test_multiclass_nms_op.py 24.3 KB
Newer Older
1
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6 7 8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

15
import copy
16
import unittest
17

18
import numpy as np
19
from op_test import OpTest
20

21
import paddle
X
xiaoting 已提交
22
import paddle.fluid as fluid
23
from paddle import _C_ops, _legacy_C_ops
24 25 26
from paddle.fluid import (
    Program,
    _non_static_mode,
27 28
    in_dygraph_mode,
    program_guard,
29
)
30 31 32
from paddle.fluid.layer_helper import LayerHelper


33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
def multiclass_nms3(
    bboxes,
    scores,
    rois_num=None,
    score_threshold=0.3,
    nms_top_k=1000,
    keep_top_k=100,
    nms_threshold=0.3,
    normalized=True,
    nms_eta=1.0,
    background_label=-1,
    return_index=True,
    return_rois_num=True,
    name=None,
):
48 49 50 51

    helper = LayerHelper('multiclass_nms3', **locals())

    if in_dygraph_mode():
52 53 54 55 56 57 58 59 60
        attrs = (
            score_threshold,
            nms_top_k,
            keep_top_k,
            nms_threshold,
            normalized,
            nms_eta,
            background_label,
        )
61
        output, index, nms_rois_num = _C_ops.multiclass_nms3(
62 63
            bboxes, scores, rois_num, *attrs
        )
64 65 66 67
        if not return_index:
            index = None
        return output, index, nms_rois_num
    elif _non_static_mode():
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
        attrs = (
            'background_label',
            background_label,
            'score_threshold',
            score_threshold,
            'nms_top_k',
            nms_top_k,
            'nms_threshold',
            nms_threshold,
            'keep_top_k',
            keep_top_k,
            'nms_eta',
            nms_eta,
            'normalized',
            normalized,
        )
84
        output, index, nms_rois_num = _legacy_C_ops.multiclass_nms3(
85 86
            bboxes, scores, rois_num, *attrs
        )
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
        if not return_index:
            index = None
        return output, index, nms_rois_num

    else:
        output = helper.create_variable_for_type_inference(dtype=bboxes.dtype)
        index = helper.create_variable_for_type_inference(dtype='int32')

        inputs = {'BBoxes': bboxes, 'Scores': scores}
        outputs = {'Out': output, 'Index': index}

        if rois_num is not None:
            inputs['RoisNum'] = rois_num

        if return_rois_num:
            nms_rois_num = helper.create_variable_for_type_inference(
103 104
                dtype='int32'
            )
105 106
            outputs['NmsRoisNum'] = nms_rois_num

107 108 109 110 111 112 113 114 115 116 117 118 119 120
        helper.append_op(
            type="multiclass_nms3",
            inputs=inputs,
            attrs={
                'background_label': background_label,
                'score_threshold': score_threshold,
                'nms_top_k': nms_top_k,
                'nms_threshold': nms_threshold,
                'keep_top_k': keep_top_k,
                'nms_eta': nms_eta,
                'normalized': normalized,
            },
            outputs=outputs,
        )
121 122 123 124 125 126 127 128
        output.stop_gradient = True
        index.stop_gradient = True
        if not return_index:
            index = None
        if not return_rois_num:
            nms_rois_num = None

        return output, nms_rois_num, index
129 130


131 132 133
def softmax(x):
    # clip to shiftx, otherwise, when calc loss with
    # log(exp(shiftx)), may get log(0)=INF
134
    shiftx = (x - np.max(x)).clip(-64.0)
135 136 137 138
    exps = np.exp(shiftx)
    return exps / np.sum(exps)


J
jerrywgz 已提交
139
def iou(box_a, box_b, norm):
140
    """Apply intersection-over-union overlap between box_a and box_b"""
141 142 143 144 145 146 147 148 149 150
    xmin_a = min(box_a[0], box_a[2])
    ymin_a = min(box_a[1], box_a[3])
    xmax_a = max(box_a[0], box_a[2])
    ymax_a = max(box_a[1], box_a[3])

    xmin_b = min(box_b[0], box_b[2])
    ymin_b = min(box_b[1], box_b[3])
    xmax_b = max(box_b[0], box_b[2])
    ymax_b = max(box_b[1], box_b[3])

