test_multiclass_nms_op.py 24.9 KB
Newer Older
1
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
14 15

from __future__ import print_function
16 17 18
import unittest
import numpy as np
import copy
19
from op_test import OpTest
20
import paddle
X
xiaoting 已提交
21
import paddle.fluid as fluid
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
from paddle.fluid import Program, program_guard, in_dygraph_mode, _non_static_mode
from paddle.fluid.layer_helper import LayerHelper
from paddle import _C_ops


def multiclass_nms3(bboxes,
                    scores,
                    rois_num=None,
                    score_threshold=0.3,
                    nms_top_k=1000,
                    keep_top_k=100,
                    nms_threshold=0.3,
                    normalized=True,
                    nms_eta=1.,
                    background_label=-1,
                    return_index=True,
                    return_rois_num=True,
                    name=None):

    helper = LayerHelper('multiclass_nms3', **locals())

    if in_dygraph_mode():
        attrs = (score_threshold, nms_top_k, keep_top_k, nms_threshold,
                 normalized, nms_eta, background_label)
        output, index, nms_rois_num = _C_ops.final_state_multiclass_nms3(
            bboxes, scores, rois_num, *attrs)
        if not return_index:
            index = None
        return output, index, nms_rois_num
    elif _non_static_mode():
        attrs = ('background_label', background_label, 'score_threshold',
                 score_threshold, 'nms_top_k', nms_top_k, 'nms_threshold',
                 nms_threshold, 'keep_top_k', keep_top_k, 'nms_eta', nms_eta,
                 'normalized', normalized)
        output, index, nms_rois_num = _C_ops.multiclass_nms3(
            bboxes, scores, rois_num, *attrs)
        if not return_index:
            index = None
        return output, index, nms_rois_num

    else:
        output = helper.create_variable_for_type_inference(dtype=bboxes.dtype)
        index = helper.create_variable_for_type_inference(dtype='int32')

        inputs = {'BBoxes': bboxes, 'Scores': scores}
        outputs = {'Out': output, 'Index': index}

        if rois_num is not None:
            inputs['RoisNum'] = rois_num

        if return_rois_num:
            nms_rois_num = helper.create_variable_for_type_inference(
                dtype='int32')
            outputs['NmsRoisNum'] = nms_rois_num

        helper.append_op(type="multiclass_nms3",
                         inputs=inputs,
                         attrs={
                             'background_label': background_label,
                             'score_threshold': score_threshold,
                             'nms_top_k': nms_top_k,
                             'nms_threshold': nms_threshold,
                             'keep_top_k': keep_top_k,
                             'nms_eta': nms_eta,
                             'normalized': normalized
                         },
                         outputs=outputs)
        output.stop_gradient = True
        index.stop_gradient = True
        if not return_index:
            index = None
        if not return_rois_num:
            nms_rois_num = None

        return output, nms_rois_num, index
97 98


99 100 101 102 103 104 105 106
def softmax(x):
    # clip to shiftx, otherwise, when calc loss with
    # log(exp(shiftx)), may get log(0)=INF
    shiftx = (x - np.max(x)).clip(-64.)
    exps = np.exp(shiftx)
    return exps / np.sum(exps)


J
jerrywgz 已提交
107
def iou(box_a, box_b, norm):
108 109 110 111 112 113 114 115 116 117 118 119
    """Apply intersection-over-union overlap between box_a and box_b
    """
    xmin_a = min(box_a[0], box_a[2])
    ymin_a = min(box_a[1], box_a[3])
    xmax_a = max(box_a[0], box_a[2])
    ymax_a = max(box_a[1], box_a[3])

    xmin_b = min(box_b[0], box_b[2])
    ymin_b = min(box_b[1], box_b[3])
    xmax_b = max(box_b[0], box_b[2])
    ymax_b = max(box_b[1], box_b[3])

