test_matmul_op.py 8.5 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

M
Markus Kliegl 已提交
15
import unittest
16

M
Markus Kliegl 已提交
17
import numpy as np
W
wanghuancoder 已提交
18
from eager_op_test import OpTest, paddle_static_guard
19

20
import paddle
21
from paddle import fluid
M
Markus Kliegl 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67


def generate_compatible_shapes(dim_X, dim_Y, transpose_X, transpose_Y):
    BATCH_SIZE = 2
    M = 3
    N = 4
    K = 5
    if (dim_X == 1 and transpose_X) or (dim_Y == 1 and transpose_Y):
        K = 1
    if dim_X == 1:
        if transpose_X:
            shape_X = [M]
        else:
            shape_X = [K]
    if dim_Y == 1:
        if transpose_Y:
            shape_Y = [N]
        else:
            shape_Y = [K]
    if dim_X >= 2:
        if transpose_X:
            shape_X = [K, M]
        else:
            shape_X = [M, K]
    if dim_X == 3:
        shape_X = [BATCH_SIZE] + shape_X
    if dim_Y >= 2:
        if transpose_Y:
            shape_Y = [N, K]
        else:
            shape_Y = [K, N]
    if dim_Y == 3:
        shape_Y = [BATCH_SIZE] + shape_Y
    return shape_X, shape_Y


def reference_matmul(X, Y, transpose_X=False, transpose_Y=False):
    """Reference forward implementation using np.matmul."""
    # np.matmul does not support the transpose flags, so we manually
    # transpose X and Y appropriately.
    if transpose_X:
        if X.ndim == 1:
            X = X.reshape((X.size, 1))
        elif X.ndim == 2:
            X = X.T
        else:
C
chengduoZH 已提交
68 69 70
            dim = [i for i in range(len(X.shape))]
            dim[-1], dim[len(X.shape) - 2] = dim[len(X.shape) - 2], dim[-1]
            X = np.transpose(X, tuple(dim))
M
Markus Kliegl 已提交
71 72 73 74
    if transpose_Y:
        if Y.ndim == 1:
            Y = Y.reshape((1, Y.size))
        else:
C
chengduoZH 已提交
75 76 77 78
            dim = [i for i in range(len(Y.shape))]
            dim[-1], dim[len(Y.shape) - 2] = dim[len(Y.shape) - 2], dim[-1]
            Y = np.transpose(Y, tuple(dim))

M
Markus Kliegl 已提交
79 80 81 82 83 84 85 86 87 88
    Out = np.matmul(X, Y)
    if not Out.shape:
        # We do not support 0-dimensional Tensors (scalars). So where
        # np.matmul outputs a scalar, we must convert to a Tensor of
        # shape (1, ) instead.
        # Everywhere else, we are compatible with np.matmul.
        Out = np.array([Out], dtype="float32")
    return Out


89
class Generator:
M
Markus Kliegl 已提交
90 91 92 93 94 95 96 97
    def setUp(self):
        self.op_type = "matmul"
        X = np.random.random(self.shape_X).astype("float32")
        Y = np.random.random(self.shape_Y).astype("float32")
        Out = reference_matmul(X, Y, self.transpose_X, self.transpose_Y)
        self.inputs = {'X': X, 'Y': Y}
        self.attrs = {
            'transpose_X': self.transpose_X,
98
            'transpose_Y': self.transpose_Y,
M
Markus Kliegl 已提交
99 100 101 102
        }
        self.outputs = {'Out': Out}

    def test_check_output(self):
103
        self.check_output()
M
Markus Kliegl 已提交
104 105

    def test_check_grad_normal(self):
106
        self.check_grad(['X', 'Y'], 'Out', max_relative_error=1e-3)
M
Markus Kliegl 已提交
107 108

    def test_check_grad_ignore_x(self):
109 110 111
        self.check_grad(
            ['Y'], 'Out', max_relative_error=1e-3, no_grad_set=set("X")
        )
M
Markus Kliegl 已提交
112 113

    def test_check_grad_ignore_y(self):
114 115 116
        self.check_grad(
            ['X'], 'Out', max_relative_error=1e-3, no_grad_set=set('Y')
        )
M
Markus Kliegl 已提交
117 118


C
chengduoZH 已提交
119
# Test case n-dim
120
def generate_compatible_shapes_ndim(dim, transpose_X, transpose_Y):
C
chengduoZH 已提交
121 122 123 124 125 126 127
    M = 2
    N = 4
    K = 3
    shape_X = [2 for _ in range(dim - 2)]
    shape_Y = [2 for _ in range(dim - 2)]

    if transpose_X:
C
chengduoZH 已提交
128
        shape_X += [K, M]
C
chengduoZH 已提交
129
    else:
C
chengduoZH 已提交
130
        shape_X += [M, K]
C
chengduoZH 已提交
131 132

    if transpose_Y:
C
chengduoZH 已提交
133
        shape_Y += [N, K]
C
chengduoZH 已提交
134
    else:
C
chengduoZH 已提交
135
        shape_Y += [K, N]
C
chengduoZH 已提交
136 137 138 139