151 152
    area_a = (ymax_a - ymin_a + (not norm)) * (xmax_a - xmin_a + (not norm))
    area_b = (ymax_b - ymin_b + (not norm)) * (xmax_b - xmin_b + (not norm))
153 154 155 156 157 158 159 160
    if area_a <= 0 and area_b <= 0:
        return 0.0

    xa = max(xmin_a, xmin_b)
    ya = max(ymin_a, ymin_b)
    xb = min(xmax_a, xmax_b)
    yb = min(ymax_a, ymax_b)

161
    inter_area = max(xb - xa + (not norm), 0.0) * max(yb - ya + (not norm), 0.0)
162 163 164 165 166 167

    iou_ratio = inter_area / (area_a + area_b - inter_area)

    return iou_ratio


168 169 170 171 172 173 174 175 176
def nms(
    boxes,
    scores,
    score_threshold,
    nms_threshold,
    top_k=200,
    normalized=True,
    eta=1.0,
):
177 178 179 180 181
    """Apply non-maximum suppression at test time to avoid detecting too many
    overlapping bounding boxes for a given object.
    Args:
        boxes: (tensor) The location preds for the img, Shape: [num_priors,4].
        scores: (tensor) The class predscores for the img, Shape:[num_priors].
182 183 184 185 186 187
        score_threshold: (float) The confidence thresh for filtering low
            confidence boxes.
        nms_threshold: (float) The overlap thresh for suppressing unnecessary
            boxes.
        top_k: (int) The maximum number of box preds to consider.
        eta: (float) The parameter for adaptive NMS.
188 189 190 191 192 193 194 195 196
    Return:
        The indices of the kept boxes with respect to num_priors.
    """
    all_scores = copy.deepcopy(scores)
    all_scores = all_scores.flatten()
    selected_indices = np.argwhere(all_scores > score_threshold)
    selected_indices = selected_indices.flatten()
    all_scores = all_scores[selected_indices]

197
    sorted_indices = np.argsort(-all_scores, axis=0, kind='mergesort')
198
    sorted_scores = all_scores[sorted_indices]
199
    sorted_indices = selected_indices[sorted_indices]
D
dangqingqing 已提交
200
    if top_k > -1 and top_k < sorted_indices.shape[0]:
201 202 203 204 205 206 207 208 209 210 211
        sorted_indices = sorted_indices[:top_k]
        sorted_scores = sorted_scores[:top_k]

    selected_indices = []
    adaptive_threshold = nms_threshold
    for i in range(sorted_scores.shape[0]):
        idx = sorted_indices[i]
        keep = True
        for k in range(len(selected_indices)):
            if keep:
                kept_idx = selected_indices[k]
J
jerrywgz 已提交
212
                overlap = iou(boxes[idx], boxes[kept_idx], normalized)
D
dangqingqing 已提交
213
                keep = True if overlap <= adaptive_threshold else False
214 215 216 217 218 219 220 221 222
            else:
                break
        if keep:
            selected_indices.append(idx)
        if keep and eta < 1 and adaptive_threshold > 0.5:
            adaptive_threshold *= eta
    return selected_indices


223 224 225 226 227 228 229 230 231 232 233
def multiclass_nms(
    boxes,
    scores,
    background,
    score_threshold,
    nms_threshold,
    nms_top_k,
    keep_top_k,
    normalized,
    shared,
):
J
jerrywgz 已提交
234 235 236 237 238 239
    if shared:
        class_num = scores.shape[0]
        priorbox_num = scores.shape[1]
    else:
        box_num = scores.shape[0]
        class_num = scores.shape[1]
240