J
jerrywgz 已提交
120 121 122 123
    area_a = (ymax_a - ymin_a + (norm == False)) * (xmax_a - xmin_a +
                                                    (norm == False))
    area_b = (ymax_b - ymin_b + (norm == False)) * (xmax_b - xmin_b +
                                                    (norm == False))
124 125 126 127 128 129 130 131
    if area_a <= 0 and area_b <= 0:
        return 0.0

    xa = max(xmin_a, xmin_b)
    ya = max(ymin_a, ymin_b)
    xb = min(xmax_a, xmax_b)
    yb = min(ymax_a, ymax_b)

132 133
    inter_area = max(xb - xa +
                     (norm == False), 0.0) * max(yb - ya + (norm == False), 0.0)
134 135 136 137 138 139

    iou_ratio = inter_area / (area_a + area_b - inter_area)

    return iou_ratio


J
jerrywgz 已提交
140 141 142 143 144 145 146
def nms(boxes,
        scores,
        score_threshold,
        nms_threshold,
        top_k=200,
        normalized=True,
        eta=1.0):
147 148 149 150 151
    """Apply non-maximum suppression at test time to avoid detecting too many
    overlapping bounding boxes for a given object.
    Args:
        boxes: (tensor) The location preds for the img, Shape: [num_priors,4].
        scores: (tensor) The class predscores for the img, Shape:[num_priors].
152 153 154 155 156 157
        score_threshold: (float) The confidence thresh for filtering low
            confidence boxes.
        nms_threshold: (float) The overlap thresh for suppressing unnecessary
            boxes.
        top_k: (int) The maximum number of box preds to consider.
        eta: (float) The parameter for adaptive NMS.
158 159 160 161 162 163 164 165 166
    Return:
        The indices of the kept boxes with respect to num_priors.
    """
    all_scores = copy.deepcopy(scores)
    all_scores = all_scores.flatten()
    selected_indices = np.argwhere(all_scores > score_threshold)
    selected_indices = selected_indices.flatten()
    all_scores = all_scores[selected_indices]

167
    sorted_indices = np.argsort(-all_scores, axis=0, kind='mergesort')
168
    sorted_scores = all_scores[sorted_indices]
169
    sorted_indices = selected_indices[sorted_indices]
D
dangqingqing 已提交
170
    if top_k > -1 and top_k < sorted_indices.shape[0]:
171 172 173 174 175 176 177 178 179 180 181
        sorted_indices = sorted_indices[:top_k]
        sorted_scores = sorted_scores[:top_k]

    selected_indices = []
    adaptive_threshold = nms_threshold
    for i in range(sorted_scores.shape[0]):
        idx = sorted_indices[i]
        keep = True
        for k in range(len(selected_indices)):
            if keep:
                kept_idx = selected_indices[k]
J
jerrywgz 已提交
182
                overlap = iou(boxes[idx], boxes[kept_idx], normalized)
D
dangqingqing 已提交
183
                keep = True if overlap <= adaptive_threshold else False
184 185 186 187 188 189 190 191 192 193
            else:
                break
        if keep:
            selected_indices.append(idx)
        if keep and eta < 1 and adaptive_threshold > 0.5:
            adaptive_threshold *= eta
    return selected_indices


def multiclass_nms(boxes, scores, background, score_threshold, nms_threshold,
J
jerrywgz 已提交
194 195 196 197 198 199 200
                   nms_top_k, keep_top_k, normalized, shared):
    if shared:
        class_num = scores.shape[0]
        priorbox_num = scores.shape[1]
    else:
        box_num = scores.shape[0]
        class_num = scores.shape[1]
201

