test_multiclass_nms_op.py 24.3 KB
Newer Older
1
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6 7 8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

15 16 17
import unittest
import numpy as np
import copy
18
from op_test import OpTest
19
import paddle
X
xiaoting 已提交
20
import paddle.fluid as fluid
21 22 23 24 25 26
from paddle.fluid import (
    Program,
    program_guard,
    in_dygraph_mode,
    _non_static_mode,
)
27
from paddle.fluid.layer_helper import LayerHelper
28
from paddle import _C_ops, _legacy_C_ops
29 30


31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
def multiclass_nms3(
    bboxes,
    scores,
    rois_num=None,
    score_threshold=0.3,
    nms_top_k=1000,
    keep_top_k=100,
    nms_threshold=0.3,
    normalized=True,
    nms_eta=1.0,
    background_label=-1,
    return_index=True,
    return_rois_num=True,
    name=None,
):
46 47 48 49

    helper = LayerHelper('multiclass_nms3', **locals())

    if in_dygraph_mode():
50 51 52 53 54 55 56 57 58
        attrs = (
            score_threshold,
            nms_top_k,
            keep_top_k,
            nms_threshold,
            normalized,
            nms_eta,
            background_label,
        )
59
        output, index, nms_rois_num = _C_ops.multiclass_nms3(
60 61
            bboxes, scores, rois_num, *attrs
        )
62 63 64 65
        if not return_index:
            index = None
        return output, index, nms_rois_num
    elif _non_static_mode():
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
        attrs = (
            'background_label',
            background_label,
            'score_threshold',
            score_threshold,
            'nms_top_k',
            nms_top_k,
            'nms_threshold',
            nms_threshold,
            'keep_top_k',
            keep_top_k,
            'nms_eta',
            nms_eta,
            'normalized',
            normalized,
        )
82
        output, index, nms_rois_num = _legacy_C_ops.multiclass_nms3(
83 84
            bboxes, scores, rois_num, *attrs
        )
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
        if not return_index:
            index = None
        return output, index, nms_rois_num

    else:
        output = helper.create_variable_for_type_inference(dtype=bboxes.dtype)
        index = helper.create_variable_for_type_inference(dtype='int32')

        inputs = {'BBoxes': bboxes, 'Scores': scores}
        outputs = {'Out': output, 'Index': index}

        if rois_num is not None:
            inputs['RoisNum'] = rois_num

        if return_rois_num:
            nms_rois_num = helper.create_variable_for_type_inference(
101 102
                dtype='int32'
            )
103 104
            outputs['NmsRoisNum'] = nms_rois_num

105 106 107 108 109 110 111 112 113 114 115 116 117 118
        helper.append_op(
            type="multiclass_nms3",
            inputs=inputs,
            attrs={
                'background_label': background_label,
                'score_threshold': score_threshold,
                'nms_top_k': nms_top_k,
                'nms_threshold': nms_threshold,
                'keep_top_k': keep_top_k,
                'nms_eta': nms_eta,
                'normalized': normalized,
            },
            outputs=outputs,
        )
119 120 121 122 123 124 125 126
        output.stop_gradient = True
        index.stop_gradient = True
        if not return_index:
            index = None
        if not return_rois_num:
            nms_rois_num = None

        return output, nms_rois_num, index
127 128


129 130 131
def softmax(x):
    # clip to shiftx, otherwise, when calc loss with
    # log(exp(shiftx)), may get log(0)=INF
132
    shiftx = (x - np.max(x)).clip(-64.0)
133 134 135 136
    exps = np.exp(shiftx)
    return exps / np.sum(exps)


J
jerrywgz 已提交
137
def iou(box_a, box_b, norm):
138
    """Apply intersection-over-union overlap between box_a and box_b"""
139 140 141 142 143 144 145 146 147 148
    xmin_a = min(box_a[0], box_a[2])
    ymin_a = min(box_a[1], box_a[3])
    xmax_a = max(box_a[0], box_a[2])
    ymax_a = max(box_a[1], box_a[3])

    xmin_b = min(box_b[0], box_b[2])
    ymin_b = min(box_b[1], box_b[3])
    xmax_b = max(box_b[0], box_b[2])
    ymax_b = max(box_b[1], box_b[3])