241
    selected_indices = {}
242 243
    num_det = 0
    for c in range(class_num):
244 245
        if c == background:
            continue
J
jerrywgz 已提交
246
        if shared:
247 248 249 250 251 252 253 254
            indices = nms(
                boxes,
                scores[c],
                score_threshold,
                nms_threshold,
                nms_top_k,
                normalized,
            )
J
jerrywgz 已提交
255
        else:
256 257 258 259 260 261 262 263
            indices = nms(
                boxes[:, c, :],
                scores[:, c],
                score_threshold,
                nms_threshold,
                nms_top_k,
                normalized,
            )
264
        selected_indices[c] = indices
265 266 267 268
        num_det += len(indices)

    if keep_top_k > -1 and num_det > keep_top_k:
        score_index = []
269
        for c, indices in selected_indices.items():
270
            for idx in indices:
J
jerrywgz 已提交
271 272 273 274
                if shared:
                    score_index.append((scores[c][idx], c, idx))
                else:
                    score_index.append((scores[idx][c], c, idx))
275

276 277 278
        sorted_score_index = sorted(
            score_index, key=lambda tup: tup[0], reverse=True
        )
279
        sorted_score_index = sorted_score_index[:keep_top_k]
280 281 282 283
        selected_indices = {}

        for _, c, _ in sorted_score_index:
            selected_indices[c] = []
284
        for s, c, idx in sorted_score_index:
285
            selected_indices[c].append(idx)
J
jerrywgz 已提交
286 287 288
        if not shared:
            for labels in selected_indices:
                selected_indices[labels].sort()
289
        num_det = keep_top_k
290

291
    return selected_indices, num_det
292 293


294 295 296 297 298 299 300 301 302 303 304
def lod_multiclass_nms(
    boxes,
    scores,
    background,
    score_threshold,
    nms_threshold,
    nms_top_k,
    keep_top_k,
    box_lod,
    normalized,
):
305
    num_class = boxes.shape[1]
J
jerrywgz 已提交
306 307 308 309
    det_outs = []
    lod = []
    head = 0
    for n in range(len(box_lod[0])):
310 311 312
        if box_lod[0][n] == 0:
            lod.append(0)
            continue
313 314
        box = boxes[head : head + box_lod[0][n]]
        score = scores[head : head + box_lod[0][n]]
315
        offset = head
J
jerrywgz 已提交
316
        head = head + box_lod[0][n]
317 318 319 320 321 322 323 324 325 326 327
        nmsed_outs, nmsed_num = multiclass_nms(
            box,
            score,
            background,
            score_threshold,
            nms_threshold,
            nms_top_k,
            keep_top_k,
            normalized,
            shared=False,
        )
328 329
        lod.append(nmsed_num)

J
jerrywgz 已提交
330 331
        if nmsed_num == 0:
            continue
332
        tmp_det_out = []
J
jerrywgz 已提交
333 334 335
        for c, indices in nmsed_outs.items():
            for idx in indices:
                xmin, ymin, xmax, ymax = box[idx, c, :]
336 337 338 339 340 341 342 343 344 345 346 347 348 349
                tmp_det_out.append(
                    [
                        c,
                        score[idx][c],
                        xmin,
                        ymin,
                        xmax,
                        ymax,
                        offset * num_class + idx * num_class + c,
                    ]
                )
        sorted_det_out = sorted(
            tmp_det_out, key=lambda tup: tup[0], reverse=False
        )
350
        det_outs.extend(sorted_det_out)
J
jerrywgz 已提交
351 352 353 354

    return det_outs, lod


355 356 357 358 359 360 361 362 363 364
def batched_multiclass_nms(
    boxes,
    scores,
    background,
    score_threshold,
    nms_threshold,
    nms_top_k,
    keep_top_k,
    normalized=True,
):
365
    batch_size = scores.shape[0]
366
    num_boxes = scores.shape[2]
367
    det_outs = []
368
    index_outs = []
369
    lod = []
370
    for n in range(batch_size):
371 372 373 374 375 376 377 378 379 380 381
        nmsed_outs, nmsed_num = multiclass_nms(
            boxes[n],
            scores[n],
            background,
            score_threshold,
            nms_threshold,
            nms_top_k,
            keep_top_k,
            normalized,
            shared=True,
        )
382 383
        lod.append(nmsed_num)

