test_multiclass_nms_op.py 24.1 KB
Newer Older
1
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
14 15

from __future__ import print_function
16 17 18
import unittest
import numpy as np
import copy
19
from op_test import OpTest
20
import paddle
X
xiaoting 已提交
21
import paddle.fluid as fluid
22
from paddle.fluid import Program, program_guard
23 24


25 26 27 28 29 30 31 32
def softmax(x):
    # clip to shiftx, otherwise, when calc loss with
    # log(exp(shiftx)), may get log(0)=INF
    shiftx = (x - np.max(x)).clip(-64.)
    exps = np.exp(shiftx)
    return exps / np.sum(exps)


J
jerrywgz 已提交
33
def iou(box_a, box_b, norm):
34 35 36 37 38 39 40 41 42 43 44 45
    """Apply intersection-over-union overlap between box_a and box_b
    """
    xmin_a = min(box_a[0], box_a[2])
    ymin_a = min(box_a[1], box_a[3])
    xmax_a = max(box_a[0], box_a[2])
    ymax_a = max(box_a[1], box_a[3])

    xmin_b = min(box_b[0], box_b[2])
    ymin_b = min(box_b[1], box_b[3])
    xmax_b = max(box_b[0], box_b[2])
    ymax_b = max(box_b[1], box_b[3])

J
jerrywgz 已提交
46 47 48 49
    area_a = (ymax_a - ymin_a + (norm == False)) * (xmax_a - xmin_a +
                                                    (norm == False))
    area_b = (ymax_b - ymin_b + (norm == False)) * (xmax_b - xmin_b +
                                                    (norm == False))
50 51 52 53 54 55 56 57
    if area_a <= 0 and area_b <= 0:
        return 0.0

    xa = max(xmin_a, xmin_b)
    ya = max(ymin_a, ymin_b)
    xb = min(xmax_a, xmax_b)
    yb = min(ymax_a, ymax_b)

58 59
    inter_area = max(xb - xa +
                     (norm == False), 0.0) * max(yb - ya + (norm == False), 0.0)
60 61 62 63 64 65

    iou_ratio = inter_area / (area_a + area_b - inter_area)

    return iou_ratio


J
jerrywgz 已提交
66 67 68 69 70 71 72
def nms(boxes,
        scores,
        score_threshold,
        nms_threshold,
        top_k=200,
        normalized=True,
        eta=1.0):
73 74 75 76 77
    """Apply non-maximum suppression at test time to avoid detecting too many
    overlapping bounding boxes for a given object.
    Args:
        boxes: (tensor) The location preds for the img, Shape: [num_priors,4].
        scores: (tensor) The class predscores for the img, Shape:[num_priors].
78 79 80 81 82 83
        score_threshold: (float) The confidence thresh for filtering low
            confidence boxes.
        nms_threshold: (float) The overlap thresh for suppressing unnecessary
            boxes.
        top_k: (int) The maximum number of box preds to consider.
        eta: (float) The parameter for adaptive NMS.
84 85 86 87 88 89 90 91 92
    Return:
        The indices of the kept boxes with respect to num_priors.
    """
    all_scores = copy.deepcopy(scores)
    all_scores = all_scores.flatten()
    selected_indices = np.argwhere(all_scores > score_threshold)
    selected_indices = selected_indices.flatten()
    all_scores = all_scores[selected_indices]

93
    sorted_indices = np.argsort(-all_scores, axis=0, kind='mergesort')
94
    sorted_scores = all_scores[sorted_indices]
95
    sorted_indices = selected_indices[sorted_indices]
D
dangqingqing 已提交
96
    if top_k > -1 and top_k < sorted_indices.shape[0]:
97 98 99 100 101 102 103 104 105 106 107
        sorted_indices = sorted_indices[:top_k]
        sorted_scores = sorted_scores[:top_k]