149 150
    area_a = (ymax_a - ymin_a + (not norm)) * (xmax_a - xmin_a + (not norm))
    area_b = (ymax_b - ymin_b + (not norm)) * (xmax_b - xmin_b + (not norm))
151 152 153 154 155 156 157 158
    if area_a <= 0 and area_b <= 0:
        return 0.0

    xa = max(xmin_a, xmin_b)
    ya = max(ymin_a, ymin_b)
    xb = min(xmax_a, xmax_b)
    yb = min(ymax_a, ymax_b)

159
    inter_area = max(xb - xa + (not norm), 0.0) * max(yb - ya + (not norm), 0.0)
160 161 162 163 164 165

    iou_ratio = inter_area / (area_a + area_b - inter_area)

    return iou_ratio


166 167 168 169 170 171 172 173 174
def nms(
    boxes,
    scores,
    score_threshold,
    nms_threshold,
    top_k=200,
    normalized=True,
    eta=1.0,
):
175 176 177 178 179
    """Apply non-maximum suppression at test time to avoid detecting too many
    overlapping bounding boxes for a given object.
    Args:
        boxes: (tensor) The location preds for the img, Shape: [num_priors,4].
        scores: (tensor) The class predscores for the img, Shape:[num_priors].
180 181 182 183 184 185
        score_threshold: (float) The confidence thresh for filtering low
            confidence boxes.
        nms_threshold: (float) The overlap thresh for suppressing unnecessary
            boxes.
        top_k: (int) The maximum number of box preds to consider.
        eta: (float) The parameter for adaptive NMS.
186 187 188 189 190 191 192 193 194
    Return:
        The indices of the kept boxes with respect to num_priors.
    """
    all_scores = copy.deepcopy(scores)
    all_scores = all_scores.flatten()
    selected_indices = np.argwhere(all_scores > score_threshold)
    selected_indices = selected_indices.flatten()
    all_scores = all_scores[selected_indices]

195
    sorted_indices = np.argsort(-all_scores, axis=0, kind='mergesort')
196
    sorted_scores = all_scores[sorted_indices]
197
    sorted_indices = selected_indices[sorted_indices]
D
dangqingqing 已提交
198
    if top_k > -1 and top_k < sorted_indices.shape[0]:
199 200 201 202 203 204 205 206 207 208 209
        sorted_indices = sorted_indices[:top_k]
        sorted_scores = sorted_scores[:top_k]

    selected_indices = []
    adaptive_threshold = nms_threshold
    for i in range(sorted_scores.shape[0]):
        idx = sorted_indices[i]
        keep = True
        for k in range(len(selected_indices)):
            if keep:
                kept_idx = selected_indices[k]
J
jerrywgz 已提交
210
                overlap = iou(boxes[idx], boxes[kept_idx], normalized)
D
dangqingqing 已提交
211
                keep = True if overlap <= adaptive_threshold else False
212 213 214 215 216 217 218 219 220
            else:
                break
        if keep:
            selected_indices.append(idx)
        if keep and eta < 1 and adaptive_threshold > 0.5:
            adaptive_threshold *= eta
    return selected_indices


221 222 223 224 225 226 227 228 229 230 231
def multiclass_nms(
    boxes,
    scores,
    background,
    score_threshold,
    nms_threshold,
    nms_top_k,
    keep_top_k,
    normalized,
    shared,
):
J
jerrywgz 已提交
232 233 234 235 236 237
    if shared:
        class_num = scores.shape[0]
        priorbox_num = scores.shape[1]
    else:
        box_num = scores.shape[0]
        class_num = scores.shape[1]
238