J
jerrywgz 已提交
384 385
        if nmsed_num == 0:
            continue
386
        tmp_det_out = []
387
        for c, indices in nmsed_outs.items():
388
            for idx in indices:
389
                xmin, ymin, xmax, ymax = boxes[n][idx][:]
390 391 392 393 394 395 396 397 398 399 400 401 402 403
                tmp_det_out.append(
                    [
                        c,
                        scores[n][c][idx],
                        xmin,
                        ymin,
                        xmax,
                        ymax,
                        idx + n * num_boxes,
                    ]
                )
        sorted_det_out = sorted(
            tmp_det_out, key=lambda tup: tup[0], reverse=False
        )
404
        det_outs.extend(sorted_det_out)
405 406 407 408
    return det_outs, lod


class TestMulticlassNMSOp(OpTest):
409 410 411
    def set_argument(self):
        self.score_threshold = 0.01

412
    def setUp(self):
413
        self.set_argument()
414
        N = 7
415
        M = 1200
416 417 418 419 420 421
        C = 21
        BOX_SIZE = 4
        background = 0
        nms_threshold = 0.3
        nms_top_k = 400
        keep_top_k = 200
422
        score_threshold = self.score_threshold
423

D
dangqingqing 已提交
424 425 426 427 428 429
        scores = np.random.random((N * M, C)).astype('float32')

        scores = np.apply_along_axis(softmax, 1, scores)
        scores = np.reshape(scores, (N, M, C))
        scores = np.transpose(scores, (0, 2, 1))

430 431 432
        boxes = np.random.random((N, M, BOX_SIZE)).astype('float32')
        boxes[:, :, 0:2] = boxes[:, :, 0:2] * 0.5
        boxes[:, :, 2:4] = boxes[:, :, 2:4] * 0.5 + 0.5
433

434 435 436 437 438 439 440 441 442
        det_outs, lod = batched_multiclass_nms(
            boxes,
            scores,
            background,
            score_threshold,
            nms_threshold,
            nms_top_k,
            keep_top_k,
        )
443 444 445 446
        lod = [1] if not det_outs else lod
        det_outs = [[-1, 0]] if not det_outs else det_outs
        det_outs = np.array(det_outs)
        nmsed_outs = det_outs[:, :-1].astype('float32')
D
dangqingqing 已提交
447 448

        self.op_type = 'multiclass_nms'
D
dangqingqing 已提交
449
        self.inputs = {'BBoxes': boxes, 'Scores': scores}
450
        self.outputs = {'Out': (nmsed_outs, [lod])}
D
dangqingqing 已提交
451 452 453 454 455 456 457
        self.attrs = {
            'background_label': 0,
            'nms_threshold': nms_threshold,
            'nms_top_k': nms_top_k,
            'keep_top_k': keep_top_k,
            'score_threshold': score_threshold,
            'nms_eta': 1.0,
J
jerrywgz 已提交
458
            'normalized': True,
D
dangqingqing 已提交
459
        }
460 461 462 463 464

    def test_check_output(self):
        self.check_output()


465 466 467
class TestMulticlassNMSOpNoOutput(TestMulticlassNMSOp):
    def set_argument(self):
        # Here set 2.0 to test the case there is no outputs.
468
        # In practical use, 0.0 < score_threshold < 1.0
469 470 471
        self.score_threshold = 2.0


J
jerrywgz 已提交
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
class TestMulticlassNMSLoDInput(OpTest):
    def set_argument(self):
        self.score_threshold = 0.01

    def setUp(self):
        self.set_argument()
        M = 1200
        C = 21
        BOX_SIZE = 4
        box_lod = [[1200]]
        background = 0
        nms_threshold = 0.3
        nms_top_k = 400
        keep_top_k = 200
        score_threshold = self.score_threshold
        normalized = False

        scores = np.random.random((M, C)).astype('float32')

        scores = np.apply_along_axis(softmax, 1, scores)

        boxes = np.random.random((M, C, BOX_SIZE)).astype('float32')
        boxes[:, :, 0] = boxes[:, :, 0] * 10
        boxes[:, :, 1] = boxes[:, :, 1] * 10
        boxes[:, :, 2] = boxes[:, :, 2] * 10 + 10
        boxes[:, :, 3] = boxes[:, :, 3] * 10 + 10