    selected_indices = []
    adaptive_threshold = nms_threshold
    for i in range(sorted_scores.shape[0]):
        idx = sorted_indices[i]
        keep = True
        for k in range(len(selected_indices)):
            if keep:
                kept_idx = selected_indices[k]
J
jerrywgz 已提交
108
                overlap = iou(boxes[idx], boxes[kept_idx], normalized)
D
dangqingqing 已提交
109
                keep = True if overlap <= adaptive_threshold else False
110 111 112 113 114 115 116 117 118 119
            else:
                break
        if keep:
            selected_indices.append(idx)
        if keep and eta < 1 and adaptive_threshold > 0.5:
            adaptive_threshold *= eta
    return selected_indices


def multiclass_nms(boxes, scores, background, score_threshold, nms_threshold,
J
jerrywgz 已提交
120 121 122 123 124 125 126
                   nms_top_k, keep_top_k, normalized, shared):
    if shared:
        class_num = scores.shape[0]
        priorbox_num = scores.shape[1]
    else:
        box_num = scores.shape[0]
        class_num = scores.shape[1]
127

128
    selected_indices = {}
129 130 131
    num_det = 0
    for c in range(class_num):
        if c == background: continue
J
jerrywgz 已提交
132 133 134 135 136 137
        if shared:
            indices = nms(boxes, scores[c], score_threshold, nms_threshold,
                          nms_top_k, normalized)
        else:
            indices = nms(boxes[:, c, :], scores[:, c], score_threshold,
                          nms_threshold, nms_top_k, normalized)
138
        selected_indices[c] = indices
139 140 141 142
        num_det += len(indices)

    if keep_top_k > -1 and num_det > keep_top_k:
        score_index = []
143
        for c, indices in selected_indices.items():
144
            for idx in indices:
J
jerrywgz 已提交
145 146 147 148
                if shared:
                    score_index.append((scores[c][idx], c, idx))
                else:
                    score_index.append((scores[idx][c], c, idx))
149

150 151 152
        sorted_score_index = sorted(score_index,
                                    key=lambda tup: tup[0],
                                    reverse=True)
153
        sorted_score_index = sorted_score_index[:keep_top_k]
154 155 156 157
        selected_indices = {}

        for _, c, _ in sorted_score_index:
            selected_indices[c] = []
158
        for s, c, idx in sorted_score_index:
159
            selected_indices[c].append(idx)
J
jerrywgz 已提交
160 161 162
        if not shared:
            for labels in selected_indices:
                selected_indices[labels].sort()
163
        num_det = keep_top_k
164

165
    return selected_indices, num_det
166 167


J
jerrywgz 已提交
168 169 170
def lod_multiclass_nms(boxes, scores, background, score_threshold,
                       nms_threshold, nms_top_k, keep_top_k, box_lod,
                       normalized):
171
    num_class = boxes.shape[1]
J
jerrywgz 已提交
172 173 174 175
    det_outs = []
    lod = []
    head = 0
    for n in range(len(box_lod[0])):
176 177 178
        if box_lod[0][n] == 0:
            lod.append(0)
            continue
J
jerrywgz 已提交
179 180
        box = boxes[head:head + box_lod[0][n]]
        score = scores[head:head + box_lod[0][n]]
181
        offset = head
J
jerrywgz 已提交
182
        head = head + box_lod[0][n]
183 184 185 186 187 188 189 190 191
        nmsed_outs, nmsed_num = multiclass_nms(box,
                                               score,
                                               background,
                                               score_threshold,
                                               nms_threshold,
                                               nms_top_k,
                                               keep_top_k,
                                               normalized,
                                               shared=False)
192 193
        lod.append(nmsed_num)