239
    selected_indices = {}
240 241
    num_det = 0
    for c in range(class_num):
242 243
        if c == background:
            continue
J
jerrywgz 已提交
244
        if shared:
245 246 247 248 249 250 251 252
            indices = nms(
                boxes,
                scores[c],
                score_threshold,
                nms_threshold,
                nms_top_k,
                normalized,
            )
J
jerrywgz 已提交
253
        else:
254 255 256 257 258 259 260 261
            indices = nms(
                boxes[:, c, :],
                scores[:, c],
                score_threshold,
                nms_threshold,
                nms_top_k,
                normalized,
            )
262
        selected_indices[c] = indices
263 264 265 266
        num_det += len(indices)

    if keep_top_k > -1 and num_det > keep_top_k:
        score_index = []
267
        for c, indices in selected_indices.items():
268
            for idx in indices:
J
jerrywgz 已提交
269 270 271 272
                if shared:
                    score_index.append((scores[c][idx], c, idx))
                else:
                    score_index.append((scores[idx][c], c, idx))
273

274 275 276
        sorted_score_index = sorted(
            score_index, key=lambda tup: tup[0], reverse=True
        )
277
        sorted_score_index = sorted_score_index[:keep_top_k]
278 279 280 281
        selected_indices = {}

        for _, c, _ in sorted_score_index:
            selected_indices[c] = []
282
        for s, c, idx in sorted_score_index:
283
            selected_indices[c].append(idx)
J
jerrywgz 已提交
284 285 286
        if not shared:
            for labels in selected_indices:
                selected_indices[labels].sort()
287
        num_det = keep_top_k
288

289
    return selected_indices, num_det
290 291


292 293 294 295 296 297 298 299 300 301 302
def lod_multiclass_nms(
    boxes,
    scores,
    background,
    score_threshold,
    nms_threshold,
    nms_top_k,
    keep_top_k,
    box_lod,
    normalized,
):
303
    num_class = boxes.shape[1]
J
jerrywgz 已提交
304 305 306 307
    det_outs = []
    lod = []
    head = 0
    for n in range(len(box_lod[0])):
308 309 310
        if box_lod[0][n] == 0:
            lod.append(0)
            continue
311 312
        box = boxes[head : head + box_lod[0][n]]
        score = scores[head : head + box_lod[0][n]]
313
        offset = head
J
jerrywgz 已提交
314
        head = head + box_lod[0][n]
315 316 317 318 319 320 321 322 323 324 325
        nmsed_outs, nmsed_num = multiclass_nms(
            box,
            score,
            background,
            score_threshold,
            nms_threshold,
            nms_top_k,
            keep_top_k,
            normalized,
            shared=False,
        )
326 327
        lod.append(nmsed_num)

J
jerrywgz 已提交
328 329
        if nmsed_num == 0:
            continue
330
        tmp_det_out = []
J
jerrywgz 已提交
331 332 333
        for c, indices in nmsed_outs.items():
            for idx in indices:
                xmin, ymin, xmax, ymax = box[idx, c, :]
334 335 336 337 338 339 340 341 342 343 344 345 346 347
                tmp_det_out.append(
                    [
                        c,
                        score[idx][c],
                        xmin,
                        ymin,
                        xmax,
                        ymax,
                        offset * num_class + idx * num_class + c,
                    ]
                )
        sorted_det_out = sorted(
            tmp_det_out, key=lambda tup: tup[0], reverse=False
        )
348
        det_outs.extend(sorted_det_out)
J
jerrywgz 已提交
349 350 351 352

    return det_outs, lod


353 354 355 356 357 358 359 360 361 362
def batched_multiclass_nms(
    boxes,
    scores,
    background,
    score_threshold,
    nms_threshold,
    nms_top_k,
    keep_top_k,
    normalized=True,
):
363
    batch_size = scores.shape[0]
364
    num_boxes = scores.shape[2]
365
    det_outs = []
366
    index_outs = []
367
    lod = []
368
    for n in range(batch_size):
369 370 371 372 373 374 375 376 377 378 379
        nmsed_outs, nmsed_num = multiclass_nms(
            boxes[n],
            scores[n],
            background,
            score_threshold,
            nms_threshold,
            nms_top_k,
            keep_top_k,
            normalized,
            shared=True,
        )
380 381
        lod.append(nmsed_num)