202
    selected_indices = {}
203 204 205
    num_det = 0
    for c in range(class_num):
        if c == background: continue
J
jerrywgz 已提交
206 207 208 209 210 211
        if shared:
            indices = nms(boxes, scores[c], score_threshold, nms_threshold,
                          nms_top_k, normalized)
        else:
            indices = nms(boxes[:, c, :], scores[:, c], score_threshold,
                          nms_threshold, nms_top_k, normalized)
212
        selected_indices[c] = indices
213 214 215 216
        num_det += len(indices)

    if keep_top_k > -1 and num_det > keep_top_k:
        score_index = []
217
        for c, indices in selected_indices.items():
218
            for idx in indices:
J
jerrywgz 已提交
219 220 221 222
                if shared:
                    score_index.append((scores[c][idx], c, idx))
                else:
                    score_index.append((scores[idx][c], c, idx))
223

224 225 226
        sorted_score_index = sorted(score_index,
                                    key=lambda tup: tup[0],
                                    reverse=True)
227
        sorted_score_index = sorted_score_index[:keep_top_k]
228 229 230 231
        selected_indices = {}

        for _, c, _ in sorted_score_index:
            selected_indices[c] = []
232
        for s, c, idx in sorted_score_index:
233
            selected_indices[c].append(idx)
J
jerrywgz 已提交
234 235 236
        if not shared:
            for labels in selected_indices:
                selected_indices[labels].sort()
237
        num_det = keep_top_k
238

239
    return selected_indices, num_det
240 241


J
jerrywgz 已提交
242 243 244
def lod_multiclass_nms(boxes, scores, background, score_threshold,
                       nms_threshold, nms_top_k, keep_top_k, box_lod,
                       normalized):
245
    num_class = boxes.shape[1]
J
jerrywgz 已提交
246 247 248 249
    det_outs = []
    lod = []
    head = 0
    for n in range(len(box_lod[0])):
250 251 252
        if box_lod[0][n] == 0:
            lod.append(0)
            continue
J
jerrywgz 已提交
253 254
        box = boxes[head:head + box_lod[0][n]]
        score = scores[head:head + box_lod[0][n]]
255
        offset = head
J
jerrywgz 已提交
256
        head = head + box_lod[0][n]
257 258 259 260 261 262 263 264 265
        nmsed_outs, nmsed_num = multiclass_nms(box,
                                               score,
                                               background,
                                               score_threshold,
                                               nms_threshold,
                                               nms_top_k,
                                               keep_top_k,
                                               normalized,
                                               shared=False)
266 267
        lod.append(nmsed_num)

J
jerrywgz 已提交
268 269
        if nmsed_num == 0:
            continue
270
        tmp_det_out = []
J
jerrywgz 已提交
271 272 273
        for c, indices in nmsed_outs.items():
            for idx in indices:
                xmin, ymin, xmax, ymax = box[idx, c, :]
274 275 276 277
                tmp_det_out.append([
                    c, score[idx][c], xmin, ymin, xmax, ymax,
                    offset * num_class + idx * num_class + c
                ])
278 279 280
        sorted_det_out = sorted(tmp_det_out,
                                key=lambda tup: tup[0],
                                reverse=False)
281
        det_outs.extend(sorted_det_out)
J
jerrywgz 已提交
282 283 284 285 286 287 288 289 290 291 292 293

    return det_outs, lod


def batched_multiclass_nms(boxes,
                           scores,
                           background,
                           score_threshold,
                           nms_threshold,
                           nms_top_k,
                           keep_top_k,
                           normalized=True):
294
    batch_size = scores.shape[0]
295
    num_boxes = scores.shape[2]
296
    det_outs = []
297
    index_outs = []
298
    lod = []
299
    for n in range(batch_size):
300 301 302 303 304 305 306 307 308
        nmsed_outs, nmsed_num = multiclass_nms(boxes[n],
                                               scores[n],
                                               background,
                                               score_threshold,
                                               nms_threshold,
                                               nms_top_k,
                                               keep_top_k,
                                               normalized,
                                               shared=True)
309 310
        lod.append(nmsed_num)