J
jerrywgz 已提交
194 195
        if nmsed_num == 0:
            continue
196
        tmp_det_out = []
J
jerrywgz 已提交
197 198 199
        for c, indices in nmsed_outs.items():
            for idx in indices:
                xmin, ymin, xmax, ymax = box[idx, c, :]
200 201 202 203
                tmp_det_out.append([
                    c, score[idx][c], xmin, ymin, xmax, ymax,
                    offset * num_class + idx * num_class + c
                ])
204 205 206
        sorted_det_out = sorted(tmp_det_out,
                                key=lambda tup: tup[0],
                                reverse=False)
207
        det_outs.extend(sorted_det_out)
J
jerrywgz 已提交
208 209 210 211 212 213 214 215 216 217 218 219

    return det_outs, lod


def batched_multiclass_nms(boxes,
                           scores,
                           background,
                           score_threshold,
                           nms_threshold,
                           nms_top_k,
                           keep_top_k,
                           normalized=True):
220
    batch_size = scores.shape[0]
221
    num_boxes = scores.shape[2]
222
    det_outs = []
223
    index_outs = []
224
    lod = []
225
    for n in range(batch_size):
226 227 228 229 230 231 232 233 234
        nmsed_outs, nmsed_num = multiclass_nms(boxes[n],
                                               scores[n],
                                               background,
                                               score_threshold,
                                               nms_threshold,
                                               nms_top_k,
                                               keep_top_k,
                                               normalized,
                                               shared=True)
235 236
        lod.append(nmsed_num)

J
jerrywgz 已提交
237 238
        if nmsed_num == 0:
            continue
239
        tmp_det_out = []
240
        for c, indices in nmsed_outs.items():
241
            for idx in indices:
242
                xmin, ymin, xmax, ymax = boxes[n][idx][:]
243 244 245 246
                tmp_det_out.append([
                    c, scores[n][c][idx], xmin, ymin, xmax, ymax,
                    idx + n * num_boxes
                ])
247 248 249
        sorted_det_out = sorted(tmp_det_out,
                                key=lambda tup: tup[0],
                                reverse=False)
250
        det_outs.extend(sorted_det_out)
251 252 253 254
    return det_outs, lod


class TestMulticlassNMSOp(OpTest):
255

256 257 258
    def set_argument(self):
        self.score_threshold = 0.01

259
    def setUp(self):
260
        self.set_argument()
261
        N = 7
262
        M = 1200
263 264 265 266 267 268
        C = 21
        BOX_SIZE = 4
        background = 0
        nms_threshold = 0.3
        nms_top_k = 400
        keep_top_k = 200
269
        score_threshold = self.score_threshold
270

D
dangqingqing 已提交
271 272 273 274 275 276
        scores = np.random.random((N * M, C)).astype('float32')

        scores = np.apply_along_axis(softmax, 1, scores)
        scores = np.reshape(scores, (N, M, C))
        scores = np.transpose(scores, (0, 2, 1))

277 278 279
        boxes = np.random.random((N, M, BOX_SIZE)).astype('float32')
        boxes[:, :, 0:2] = boxes[:, :, 0:2] * 0.5
        boxes[:, :, 2:4] = boxes[:, :, 2:4] * 0.5 + 0.5
280

281 282 283 284 285 286 287
        det_outs, lod = batched_multiclass_nms(boxes, scores, background,
                                               score_threshold, nms_threshold,
                                               nms_top_k, keep_top_k)
        lod = [1] if not det_outs else lod
        det_outs = [[-1, 0]] if not det_outs else det_outs
        det_outs = np.array(det_outs)
        nmsed_outs = det_outs[:, :-1].astype('float32')
D
dangqingqing 已提交
288 289

        self.op_type = 'multiclass_nms'
D
dangqingqing 已提交
290
        self.inputs = {'BBoxes': boxes, 'Scores': scores}
291
        self.outputs = {'Out': (nmsed_outs, [lod])}
D
dangqingqing 已提交
292 293 294 295 296 297 298
        self.attrs = {
            'background_label': 0,
            'nms_threshold': nms_threshold,
            'nms_top_k': nms_top_k,
            'keep_top_k': keep_top_k,
            'score_threshold': score_threshold,
            'nms_eta': 1.0,
J
jerrywgz 已提交
299
            'normalized': True,
D
dangqingqing 已提交
300
        }
301 302 303 304 305

    def test_check_output(self):
        self.check_output()


306
class TestMulticlassNMSOpNoOutput(TestMulticlassNMSOp):
307

308 309
    def set_argument(self):
        # Here set 2.0 to test the case there is no outputs.
310
        # In practical use, 0.0 < score_threshold < 1.0
311 312 313
        self.score_threshold = 2.0