J
jerrywgz 已提交
382 383
        if nmsed_num == 0:
            continue
384
        tmp_det_out = []
385
        for c, indices in nmsed_outs.items():
386
            for idx in indices:
387
                xmin, ymin, xmax, ymax = boxes[n][idx][:]
388 389 390 391 392 393 394 395 396 397 398 399 400 401
                tmp_det_out.append(
                    [
                        c,
                        scores[n][c][idx],
                        xmin,
                        ymin,
                        xmax,
                        ymax,
                        idx + n * num_boxes,
                    ]
                )
        sorted_det_out = sorted(
            tmp_det_out, key=lambda tup: tup[0], reverse=False
        )
402
        det_outs.extend(sorted_det_out)
403 404 405 406
    return det_outs, lod


class TestMulticlassNMSOp(OpTest):
407 408 409
    def set_argument(self):
        self.score_threshold = 0.01

410
    def setUp(self):
411
        self.set_argument()
412
        N = 7
413
        M = 1200
414 415 416 417 418 419
        C = 21
        BOX_SIZE = 4
        background = 0
        nms_threshold = 0.3
        nms_top_k = 400
        keep_top_k = 200
420
        score_threshold = self.score_threshold
421

D
dangqingqing 已提交
422 423 424 425 426 427
        scores = np.random.random((N * M, C)).astype('float32')

        scores = np.apply_along_axis(softmax, 1, scores)
        scores = np.reshape(scores, (N, M, C))
        scores = np.transpose(scores, (0, 2, 1))

428 429 430
        boxes = np.random.random((N, M, BOX_SIZE)).astype('float32')
        boxes[:, :, 0:2] = boxes[:, :, 0:2] * 0.5
        boxes[:, :, 2:4] = boxes[:, :, 2:4] * 0.5 + 0.5
431

432 433 434 435 436 437 438 439 440
        det_outs, lod = batched_multiclass_nms(
            boxes,
            scores,
            background,
            score_threshold,
            nms_threshold,
            nms_top_k,
            keep_top_k,
        )
441 442 443 444
        lod = [1] if not det_outs else lod
        det_outs = [[-1, 0]] if not det_outs else det_outs
        det_outs = np.array(det_outs)
        nmsed_outs = det_outs[:, :-1].astype('float32')
D
dangqingqing 已提交
445 446

        self.op_type = 'multiclass_nms'
D
dangqingqing 已提交
447
        self.inputs = {'BBoxes': boxes, 'Scores': scores}
448
        self.outputs = {'Out': (nmsed_outs, [lod])}
D
dangqingqing 已提交
449 450 451 452 453 454 455
        self.attrs = {
            'background_label': 0,
            'nms_threshold': nms_threshold,
            'nms_top_k': nms_top_k,
            'keep_top_k': keep_top_k,
            'score_threshold': score_threshold,
            'nms_eta': 1.0,
J
jerrywgz 已提交
456
            'normalized': True,
D
dangqingqing 已提交
457
        }
458 459 460 461 462

    def test_check_output(self):
        self.check_output()


463 464 465
class TestMulticlassNMSOpNoOutput(TestMulticlassNMSOp):
    def set_argument(self):
        # Here set 2.0 to test the case there is no outputs.
466
        # In practical use, 0.0 < score_threshold < 1.0
467 468 469
        self.score_threshold = 2.0


J
jerrywgz 已提交
470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
class TestMulticlassNMSLoDInput(OpTest):
    def set_argument(self):
        self.score_threshold = 0.01

    def setUp(self):
        self.set_argument()
        M = 1200
        C = 21
        BOX_SIZE = 4
        box_lod = [[1200]]
        background = 0
        nms_threshold = 0.3
        nms_top_k = 400
        keep_top_k = 200
        score_threshold = self.score_threshold
        normalized = False

        scores = np.random.random((M, C)).astype('float32')

        scores = np.apply_along_axis(softmax, 1, scores)

        boxes = np.random.random((M, C, BOX_SIZE)).astype('float32')
        boxes[:, :, 0] = boxes[:, :, 0] * 10
        boxes[:, :, 1] = boxes[:, :, 1] * 10
        boxes[:, :, 2] = boxes[:, :, 2] * 10 + 10
        boxes[:, :, 3] = boxes[:, :, 3] * 10 + 10

