self.op_type = "matmul"
        X = np.random.random(self.shape_X).astype("float32")
        Y = np.random.random(self.shape_Y).astype("float32")
        Out = reference_matmul(X, Y, self.transpose_X, self.transpose_Y)
        self.inputs = {'X': X, 'Y': Y}
        self.attrs = {
            'transpose_X': self.transpose_X,
            'transpose_Y': self.transpose_Y
        }
        self.outputs = {'Out': Out}

    def test_check_output(self):
103
        self.check_output()
M
Markus Kliegl 已提交
104 105

    def test_check_grad_normal(self):
106
        self.check_grad(['X', 'Y'], 'Out', max_relative_error=1e-3)
M
Markus Kliegl 已提交
107 108

    def test_check_grad_ignore_x(self):
109 110 111 112
        self.check_grad(['Y'],
                        'Out',
                        max_relative_error=1e-3,
                        no_grad_set=set("X"))
M
Markus Kliegl 已提交
113 114

    def test_check_grad_ignore_y(self):
115 116 117 118
        self.check_grad(['X'],
                        'Out',
                        max_relative_error=1e-3,
                        no_grad_set=set('Y'))
M
Markus Kliegl 已提交
119 120


121
class TestMatmulOpError(unittest.TestCase):
122

123 124 125 126 127 128
    def test_errors(self):
        with program_guard(Program(), Program()):
            # The inputs type of matmul_op must be Variable.
            input1 = 12
            self.assertRaises(TypeError, fluid.layers.matmul, input1, input1)
            # The inputs dtype of matmul_op must be float32, float64.
129 130 131
            input2 = fluid.layers.data(name='input2',
                                       shape=[10, 10],
                                       dtype="int32")
132
            self.assertRaises(TypeError, fluid.layers.matmul, input2, input2)
133 134 135
            input3 = fluid.layers.data(name='input3',
                                       shape=[2, 2],
                                       dtype="float16")
136 137 138
            fluid.layers.matmul(input3, input3)


139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
# Negative dimension generation
def generate_negative_dims(in_shape):
    from itertools import combinations
    size = len(in_shape)
    indexs = list()
    shapes = list()
    for i in range(size):
        indexs.extend(list(combinations([j for j in range(size)], i + 1)))
    for idx in indexs:
        shapes.append(
            [in_shape[i] if i not in idx else -1 for i in range(size)])
    return shapes


# Build program with inputs sizes that contain negative numbers
def test_negative_dims_program(obj):
    for shape_x in generate_negative_dims(obj.shape_X):
        for shape_y in generate_negative_dims(obj.shape_Y):
            X = np.random.random(obj.shape_X).astype("float32")
            Y = np.random.random(obj.shape_Y).astype("float32")
            Ref = reference_matmul(X, Y, obj.transpose_X, obj.transpose_Y)
            with program_guard(Program(), Program()):
                x = fluid.data(name='x', shape=shape_x, dtype='float32')
                y = fluid.data(name='y', shape=shape_y, dtype='float32')
                output = fluid.layers.matmul(x, y, obj.transpose_X,
                                             obj.transpose_Y)
                obj.assertEqual(len(Ref.shape), len(output.shape))
                for idx in range(len(Ref.shape)):
                    if output.shape[idx] != -1:
                        obj.assertEqual(Ref.shape[idx], output.shape[idx])
                exe = fluid.Executor(fluid.CPUPlace())
                res, = exe.run(fluid.default_main_program(),
171 172 173 174
                               feed={
                                   'x': X,
                                   'y': Y
                               },
175 176 177 178 179 180 181 182 183 184
                               fetch_list=[output])
                np.allclose(res, Ref, atol=1e-5)


# Generate program api cases for all negative possibilities
def api_test(dim_x, dim_y, trans_x, trans_y):
    test_name = ('TestMatMulAPI_dimX_{}_dim_Y_{}_transX_{}_transY_{}'.format(
        dim_x, dim_y, trans_x, trans_y))
    shape_x, shape_y = generate_compatible_shapes(dim_x, dim_y, trans_x,
                                                  trans_y)
185 186 187 188 189 190 191 192
    globals()[test_name] = type(
        test_name, (unittest.TestCase, ), {
            'shape_X': shape_x,
            'shape_Y': shape_y,
            'transpose_X': trans_x,
            'transpose_Y': trans_y,
            'test_propram': test_negative_dims_program,
        })
193 194 195