J
jerrywgz 已提交
311 312
        if nmsed_num == 0:
            continue
313
        tmp_det_out = []
314
        for c, indices in nmsed_outs.items():
315
            for idx in indices:
316
                xmin, ymin, xmax, ymax = boxes[n][idx][:]
317 318 319 320
                tmp_det_out.append([
                    c, scores[n][c][idx], xmin, ymin, xmax, ymax,
                    idx + n * num_boxes
                ])
321 322 323
        sorted_det_out = sorted(tmp_det_out,
                                key=lambda tup: tup[0],
                                reverse=False)
324
        det_outs.extend(sorted_det_out)
325 326 327 328
    return det_outs, lod


class TestMulticlassNMSOp(OpTest):
329

330 331 332
    def set_argument(self):
        self.score_threshold = 0.01

333
    def setUp(self):
334
        self.set_argument()
335
        N = 7
336
        M = 1200
337 338 339 340 341 342
        C = 21
        BOX_SIZE = 4
        background = 0
        nms_threshold = 0.3
        nms_top_k = 400
        keep_top_k = 200
343
        score_threshold = self.score_threshold
344

D
dangqingqing 已提交
345 346 347 348 349 350
        scores = np.random.random((N * M, C)).astype('float32')

        scores = np.apply_along_axis(softmax, 1, scores)
        scores = np.reshape(scores, (N, M, C))
        scores = np.transpose(scores, (0, 2, 1))

351 352 353
        boxes = np.random.random((N, M, BOX_SIZE)).astype('float32')
        boxes[:, :, 0:2] = boxes[:, :, 0:2] * 0.5
        boxes[:, :, 2:4] = boxes[:, :, 2:4] * 0.5 + 0.5
354

355 356 357 358 359 360 361
        det_outs, lod = batched_multiclass_nms(boxes, scores, background,
                                               score_threshold, nms_threshold,
                                               nms_top_k, keep_top_k)
        lod = [1] if not det_outs else lod
        det_outs = [[-1, 0]] if not det_outs else det_outs
        det_outs = np.array(det_outs)
        nmsed_outs = det_outs[:, :-1].astype('float32')
D
dangqingqing 已提交
362 363

        self.op_type = 'multiclass_nms'
D
dangqingqing 已提交
364
        self.inputs = {'BBoxes': boxes, 'Scores': scores}
365
        self.outputs = {'Out': (nmsed_outs, [lod])}
D
dangqingqing 已提交
366 367 368 369 370 371 372
        self.attrs = {
            'background_label': 0,
            'nms_threshold': nms_threshold,
            'nms_top_k': nms_top_k,
            'keep_top_k': keep_top_k,
            'score_threshold': score_threshold,
            'nms_eta': 1.0,
J
jerrywgz 已提交
373
            'normalized': True,
D
dangqingqing 已提交
374
        }
375 376 377 378 379

    def test_check_output(self):
        self.check_output()


380
class TestMulticlassNMSOpNoOutput(TestMulticlassNMSOp):
381

382 383
    def set_argument(self):
        # Here set 2.0 to test the case there is no outputs.
384
        # In practical use, 0.0 < score_threshold < 1.0
385 386 387
        self.score_threshold = 2.0


J
jerrywgz 已提交
388
class TestMulticlassNMSLoDInput(OpTest):
389

J
jerrywgz 已提交
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
    def set_argument(self):
        self.score_threshold = 0.01

    def setUp(self):
        self.set_argument()
        M = 1200
        C = 21
        BOX_SIZE = 4
        box_lod = [[1200]]
        background = 0
        nms_threshold = 0.3
        nms_top_k = 400
        keep_top_k = 200
        score_threshold = self.score_threshold
        normalized = False

        scores = np.random.random((M, C)).astype('float32')

        scores = np.apply_along_axis(softmax, 1, scores)

        boxes = np.random.random((M, C, BOX_SIZE)).astype('float32')
        boxes[:, :, 0] = boxes[:, :, 0] * 10
        boxes[:, :, 1] = boxes[:, :, 1] * 10
        boxes[:, :, 2] = boxes[:, :, 2] * 10 + 10
        boxes[:, :, 3] = boxes[:, :, 3] * 10 + 10