497 498 499 500 501 502 503 504 505 506 507
        det_outs, lod = lod_multiclass_nms(
            boxes,
            scores,
            background,
            score_threshold,
            nms_threshold,
            nms_top_k,
            keep_top_k,
            box_lod,
            normalized,
        )
508
        det_outs = np.array(det_outs).astype('float32')
509 510 511
        nmsed_outs = (
            det_outs[:, :-1].astype('float32') if len(det_outs) else det_outs
        )
J
jerrywgz 已提交
512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
        self.op_type = 'multiclass_nms'
        self.inputs = {
            'BBoxes': (boxes, box_lod),
            'Scores': (scores, box_lod),
        }
        self.outputs = {'Out': (nmsed_outs, [lod])}
        self.attrs = {
            'background_label': 0,
            'nms_threshold': nms_threshold,
            'nms_top_k': nms_top_k,
            'keep_top_k': keep_top_k,
            'score_threshold': score_threshold,
            'nms_eta': 1.0,
            'normalized': normalized,
        }

    def test_check_output(self):
        self.check_output()


532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
class TestMulticlassNMSNoBox(TestMulticlassNMSLoDInput):
    def setUp(self):
        self.set_argument()
        M = 1200
        C = 21
        BOX_SIZE = 4
        box_lod = [[0, 1200, 0]]
        background = 0
        nms_threshold = 0.3
        nms_top_k = 400
        keep_top_k = 200
        score_threshold = self.score_threshold
        normalized = False

        scores = np.random.random((M, C)).astype('float32')

        scores = np.apply_along_axis(softmax, 1, scores)

        boxes = np.random.random((M, C, BOX_SIZE)).astype('float32')
        boxes[:, :, 0] = boxes[:, :, 0] * 10
        boxes[:, :, 1] = boxes[:, :, 1] * 10
        boxes[:, :, 2] = boxes[:, :, 2] * 10 + 10
        boxes[:, :, 3] = boxes[:, :, 3] * 10 + 10

556 557 558 559 560 561 562 563 564 565 566
        det_outs, lod = lod_multiclass_nms(
            boxes,
            scores,
            background,
            score_threshold,
            nms_threshold,
            nms_top_k,
            keep_top_k,
            box_lod,
            normalized,
        )
567
        det_outs = np.array(det_outs).astype('float32')
568 569 570
        nmsed_outs = (
            det_outs[:, :-1].astype('float32') if len(det_outs) else det_outs
        )
571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
        self.op_type = 'multiclass_nms'
        self.inputs = {
            'BBoxes': (boxes, box_lod),
            'Scores': (scores, box_lod),
        }
        self.outputs = {'Out': (nmsed_outs, [lod])}
        self.attrs = {
            'background_label': 0,
            'nms_threshold': nms_threshold,
            'nms_top_k': nms_top_k,
            'keep_top_k': keep_top_k,
            'score_threshold': score_threshold,
            'nms_eta': 1.0,
            'normalized': normalized,
        }


588 589 590 591 592 593
class TestIOU(unittest.TestCase):
    def test_iou(self):
        box1 = np.array([4.0, 3.0, 7.0, 5.0]).astype('float32')
        box2 = np.array([3.0, 4.0, 6.0, 8.0]).astype('float32')

        expt_output = np.array([2.0 / 16.0]).astype('float32')
J
jerrywgz 已提交
594
        calc_output = np.array([iou(box1, box2, True)]).astype('float32')
595
        np.testing.assert_allclose(calc_output, expt_output, rtol=1e-05)
596 597


598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
class TestMulticlassNMS2Op(TestMulticlassNMSOp):
    def setUp(self):
        self.set_argument()
        N = 7
        M = 1200
        C = 21
        BOX_SIZE = 4
        background = 0
        nms_threshold = 0.3
        nms_top_k = 400
        keep_top_k = 200
        score_threshold = self.score_threshold

        scores = np.random.random((N * M, C)).astype('float32')

        scores = np.apply_along_axis(softmax, 1, scores)
        scores = np.reshape(scores, (N, M, C))
        scores = np.transpose(scores, (0, 2, 1))

        boxes = np.random.random((N, M, BOX_SIZE)).astype('float32')
        boxes[:, :, 0:2] = boxes[:, :, 0:2] * 0.5
        boxes[:, :, 2:4] = boxes[:, :, 2:4] * 0.5 + 0.5