499 500 501 502 503 504 505 506 507 508 509
        det_outs, lod = lod_multiclass_nms(
            boxes,
            scores,
            background,
            score_threshold,
            nms_threshold,
            nms_top_k,
            keep_top_k,
            box_lod,
            normalized,
        )
510
        det_outs = np.array(det_outs).astype('float32')
511 512 513
        nmsed_outs = (
            det_outs[:, :-1].astype('float32') if len(det_outs) else det_outs
        )
J
jerrywgz 已提交
514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
        self.op_type = 'multiclass_nms'
        self.inputs = {
            'BBoxes': (boxes, box_lod),
            'Scores': (scores, box_lod),
        }
        self.outputs = {'Out': (nmsed_outs, [lod])}
        self.attrs = {
            'background_label': 0,
            'nms_threshold': nms_threshold,
            'nms_top_k': nms_top_k,
            'keep_top_k': keep_top_k,
            'score_threshold': score_threshold,
            'nms_eta': 1.0,
            'normalized': normalized,
        }

    def test_check_output(self):
        self.check_output()


534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
class TestMulticlassNMSNoBox(TestMulticlassNMSLoDInput):
    def setUp(self):
        self.set_argument()
        M = 1200
        C = 21
        BOX_SIZE = 4
        box_lod = [[0, 1200, 0]]
        background = 0
        nms_threshold = 0.3
        nms_top_k = 400
        keep_top_k = 200
        score_threshold = self.score_threshold
        normalized = False

        scores = np.random.random((M, C)).astype('float32')

        scores = np.apply_along_axis(softmax, 1, scores)

        boxes = np.random.random((M, C, BOX_SIZE)).astype('float32')
        boxes[:, :, 0] = boxes[:, :, 0] * 10
        boxes[:, :, 1] = boxes[:, :, 1] * 10
        boxes[:, :, 2] = boxes[:, :, 2] * 10 + 10
        boxes[:, :, 3] = boxes[:, :, 3] * 10 + 10

558 559 560 561 562 563 564 565 566 567 568
        det_outs, lod = lod_multiclass_nms(
            boxes,
            scores,
            background,
            score_threshold,
            nms_threshold,
            nms_top_k,
            keep_top_k,
            box_lod,
            normalized,
        )
569
        det_outs = np.array(det_outs).astype('float32')
570 571 572
        nmsed_outs = (
            det_outs[:, :-1].astype('float32') if len(det_outs) else det_outs
        )
573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
        self.op_type = 'multiclass_nms'
        self.inputs = {
            'BBoxes': (boxes, box_lod),
            'Scores': (scores, box_lod),
        }
        self.outputs = {'Out': (nmsed_outs, [lod])}
        self.attrs = {
            'background_label': 0,
            'nms_threshold': nms_threshold,
            'nms_top_k': nms_top_k,
            'keep_top_k': keep_top_k,
            'score_threshold': score_threshold,
            'nms_eta': 1.0,
            'normalized': normalized,
        }


590 591 592 593 594 595
class TestIOU(unittest.TestCase):
    def test_iou(self):
        box1 = np.array([4.0, 3.0, 7.0, 5.0]).astype('float32')
        box2 = np.array([3.0, 4.0, 6.0, 8.0]).astype('float32')

        expt_output = np.array([2.0 / 16.0]).astype('float32')
J
jerrywgz 已提交
596
        calc_output = np.array([iou(box1, box2, True)]).astype('float32')
597
        np.testing.assert_allclose(calc_output, expt_output, rtol=1e-05)
598 599


600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
class TestMulticlassNMS2Op(TestMulticlassNMSOp):
    def setUp(self):
        self.set_argument()
        N = 7
        M = 1200
        C = 21
        BOX_SIZE = 4
        background = 0
        nms_threshold = 0.3
        nms_top_k = 400
        keep_top_k = 200
        score_threshold = self.score_threshold

        scores = np.random.random((N * M, C)).astype('float32')

        scores = np.apply_along_axis(softmax, 1, scores)
        scores = np.reshape(scores, (N, M, C))
        scores = np.transpose(scores, (0, 2, 1))

        boxes = np.random.random((N, M, BOX_SIZE)).astype('float32')
        boxes[:, :, 0:2] = boxes[:, :, 0:2] * 0.5
        boxes[:, :, 2:4] = boxes[:, :, 2:4] * 0.5 + 0.5