416 417 418 419
        det_outs, lod = lod_multiclass_nms(boxes, scores, background,
                                           score_threshold, nms_threshold,
                                           nms_top_k, keep_top_k, box_lod,
                                           normalized)
420 421 422
        det_outs = np.array(det_outs).astype('float32')
        nmsed_outs = det_outs[:, :-1].astype('float32') if len(
            det_outs) else det_outs
J
jerrywgz 已提交
423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
        self.op_type = 'multiclass_nms'
        self.inputs = {
            'BBoxes': (boxes, box_lod),
            'Scores': (scores, box_lod),
        }
        self.outputs = {'Out': (nmsed_outs, [lod])}
        self.attrs = {
            'background_label': 0,
            'nms_threshold': nms_threshold,
            'nms_top_k': nms_top_k,
            'keep_top_k': keep_top_k,
            'score_threshold': score_threshold,
            'nms_eta': 1.0,
            'normalized': normalized,
        }

    def test_check_output(self):
        self.check_output()


443
class TestMulticlassNMSNoBox(TestMulticlassNMSLoDInput):
444

445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
    def setUp(self):
        self.set_argument()
        M = 1200
        C = 21
        BOX_SIZE = 4
        box_lod = [[0, 1200, 0]]
        background = 0
        nms_threshold = 0.3
        nms_top_k = 400
        keep_top_k = 200
        score_threshold = self.score_threshold
        normalized = False

        scores = np.random.random((M, C)).astype('float32')

        scores = np.apply_along_axis(softmax, 1, scores)

        boxes = np.random.random((M, C, BOX_SIZE)).astype('float32')
        boxes[:, :, 0] = boxes[:, :, 0] * 10
        boxes[:, :, 1] = boxes[:, :, 1] * 10
        boxes[:, :, 2] = boxes[:, :, 2] * 10 + 10
        boxes[:, :, 3] = boxes[:, :, 3] * 10 + 10

468 469 470 471
        det_outs, lod = lod_multiclass_nms(boxes, scores, background,
                                           score_threshold, nms_threshold,
                                           nms_top_k, keep_top_k, box_lod,
                                           normalized)
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
        det_outs = np.array(det_outs).astype('float32')
        nmsed_outs = det_outs[:, :-1].astype('float32') if len(
            det_outs) else det_outs
        self.op_type = 'multiclass_nms'
        self.inputs = {
            'BBoxes': (boxes, box_lod),
            'Scores': (scores, box_lod),
        }
        self.outputs = {'Out': (nmsed_outs, [lod])}
        self.attrs = {
            'background_label': 0,
            'nms_threshold': nms_threshold,
            'nms_top_k': nms_top_k,
            'keep_top_k': keep_top_k,
            'score_threshold': score_threshold,
            'nms_eta': 1.0,
            'normalized': normalized,
        }


492
class TestIOU(unittest.TestCase):
493

494 495 496 497 498
    def test_iou(self):
        box1 = np.array([4.0, 3.0, 7.0, 5.0]).astype('float32')
        box2 = np.array([3.0, 4.0, 6.0, 8.0]).astype('float32')

        expt_output = np.array([2.0 / 16.0]).astype('float32')
J
jerrywgz 已提交
499
        calc_output = np.array([iou(box1, box2, True)]).astype('float32')
500
        np.testing.assert_allclose(calc_output, expt_output, rtol=1e-05)
501 502