621 622 623 624 625 626 627 628 629
        det_outs, lod = batched_multiclass_nms(
            boxes,
            scores,
            background,
            score_threshold,
            nms_threshold,
            nms_top_k,
            keep_top_k,
        )
630 631
        det_outs = np.array(det_outs)

632 633 634 635 636 637
        nmsed_outs = (
            det_outs[:, :-1].astype('float32') if len(det_outs) else det_outs
        )
        index_outs = (
            det_outs[:, -1:].astype('int') if len(det_outs) else det_outs
        )
638 639 640 641
        self.op_type = 'multiclass_nms2'
        self.inputs = {'BBoxes': boxes, 'Scores': scores}
        self.outputs = {
            'Out': (nmsed_outs, [lod]),
642
            'Index': (index_outs, [lod]),
643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
        }
        self.attrs = {
            'background_label': 0,
            'nms_threshold': nms_threshold,
            'nms_top_k': nms_top_k,
            'keep_top_k': keep_top_k,
            'score_threshold': score_threshold,
            'nms_eta': 1.0,
            'normalized': True,
        }

    def test_check_output(self):
        self.check_output()


class TestMulticlassNMS2OpNoOutput(TestMulticlassNMS2Op):
    def set_argument(self):
        # Here set 2.0 to test the case there is no outputs.
        # In practical use, 0.0 < score_threshold < 1.0
        self.score_threshold = 2.0


class TestMulticlassNMS2LoDInput(TestMulticlassNMSLoDInput):
    def setUp(self):
        self.set_argument()
        M = 1200
        C = 21
        BOX_SIZE = 4
        box_lod = [[1200]]
        background = 0
        nms_threshold = 0.3
        nms_top_k = 400
        keep_top_k = 200
        score_threshold = self.score_threshold
        normalized = False

        scores = np.random.random((M, C)).astype('float32')

        scores = np.apply_along_axis(softmax, 1, scores)

        boxes = np.random.random((M, C, BOX_SIZE)).astype('float32')
        boxes[:, :, 0] = boxes[:, :, 0] * 10
        boxes[:, :, 1] = boxes[:, :, 1] * 10
        boxes[:, :, 2] = boxes[:, :, 2] * 10 + 10
        boxes[:, :, 3] = boxes[:, :, 3] * 10 + 10

689 690 691 692 693 694 695 696 697 698 699
        det_outs, lod = lod_multiclass_nms(
            boxes,
            scores,
            background,
            score_threshold,
            nms_threshold,
            nms_top_k,
            keep_top_k,
            box_lod,
            normalized,
        )
700 701

        det_outs = np.array(det_outs)
702 703 704 705 706 707
        nmsed_outs = (
            det_outs[:, :-1].astype('float32') if len(det_outs) else det_outs
        )
        index_outs = (
            det_outs[:, -1:].astype('int') if len(det_outs) else det_outs
        )
708 709 710 711 712 713 714
        self.op_type = 'multiclass_nms2'
        self.inputs = {
            'BBoxes': (boxes, box_lod),
            'Scores': (scores, box_lod),
        }
        self.outputs = {
            'Out': (nmsed_outs, [lod]),
715
            'Index': (index_outs, [lod]),
716 717 718 719 720 721 722 723 724 725 726
        }
        self.attrs = {
            'background_label': 0,
            'nms_threshold': nms_threshold,
            'nms_top_k': nms_top_k,
            'keep_top_k': keep_top_k,
            'score_threshold': score_threshold,
            'nms_eta': 1.0,
            'normalized': normalized,
        }

727 728 729

def test_check_output(self):
    self.check_output()
730 731 732 733 734 735 736 737 738


class TestMulticlassNMS2LoDNoOutput(TestMulticlassNMS2LoDInput):
    def set_argument(self):
        # Here set 2.0 to test the case there is no outputs.
        # In practical use, 0.0 < score_threshold < 1.0
        self.score_threshold = 2.0