# Generate operators cases for all possibilities
Y
Yu Yang 已提交
196 197 198 199 200
def inject_test(dim_x, dim_y, trans_x, trans_y):
    test_name = ('TestMatMulOp_dimX_{}_dim_Y_{}_transX_{}_transY_{}'.format(
        dim_x, dim_y, trans_x, trans_y))
    shape_x, shape_y = generate_compatible_shapes(dim_x, dim_y, trans_x,
                                                  trans_y)
201 202 203 204 205 206 207
    globals()[test_name] = type(
        test_name, (Generator, OpTest), {
            'shape_X': shape_x,
            'shape_Y': shape_y,
            'transpose_X': trans_x,
            'transpose_Y': trans_y,
        })
Y
Yu Yang 已提交
208 209 210 211 212 213 214


for dim_X in (1, 2, 3):
    for dim_Y in (1, 2, 3):
        for transose_x in (False, True):
            for transose_y in (False, True):
                inject_test(dim_X, dim_Y, transose_x, transose_y)
215
                api_test(dim_X, dim_Y, transose_x, transose_y)
C
chengduoZH 已提交
216 217


218
# Test case more batch_size and N, M, K
219 220
def generate_compatible_shapes_batch(dim_X, dim_Y, transpose_X, transpose_Y,
                                     batch_size):
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
    BATCH_SIZE = 2
    M = 3
    N = 4
    K = 5
    if (dim_X == 1 and transpose_X) or (dim_Y == 1 and transpose_Y):
        K = 1
    if dim_X == 1:
        if transpose_X:
            shape_X = [M]
        else:
            shape_X = [K]
    if dim_Y == 1:
        if transpose_Y:
            shape_Y = [N]
        else:
            shape_Y = [K]
    if dim_X >= 2:
        if transpose_X:
            shape_X = [K, M]
        else:
            shape_X = [M, K]
    if dim_X == 3:
        shape_X = [BATCH_SIZE] + shape_X
    if dim_Y >= 2:
        if transpose_Y:
            shape_Y = [N, K]
        else:
            shape_Y = [K, N]
    if dim_Y == 3:
        shape_Y = [BATCH_SIZE] + shape_Y
    return shape_X, shape_Y


C
chengduoZH 已提交
254
# Test case n-dim
255
def generate_compatible_shapes_ndim(dim, transpose_X, transpose_Y):
C
chengduoZH 已提交
256 257 258 259 260 261 262
    M = 2
    N = 4
    K = 3
    shape_X = [2 for _ in range(dim - 2)]
    shape_Y = [2 for _ in range(dim - 2)]

    if transpose_X:
C
chengduoZH 已提交
263
        shape_X += [K, M]
C
chengduoZH 已提交
264
    else:
C
chengduoZH 已提交
265
        shape_X += [M, K]
C
chengduoZH 已提交
266 267

    if transpose_Y:
C
chengduoZH 已提交
268
        shape_Y += [N, K]
C
chengduoZH 已提交
269
    else:
C
chengduoZH 已提交
270
        shape_Y += [K, N]
C
chengduoZH 已提交
271 272 273 274

    return shape_X, shape_Y


Y
Yu Yang 已提交
275
# # Test case n-dim
C
chengduoZH 已提交
276 277 278 279 280 281
for dim in [4]:
    for transpose_X in [False, True]:
        for transpose_Y in [False, True]:
            test_name = (
                'TestMatMulOp_dimX_{}_dim_Y_{}_transX_{}_transY_{}'.format(
                    dim, dim, transpose_X, transpose_Y))
282 283 284 285 286 287 288 289 290
            shape_X, shape_Y = generate_compatible_shapes_ndim(
                dim, transpose_X, transpose_Y)
            globals()[test_name] = type(
                test_name, (Generator, OpTest), {
                    'shape_X': shape_X,
                    'shape_Y': shape_Y,
                    'transpose_X': transpose_X,
                    'transpose_Y': transpose_Y,
                })
C
chengduoZH 已提交
291