    return shape_X, shape_Y


Y
Yu Yang 已提交
140
# # Test case n-dim
C
chengduoZH 已提交
141 142 143 144 145
for dim in [4]:
    for transpose_X in [False, True]:
        for transpose_Y in [False, True]:
            test_name = (
                'TestMatMulOp_dimX_{}_dim_Y_{}_transX_{}_transY_{}'.format(
146 147 148
                    dim, dim, transpose_X, transpose_Y
                )
            )
149
            shape_X, shape_Y = generate_compatible_shapes_ndim(
150 151
                dim, transpose_X, transpose_Y
            )
152
            globals()[test_name] = type(
153 154 155
                test_name,
                (Generator, OpTest),
                {
156 157 158 159
                    'shape_X': shape_X,
                    'shape_Y': shape_Y,
                    'transpose_X': transpose_X,
                    'transpose_Y': transpose_Y,
160 161
                },
            )
C
chengduoZH 已提交
162

163 164 165

class API_TestMm(unittest.TestCase):
    def test_out(self):
W
wanghuancoder 已提交
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
        with paddle_static_guard():
            with fluid.program_guard(fluid.Program()):
                x = paddle.static.data(name="x", shape=[2], dtype="float64")
                y = paddle.static.data(name='y', shape=[2], dtype='float64')
                res = paddle.static.data(
                    name="output", shape=[1], dtype="float64"
                )
                result = paddle.mm(x, y)
                exe = fluid.Executor(fluid.CPUPlace())
                data1 = np.random.rand(2)
                data2 = np.random.rand(2)
                np_res = exe.run(
                    feed={'x': data1, 'y': data2}, fetch_list=[result]
                )
                expected_result = np.matmul(
                    data1.reshape(1, 2), data2.reshape(2, 1)
                )
183

W
wanghuancoder 已提交
184 185 186 187 188 189 190 191 192
            np.testing.assert_allclose(
                np_res,
                expected_result,
                rtol=1e-05,
                atol=1e-05,
                err_msg='two value is            {}\n{}, check diff!'.format(
                    np_res, expected_result
                ),
            )
193

194 195 196 197 198 199 200 201 202
    def test_dygraph_without_out(self):
        device = fluid.CPUPlace()
        with fluid.dygraph.guard(device):
            input_array1 = np.random.rand(3, 4).astype("float64")
            input_array2 = np.random.rand(4, 3).astype("float64")
            data1 = fluid.dygraph.to_variable(input_array1)
            data2 = fluid.dygraph.to_variable(input_array2)
            out = paddle.mm(data1, data2)
            expected_result = np.matmul(input_array1, input_array2)
203
        np.testing.assert_allclose(expected_result, out.numpy(), rtol=1e-05)
204 205 206 207 208 209 210 211 212 213 214 215


class Test_API_Matmul(unittest.TestCase):
    def test_dygraph_without_out(self):
        device = fluid.CPUPlace()
        with fluid.dygraph.guard(device):
            input_array1 = np.random.rand(3, 4).astype("float64")
            input_array2 = np.random.rand(4, 3).astype("float64")
            data1 = fluid.dygraph.to_variable(input_array1)
            data2 = fluid.dygraph.to_variable(input_array2)
            out = paddle.matmul(data1, data2)
            expected_result = np.matmul(input_array1, input_array2)
216
        np.testing.assert_allclose(expected_result, out.numpy(), rtol=1e-05)
217

218 219 220

class API_TestMmError(unittest.TestCase):
    def test_errors(self):
W
wanghuancoder 已提交
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
        with paddle_static_guard():

            def test_error1():
                with fluid.program_guard(fluid.Program(), fluid.Program()):
                    data1 = paddle.static.data(
                        name="data1", shape=[10, 2], dtype="float32"
                    )
                    data2 = paddle.static.data(
                        name="data2", shape=[3, 10], dtype="float32"
                    )
                    paddle.mm(data1, data2)

            self.assertRaises(ValueError, test_error1)

            def test_error2():
                with fluid.program_guard(fluid.Program(), fluid.Program()):
                    data1 = paddle.static.data(
                        name="data1", shape=[-1, 10, 2], dtype="float32"
                    )
                    data2 = paddle.static.data(
                        name="data2", shape=[-1, 2, 10], dtype="float32"
                    )
                    paddle.mm(data1, data2)

            test_error2()

            def test_error3():
                with fluid.program_guard(fluid.Program(), fluid.Program()):
                    data1 = paddle.static.data(
                        name="data1", shape=[10, 10, 2], dtype="float32"
                    )
                    data2 = paddle.static.data(
                        name="data2", shape=[3, 2, 10], dtype="float32"
                    )
                    paddle.mm(data1, data2)

            self.assertRaises(ValueError, test_error3)
258 259


M
Markus Kliegl 已提交
260 261
if __name__ == "__main__":
    unittest.main()