623 624 625 626 627 628 629 630 631
        det_outs, lod = batched_multiclass_nms(
            boxes,
            scores,
            background,
            score_threshold,
            nms_threshold,
            nms_top_k,
            keep_top_k,
        )
632 633
        det_outs = np.array(det_outs)

634 635 636 637 638 639
        nmsed_outs = (
            det_outs[:, :-1].astype('float32') if len(det_outs) else det_outs
        )
        index_outs = (
            det_outs[:, -1:].astype('int') if len(det_outs) else det_outs
        )
640 641 642 643
        self.op_type = 'multiclass_nms2'
        self.inputs = {'BBoxes': boxes, 'Scores': scores}
        self.outputs = {
            'Out': (nmsed_outs, [lod]),
644
            'Index': (index_outs, [lod]),
645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
        }
        self.attrs = {
            'background_label': 0,
            'nms_threshold': nms_threshold,
            'nms_top_k': nms_top_k,
            'keep_top_k': keep_top_k,
            'score_threshold': score_threshold,
            'nms_eta': 1.0,
            'normalized': True,
        }

    def test_check_output(self):
        self.check_output()


class TestMulticlassNMS2OpNoOutput(TestMulticlassNMS2Op):
    def set_argument(self):
        # Here set 2.0 to test the case there is no outputs.
        # In practical use, 0.0 < score_threshold < 1.0
        self.score_threshold = 2.0


class TestMulticlassNMS2LoDInput(TestMulticlassNMSLoDInput):
    def setUp(self):
        self.set_argument()
        M = 1200
        C = 21
        BOX_SIZE = 4
        box_lod = [[1200]]
        background = 0
        nms_threshold = 0.3
        nms_top_k = 400
        keep_top_k = 200
        score_threshold = self.score_threshold
        normalized = False

        scores = np.random.random((M, C)).astype('float32')

        scores = np.apply_along_axis(softmax, 1, scores)

        boxes = np.random.random((M, C, BOX_SIZE)).astype('float32')
        boxes[:, :, 0] = boxes[:, :, 0] * 10
        boxes[:, :, 1] = boxes[:, :, 1] * 10
        boxes[:, :, 2] = boxes[:, :, 2] * 10 + 10
        boxes[:, :, 3] = boxes[:, :, 3] * 10 + 10

691 692 693 694 695 696 697 698 699 700 701
        det_outs, lod = lod_multiclass_nms(
            boxes,
            scores,
            background,
            score_threshold,
            nms_threshold,
            nms_top_k,
            keep_top_k,
            box_lod,
            normalized,
        )
702 703

        det_outs = np.array(det_outs)
704 705 706 707 708 709
        nmsed_outs = (
            det_outs[:, :-1].astype('float32') if len(det_outs) else det_outs
        )
        index_outs = (
            det_outs[:, -1:].astype('int') if len(det_outs) else det_outs
        )
710 711 712 713 714 715 716
        self.op_type = 'multiclass_nms2'
        self.inputs = {
            'BBoxes': (boxes, box_lod),
            'Scores': (scores, box_lod),
        }
        self.outputs = {
            'Out': (nmsed_outs, [lod]),
717
            'Index': (index_outs, [lod]),
718 719 720 721 722 723 724 725 726 727 728
        }
        self.attrs = {
            'background_label': 0,
            'nms_threshold': nms_threshold,
            'nms_top_k': nms_top_k,
            'keep_top_k': keep_top_k,
            'score_threshold': score_threshold,
            'nms_eta': 1.0,
            'normalized': normalized,
        }

729 730 731

def test_check_output(self):
    self.check_output()
732 733 734 735 736 737 738 739 740


class TestMulticlassNMS2LoDNoOutput(TestMulticlassNMS2LoDInput):
    def set_argument(self):
        # Here set 2.0 to test the case there is no outputs.
        # In practical use, 0.0 < score_threshold < 1.0
        self.score_threshold = 2.0