292 293

class API_TestMm(unittest.TestCase):
294

295 296
    def test_out(self):
        with fluid.program_guard(fluid.Program()):
297 298 299
            x = fluid.data(name="x", shape=[2], dtype="float64")
            y = fluid.data(name='y', shape=[2], dtype='float64')
            res = fluid.data(name="output", shape=[1], dtype="float64")
300 301
            result = paddle.mm(x, y)
            exe = fluid.Executor(fluid.CPUPlace())
302 303
            data1 = np.random.rand(2)
            data2 = np.random.rand(2)
304
            np_res = exe.run(feed={'x': data1, 'y': data2}, fetch_list=[result])
305 306
            expected_result = np.matmul(data1.reshape(1, 2),
                                        data2.reshape(2, 1))
307

308 309 310 311 312 313 314
        np.testing.assert_allclose(
            np_res,
            expected_result,
            rtol=1e-05,
            atol=1e-05,
            err_msg='two value is            {}\n{}, check diff!'.format(
                np_res, expected_result))
315

316 317 318 319 320 321 322 323 324
    def test_dygraph_without_out(self):
        device = fluid.CPUPlace()
        with fluid.dygraph.guard(device):
            input_array1 = np.random.rand(3, 4).astype("float64")
            input_array2 = np.random.rand(4, 3).astype("float64")
            data1 = fluid.dygraph.to_variable(input_array1)
            data2 = fluid.dygraph.to_variable(input_array2)
            out = paddle.mm(data1, data2)
            expected_result = np.matmul(input_array1, input_array2)
325
        np.testing.assert_allclose(expected_result, out.numpy(), rtol=1e-05)
326 327 328


class Test_API_Matmul(unittest.TestCase):
329

330 331 332 333 334 335 336 337 338
    def test_dygraph_without_out(self):
        device = fluid.CPUPlace()
        with fluid.dygraph.guard(device):
            input_array1 = np.random.rand(3, 4).astype("float64")
            input_array2 = np.random.rand(4, 3).astype("float64")
            data1 = fluid.dygraph.to_variable(input_array1)
            data2 = fluid.dygraph.to_variable(input_array2)
            out = paddle.matmul(data1, data2)
            expected_result = np.matmul(input_array1, input_array2)
339
        np.testing.assert_allclose(expected_result, out.numpy(), rtol=1e-05)
340

341 342

class API_TestMmError(unittest.TestCase):
343

344
    def test_errors(self):
345

346 347 348 349 350 351 352 353 354 355
        def test_error1():
            with fluid.program_guard(fluid.Program(), fluid.Program()):
                data1 = fluid.data(name="data1", shape=[10, 2], dtype="float32")
                data2 = fluid.data(name="data2", shape=[3, 10], dtype="float32")
                paddle.mm(data1, data2)

        self.assertRaises(ValueError, test_error1)

        def test_error2():
            with fluid.program_guard(fluid.Program(), fluid.Program()):
356 357 358 359 360 361
                data1 = fluid.data(name="data1",
                                   shape=[-1, 10, 2],
                                   dtype="float32")
                data2 = fluid.data(name="data2",
                                   shape=[-1, 2, 10],
                                   dtype="float32")
362 363 364 365 366 367
                paddle.mm(data1, data2)

        test_error2()

        def test_error3():
            with fluid.program_guard(fluid.Program(), fluid.Program()):
368 369 370 371 372 373
                data1 = fluid.data(name="data1",
                                   shape=[10, 10, 2],
                                   dtype="float32")
                data2 = fluid.data(name="data2",
                                   shape=[3, 2, 10],
                                   dtype="float32")
374 375 376 377 378
                paddle.mm(data1, data2)

        self.assertRaises(ValueError, test_error3)


M
Markus Kliegl 已提交
379 380
if __name__ == "__main__":
    unittest.main()