J
jerrywgz 已提交
314
class TestMulticlassNMSLoDInput(OpTest):
315

J
jerrywgz 已提交
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
    def set_argument(self):
        self.score_threshold = 0.01

    def setUp(self):
        self.set_argument()
        M = 1200
        C = 21
        BOX_SIZE = 4
        box_lod = [[1200]]
        background = 0
        nms_threshold = 0.3
        nms_top_k = 400
        keep_top_k = 200
        score_threshold = self.score_threshold
        normalized = False

        scores = np.random.random((M, C)).astype('float32')

        scores = np.apply_along_axis(softmax, 1, scores)

        boxes = np.random.random((M, C, BOX_SIZE)).astype('float32')
        boxes[:, :, 0] = boxes[:, :, 0] * 10
        boxes[:, :, 1] = boxes[:, :, 1] * 10
        boxes[:, :, 2] = boxes[:, :, 2] * 10 + 10
        boxes[:, :, 3] = boxes[:, :, 3] * 10 + 10

342 343 344 345
        det_outs, lod = lod_multiclass_nms(boxes, scores, background,
                                           score_threshold, nms_threshold,
                                           nms_top_k, keep_top_k, box_lod,
                                           normalized)
346 347 348
        det_outs = np.array(det_outs).astype('float32')
        nmsed_outs = det_outs[:, :-1].astype('float32') if len(
            det_outs) else det_outs
J
jerrywgz 已提交
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
        self.op_type = 'multiclass_nms'
        self.inputs = {
            'BBoxes': (boxes, box_lod),
            'Scores': (scores, box_lod),
        }
        self.outputs = {'Out': (nmsed_outs, [lod])}
        self.attrs = {
            'background_label': 0,
            'nms_threshold': nms_threshold,
            'nms_top_k': nms_top_k,
            'keep_top_k': keep_top_k,
            'score_threshold': score_threshold,
            'nms_eta': 1.0,
            'normalized': normalized,
        }

    def test_check_output(self):
        self.check_output()


369
class TestMulticlassNMSNoBox(TestMulticlassNMSLoDInput):
370

371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
    def setUp(self):
        self.set_argument()
        M = 1200
        C = 21
        BOX_SIZE = 4
        box_lod = [[0, 1200, 0]]
        background = 0
        nms_threshold = 0.3
        nms_top_k = 400
        keep_top_k = 200
        score_threshold = self.score_threshold
        normalized = False

        scores = np.random.random((M, C)).astype('float32')

        scores = np.apply_along_axis(softmax, 1, scores)

        boxes = np.random.random((M, C, BOX_SIZE)).astype('float32')
        boxes[:, :, 0] = boxes[:, :, 0] * 10
        boxes[:, :, 1] = boxes[:, :, 1] * 10
        boxes[:, :, 2] = boxes[:, :, 2] * 10 + 10
        boxes[:, :, 3] = boxes[:, :, 3] * 10 + 10

394 395 396 397
        det_outs, lod = lod_multiclass_nms(boxes, scores, background,
                                           score_threshold, nms_threshold,
                                           nms_top_k, keep_top_k, box_lod,
                                           normalized)
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
        det_outs = np.array(det_outs).astype('float32')
        nmsed_outs = det_outs[:, :-1].astype('float32') if len(
            det_outs) else det_outs
        self.op_type = 'multiclass_nms'
        self.inputs = {
            'BBoxes': (boxes, box_lod),
            'Scores': (scores, box_lod),
        }
        self.outputs = {'Out': (nmsed_outs, [lod])}
        self.attrs = {
            'background_label': 0,
            'nms_threshold': nms_threshold,
            'nms_top_k': nms_top_k,
            'keep_top_k': keep_top_k,
            'score_threshold': score_threshold,
            'nms_eta': 1.0,
            'normalized': normalized,
        }