503
class TestMulticlassNMS2Op(TestMulticlassNMSOp):
504

505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
    def setUp(self):
        self.set_argument()
        N = 7
        M = 1200
        C = 21
        BOX_SIZE = 4
        background = 0
        nms_threshold = 0.3
        nms_top_k = 400
        keep_top_k = 200
        score_threshold = self.score_threshold

        scores = np.random.random((N * M, C)).astype('float32')

        scores = np.apply_along_axis(softmax, 1, scores)
        scores = np.reshape(scores, (N, M, C))
        scores = np.transpose(scores, (0, 2, 1))

        boxes = np.random.random((N, M, BOX_SIZE)).astype('float32')
        boxes[:, :, 0:2] = boxes[:, :, 0:2] * 0.5
        boxes[:, :, 2:4] = boxes[:, :, 2:4] * 0.5 + 0.5

        det_outs, lod = batched_multiclass_nms(boxes, scores, background,
                                               score_threshold, nms_threshold,
                                               nms_top_k, keep_top_k)
        det_outs = np.array(det_outs)

        nmsed_outs = det_outs[:, :-1].astype('float32') if len(
            det_outs) else det_outs
534 535
        index_outs = det_outs[:,
                              -1:].astype('int') if len(det_outs) else det_outs
536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
        self.op_type = 'multiclass_nms2'
        self.inputs = {'BBoxes': boxes, 'Scores': scores}
        self.outputs = {
            'Out': (nmsed_outs, [lod]),
            'Index': (index_outs, [lod])
        }
        self.attrs = {
            'background_label': 0,
            'nms_threshold': nms_threshold,
            'nms_top_k': nms_top_k,
            'keep_top_k': keep_top_k,
            'score_threshold': score_threshold,
            'nms_eta': 1.0,
            'normalized': True,
        }

    def test_check_output(self):
        self.check_output()


class TestMulticlassNMS2OpNoOutput(TestMulticlassNMS2Op):
557

558 559 560 561 562 563 564
    def set_argument(self):
        # Here set 2.0 to test the case there is no outputs.
        # In practical use, 0.0 < score_threshold < 1.0
        self.score_threshold = 2.0


class TestMulticlassNMS2LoDInput(TestMulticlassNMSLoDInput):
565

566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
    def setUp(self):
        self.set_argument()
        M = 1200
        C = 21
        BOX_SIZE = 4
        box_lod = [[1200]]
        background = 0
        nms_threshold = 0.3
        nms_top_k = 400
        keep_top_k = 200
        score_threshold = self.score_threshold
        normalized = False

        scores = np.random.random((M, C)).astype('float32')

        scores = np.apply_along_axis(softmax, 1, scores)

        boxes = np.random.random((M, C, BOX_SIZE)).astype('float32')
        boxes[:, :, 0] = boxes[:, :, 0] * 10
        boxes[:, :, 1] = boxes[:, :, 1] * 10
        boxes[:, :, 2] = boxes[:, :, 2] * 10 + 10
        boxes[:, :, 3] = boxes[:, :, 3] * 10 + 10

589 590 591 592
        det_outs, lod = lod_multiclass_nms(boxes, scores, background,
                                           score_threshold, nms_threshold,
                                           nms_top_k, keep_top_k, box_lod,
                                           normalized)
593 594 595 596

        det_outs = np.array(det_outs)
        nmsed_outs = det_outs[:, :-1].astype('float32') if len(
            det_outs) else det_outs
597 598
        index_outs = det_outs[:,
                              -1:].astype('int') if len(det_outs) else det_outs
599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617
        self.op_type = 'multiclass_nms2'
        self.inputs = {
            'BBoxes': (boxes, box_lod),
            'Scores': (scores, box_lod),
        }
        self.outputs = {
            'Out': (nmsed_outs, [lod]),
            'Index': (index_outs, [lod])
        }
        self.attrs = {
            'background_label': 0,
            'nms_threshold': nms_threshold,
            'nms_top_k': nms_top_k,
            'keep_top_k': keep_top_k,
            'score_threshold': score_threshold,
            'nms_eta': 1.0,
            'normalized': normalized,
        }

618 619 620

def test_check_output(self):
    self.check_output()
621 622 623


class TestMulticlassNMS2LoDNoOutput(TestMulticlassNMS2LoDInput):
624

625 626 627 628 629 630
    def set_argument(self):
        # Here set 2.0 to test the case there is no outputs.
        # In practical use, 0.0 < score_threshold < 1.0
        self.score_threshold = 2.0