X
xiaoting 已提交
741 742 743 744 745 746 747 748 749 750 751 752 753 754
class TestMulticlassNMSError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program(), Program()):
            M = 1200
            N = 7
            C = 21
            BOX_SIZE = 4

            boxes_np = np.random.random((M, C, BOX_SIZE)).astype('float32')
            scores = np.random.random((N * M, C)).astype('float32')
            scores = np.apply_along_axis(softmax, 1, scores)
            scores = np.reshape(scores, (N, M, C))
            scores_np = np.transpose(scores, (0, 2, 1))

755 756 757 758 759 760
            boxes_data = fluid.data(
                name='bboxes', shape=[M, C, BOX_SIZE], dtype='float32'
            )
            scores_data = fluid.data(
                name='scores', shape=[N, C, M], dtype='float32'
            )
X
xiaoting 已提交
761 762 763 764 765 766 767 768 769 770 771 772 773

            def test_bboxes_Variable():
                # the bboxes type must be Variable
                fluid.layers.multiclass_nms(bboxes=boxes_np, scores=scores_data)

            def test_scores_Variable():
                # the bboxes type must be Variable
                fluid.layers.multiclass_nms(bboxes=boxes_data, scores=scores_np)

            self.assertRaises(TypeError, test_bboxes_Variable)
            self.assertRaises(TypeError, test_scores_Variable)


774 775
class TestMulticlassNMS3Op(TestMulticlassNMS2Op):
    def setUp(self):
776
        self.python_api = multiclass_nms3
777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797
        self.set_argument()
        N = 7
        M = 1200
        C = 21
        BOX_SIZE = 4
        background = 0
        nms_threshold = 0.3
        nms_top_k = 400
        keep_top_k = 200
        score_threshold = self.score_threshold

        scores = np.random.random((N * M, C)).astype('float32')

        scores = np.apply_along_axis(softmax, 1, scores)
        scores = np.reshape(scores, (N, M, C))
        scores = np.transpose(scores, (0, 2, 1))

        boxes = np.random.random((N, M, BOX_SIZE)).astype('float32')
        boxes[:, :, 0:2] = boxes[:, :, 0:2] * 0.5
        boxes[:, :, 2:4] = boxes[:, :, 2:4] * 0.5 + 0.5

798 799 800 801 802 803 804 805 806
        det_outs, lod = batched_multiclass_nms(
            boxes,
            scores,
            background,
            score_threshold,
            nms_threshold,
            nms_top_k,
            keep_top_k,
        )
807 808
        det_outs = np.array(det_outs)

809 810 811 812 813 814
        nmsed_outs = (
            det_outs[:, :-1].astype('float32') if len(det_outs) else det_outs
        )
        index_outs = (
            det_outs[:, -1:].astype('int') if len(det_outs) else det_outs
        )
815 816 817
        self.op_type = 'multiclass_nms3'
        self.inputs = {'BBoxes': boxes, 'Scores': scores}
        self.outputs = {
818 819
            'Out': nmsed_outs,
            'Index': index_outs,
820
            'NmsRoisNum': np.array(lod).astype('int32'),
821 822 823 824 825 826 827 828 829 830 831 832
        }
        self.attrs = {
            'background_label': 0,
            'nms_threshold': nms_threshold,
            'nms_top_k': nms_top_k,
            'keep_top_k': keep_top_k,
            'score_threshold': score_threshold,
            'nms_eta': 1.0,
            'normalized': True,
        }

    def test_check_output(self):
833
        self.check_output(check_eager=True)
834 835 836 837 838 839 840 841 842


class TestMulticlassNMS3OpNoOutput(TestMulticlassNMS3Op):
    def set_argument(self):
        # Here set 2.0 to test the case there is no outputs.
        # In practical use, 0.0 < score_threshold < 1.0
        self.score_threshold = 2.0


843
if __name__ == '__main__':
844
    paddle.enable_static()
845
    unittest.main()