418
class TestIOU(unittest.TestCase):
419

420 421 422 423 424
    def test_iou(self):
        box1 = np.array([4.0, 3.0, 7.0, 5.0]).astype('float32')
        box2 = np.array([3.0, 4.0, 6.0, 8.0]).astype('float32')

        expt_output = np.array([2.0 / 16.0]).astype('float32')
J
jerrywgz 已提交
425
        calc_output = np.array([iou(box1, box2, True)]).astype('float32')
426 427 428
        self.assertTrue(np.allclose(calc_output, expt_output))


429
class TestMulticlassNMS2Op(TestMulticlassNMSOp):
430

431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
    def setUp(self):
        self.set_argument()
        N = 7
        M = 1200
        C = 21
        BOX_SIZE = 4
        background = 0
        nms_threshold = 0.3
        nms_top_k = 400
        keep_top_k = 200
        score_threshold = self.score_threshold

        scores = np.random.random((N * M, C)).astype('float32')

        scores = np.apply_along_axis(softmax, 1, scores)
        scores = np.reshape(scores, (N, M, C))
        scores = np.transpose(scores, (0, 2, 1))

        boxes = np.random.random((N, M, BOX_SIZE)).astype('float32')
        boxes[:, :, 0:2] = boxes[:, :, 0:2] * 0.5
        boxes[:, :, 2:4] = boxes[:, :, 2:4] * 0.5 + 0.5

        det_outs, lod = batched_multiclass_nms(boxes, scores, background,
                                               score_threshold, nms_threshold,
                                               nms_top_k, keep_top_k)
        det_outs = np.array(det_outs)

        nmsed_outs = det_outs[:, :-1].astype('float32') if len(
            det_outs) else det_outs
460 461
        index_outs = det_outs[:,
                              -1:].astype('int') if len(det_outs) else det_outs
462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
        self.op_type = 'multiclass_nms2'
        self.inputs = {'BBoxes': boxes, 'Scores': scores}
        self.outputs = {
            'Out': (nmsed_outs, [lod]),
            'Index': (index_outs, [lod])
        }
        self.attrs = {
            'background_label': 0,
            'nms_threshold': nms_threshold,
            'nms_top_k': nms_top_k,
            'keep_top_k': keep_top_k,
            'score_threshold': score_threshold,
            'nms_eta': 1.0,
            'normalized': True,
        }

    def test_check_output(self):
        self.check_output()


class TestMulticlassNMS2OpNoOutput(TestMulticlassNMS2Op):
483

484 485 486 487 488 489 490
    def set_argument(self):
        # Here set 2.0 to test the case there is no outputs.
        # In practical use, 0.0 < score_threshold < 1.0
        self.score_threshold = 2.0


class TestMulticlassNMS2LoDInput(TestMulticlassNMSLoDInput):
491

492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
    def setUp(self):
        self.set_argument()
        M = 1200
        C = 21
        BOX_SIZE = 4
        box_lod = [[1200]]
        background = 0
        nms_threshold = 0.3
        nms_top_k = 400
        keep_top_k = 200
        score_threshold = self.score_threshold
        normalized = False

        scores = np.random.random((M, C)).astype('float32')

        scores = np.apply_along_axis(softmax, 1, scores)

        boxes = np.random.random((M, C, BOX_SIZE)).astype('float32')
        boxes[:, :, 0] = boxes[:, :, 0] * 10
        boxes[:, :, 1] = boxes[:, :, 1] * 10
        boxes[:, :, 2] = boxes[:, :, 2] * 10 + 10
        boxes[:, :, 3] = boxes[:, :, 3] * 10 + 10

515 516 517 518
        det_outs, lod = lod_multiclass_nms(boxes, scores, background,
                                           score_threshold, nms_threshold,
                                           nms_top_k, keep_top_k, box_lod,
                                           normalized)
519 520 521 522

        det_outs = np.array(det_outs)
        nmsed_outs = det_outs[:, :-1].astype('float32') if len(
            det_outs) else det_outs
523 524
        index_outs = det_outs[:,
                              -1:].astype('int') if len(det_outs) else det_outs
525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
        self.op_type = 'multiclass_nms2'
        self.inputs = {
            'BBoxes': (boxes, box_lod),
            'Scores': (scores, box_lod),
        }
        self.outputs = {
            'Out': (nmsed_outs, [lod]),
            'Index': (index_outs, [lod])
        }
        self.attrs = {
            'background_label': 0,
            'nms_threshold': nms_threshold,
            'nms_top_k': nms_top_k,
            'keep_top_k': keep_top_k,
            'score_threshold': score_threshold,
            'nms_eta': 1.0,
            'normalized': normalized,
        }