X
xiaoting 已提交
739 740 741 742 743 744 745 746 747 748 749 750 751 752
class TestMulticlassNMSError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program(), Program()):
            M = 1200
            N = 7
            C = 21
            BOX_SIZE = 4

            boxes_np = np.random.random((M, C, BOX_SIZE)).astype('float32')
            scores = np.random.random((N * M, C)).astype('float32')
            scores = np.apply_along_axis(softmax, 1, scores)
            scores = np.reshape(scores, (N, M, C))
            scores_np = np.transpose(scores, (0, 2, 1))

753 754 755 756 757 758
            boxes_data = fluid.data(
                name='bboxes', shape=[M, C, BOX_SIZE], dtype='float32'
            )
            scores_data = fluid.data(
                name='scores', shape=[N, C, M], dtype='float32'
            )
X
xiaoting 已提交
759 760 761 762 763 764 765 766 767 768 769 770 771

            def test_bboxes_Variable():
                # the bboxes type must be Variable
                fluid.layers.multiclass_nms(bboxes=boxes_np, scores=scores_data)

            def test_scores_Variable():
                # the bboxes type must be Variable
                fluid.layers.multiclass_nms(bboxes=boxes_data, scores=scores_np)

            self.assertRaises(TypeError, test_bboxes_Variable)
            self.assertRaises(TypeError, test_scores_Variable)


772 773
class TestMulticlassNMS3Op(TestMulticlassNMS2Op):
    def setUp(self):
774
        self.python_api = multiclass_nms3
775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795
        self.set_argument()
        N = 7
        M = 1200
        C = 21
        BOX_SIZE = 4
        background = 0
        nms_threshold = 0.3
        nms_top_k = 400
        keep_top_k = 200
        score_threshold = self.score_threshold

        scores = np.random.random((N * M, C)).astype('float32')

        scores = np.apply_along_axis(softmax, 1, scores)
        scores = np.reshape(scores, (N, M, C))
        scores = np.transpose(scores, (0, 2, 1))

        boxes = np.random.random((N, M, BOX_SIZE)).astype('float32')
        boxes[:, :, 0:2] = boxes[:, :, 0:2] * 0.5
        boxes[:, :, 2:4] = boxes[:, :, 2:4] * 0.5 + 0.5

796 797 798 799 800 801 802 803 804
        det_outs, lod = batched_multiclass_nms(
            boxes,
            scores,
            background,
            score_threshold,
            nms_threshold,
            nms_top_k,
            keep_top_k,
        )
805 806
        det_outs = np.array(det_outs)

807 808 809 810 811 812
        nmsed_outs = (
            det_outs[:, :-1].astype('float32') if len(det_outs) else det_outs
        )
        index_outs = (
            det_outs[:, -1:].astype('int') if len(det_outs) else det_outs
        )
813 814 815
        self.op_type = 'multiclass_nms3'
        self.inputs = {'BBoxes': boxes, 'Scores': scores}
        self.outputs = {
816 817
            'Out': nmsed_outs,
            'Index': index_outs,
818
            'NmsRoisNum': np.array(lod).astype('int32'),
819 820 821 822 823 824 825 826 827 828 829 830
        }
        self.attrs = {
            'background_label': 0,
            'nms_threshold': nms_threshold,
            'nms_top_k': nms_top_k,
            'keep_top_k': keep_top_k,
            'score_threshold': score_threshold,
            'nms_eta': 1.0,
            'normalized': True,
        }

    def test_check_output(self):
831
        self.check_output(check_eager=True)
832 833 834 835 836 837 838 839 840


class TestMulticlassNMS3OpNoOutput(TestMulticlassNMS3Op):
    def set_argument(self):
        # Here set 2.0 to test the case there is no outputs.
        # In practical use, 0.0 < score_threshold < 1.0
        self.score_threshold = 2.0


841
if __name__ == '__main__':
842
    paddle.enable_static()
843
    unittest.main()