X
xiaoting 已提交
631
class TestMulticlassNMSError(unittest.TestCase):
632

X
xiaoting 已提交
633 634 635 636 637 638 639 640 641 642 643 644 645
    def test_errors(self):
        with program_guard(Program(), Program()):
            M = 1200
            N = 7
            C = 21
            BOX_SIZE = 4

            boxes_np = np.random.random((M, C, BOX_SIZE)).astype('float32')
            scores = np.random.random((N * M, C)).astype('float32')
            scores = np.apply_along_axis(softmax, 1, scores)
            scores = np.reshape(scores, (N, M, C))
            scores_np = np.transpose(scores, (0, 2, 1))

646 647 648 649 650 651
            boxes_data = fluid.data(name='bboxes',
                                    shape=[M, C, BOX_SIZE],
                                    dtype='float32')
            scores_data = fluid.data(name='scores',
                                     shape=[N, C, M],
                                     dtype='float32')
X
xiaoting 已提交
652 653 654 655 656 657 658 659 660 661 662 663 664

            def test_bboxes_Variable():
                # the bboxes type must be Variable
                fluid.layers.multiclass_nms(bboxes=boxes_np, scores=scores_data)

            def test_scores_Variable():
                # the bboxes type must be Variable
                fluid.layers.multiclass_nms(bboxes=boxes_data, scores=scores_np)

            self.assertRaises(TypeError, test_bboxes_Variable)
            self.assertRaises(TypeError, test_scores_Variable)


665
class TestMulticlassNMS3Op(TestMulticlassNMS2Op):
666

667
    def setUp(self):
668
        self.python_api = multiclass_nms3
669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
        self.set_argument()
        N = 7
        M = 1200
        C = 21
        BOX_SIZE = 4
        background = 0
        nms_threshold = 0.3
        nms_top_k = 400
        keep_top_k = 200
        score_threshold = self.score_threshold

        scores = np.random.random((N * M, C)).astype('float32')

        scores = np.apply_along_axis(softmax, 1, scores)
        scores = np.reshape(scores, (N, M, C))
        scores = np.transpose(scores, (0, 2, 1))

        boxes = np.random.random((N, M, BOX_SIZE)).astype('float32')
        boxes[:, :, 0:2] = boxes[:, :, 0:2] * 0.5
        boxes[:, :, 2:4] = boxes[:, :, 2:4] * 0.5 + 0.5

        det_outs, lod = batched_multiclass_nms(boxes, scores, background,
                                               score_threshold, nms_threshold,
                                               nms_top_k, keep_top_k)
        det_outs = np.array(det_outs)

        nmsed_outs = det_outs[:, :-1].astype('float32') if len(
            det_outs) else det_outs
697 698
        index_outs = det_outs[:,
                              -1:].astype('int') if len(det_outs) else det_outs
699 700 701
        self.op_type = 'multiclass_nms3'
        self.inputs = {'BBoxes': boxes, 'Scores': scores}
        self.outputs = {
702 703
            'Out': nmsed_outs,
            'Index': index_outs,
704 705 706 707 708 709 710 711 712 713 714 715 716
            'NmsRoisNum': np.array(lod).astype('int32')
        }
        self.attrs = {
            'background_label': 0,
            'nms_threshold': nms_threshold,
            'nms_top_k': nms_top_k,
            'keep_top_k': keep_top_k,
            'score_threshold': score_threshold,
            'nms_eta': 1.0,
            'normalized': True,
        }

    def test_check_output(self):
717
        self.check_output(check_eager=True)
718 719 720


class TestMulticlassNMS3OpNoOutput(TestMulticlassNMS3Op):
721

722 723 724 725 726 727
    def set_argument(self):
        # Here set 2.0 to test the case there is no outputs.
        # In practical use, 0.0 < score_threshold < 1.0
        self.score_threshold = 2.0


728
if __name__ == '__main__':
729
    paddle.enable_static()
730
    unittest.main()