544 545
    def test_check_output(self):
        self.check_output()
546 547 548


class TestMulticlassNMS2LoDNoOutput(TestMulticlassNMS2LoDInput):
549

550 551 552 553 554 555
    def set_argument(self):
        # Here set 2.0 to test the case there is no outputs.
        # In practical use, 0.0 < score_threshold < 1.0
        self.score_threshold = 2.0


X
xiaoting 已提交
556
class TestMulticlassNMSError(unittest.TestCase):
557

X
xiaoting 已提交
558 559 560 561 562 563 564 565 566 567 568 569 570
    def test_errors(self):
        with program_guard(Program(), Program()):
            M = 1200
            N = 7
            C = 21
            BOX_SIZE = 4

            boxes_np = np.random.random((M, C, BOX_SIZE)).astype('float32')
            scores = np.random.random((N * M, C)).astype('float32')
            scores = np.apply_along_axis(softmax, 1, scores)
            scores = np.reshape(scores, (N, M, C))
            scores_np = np.transpose(scores, (0, 2, 1))

571 572 573 574 575 576
            boxes_data = fluid.data(name='bboxes',
                                    shape=[M, C, BOX_SIZE],
                                    dtype='float32')
            scores_data = fluid.data(name='scores',
                                     shape=[N, C, M],
                                     dtype='float32')
X
xiaoting 已提交
577 578 579 580 581 582 583 584 585 586 587 588 589

            def test_bboxes_Variable():
                # the bboxes type must be Variable
                fluid.layers.multiclass_nms(bboxes=boxes_np, scores=scores_data)

            def test_scores_Variable():
                # the bboxes type must be Variable
                fluid.layers.multiclass_nms(bboxes=boxes_data, scores=scores_np)

            self.assertRaises(TypeError, test_bboxes_Variable)
            self.assertRaises(TypeError, test_scores_Variable)


590
class TestMulticlassNMS3Op(TestMulticlassNMS2Op):
591

592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
    def setUp(self):
        self.set_argument()
        N = 7
        M = 1200
        C = 21
        BOX_SIZE = 4
        background = 0
        nms_threshold = 0.3
        nms_top_k = 400
        keep_top_k = 200
        score_threshold = self.score_threshold

        scores = np.random.random((N * M, C)).astype('float32')

        scores = np.apply_along_axis(softmax, 1, scores)
        scores = np.reshape(scores, (N, M, C))
        scores = np.transpose(scores, (0, 2, 1))

        boxes = np.random.random((N, M, BOX_SIZE)).astype('float32')
        boxes[:, :, 0:2] = boxes[:, :, 0:2] * 0.5
        boxes[:, :, 2:4] = boxes[:, :, 2:4] * 0.5 + 0.5

        det_outs, lod = batched_multiclass_nms(boxes, scores, background,
                                               score_threshold, nms_threshold,
                                               nms_top_k, keep_top_k)
        det_outs = np.array(det_outs)

        nmsed_outs = det_outs[:, :-1].astype('float32') if len(
            det_outs) else det_outs
621 622
        index_outs = det_outs[:,
                              -1:].astype('int') if len(det_outs) else det_outs
623 624 625
        self.op_type = 'multiclass_nms3'
        self.inputs = {'BBoxes': boxes, 'Scores': scores}
        self.outputs = {
626 627
            'Out': (nmsed_outs, [lod]),
            'Index': (index_outs, [lod]),
628 629 630 631 632 633 634 635 636 637 638 639 640
            'NmsRoisNum': np.array(lod).astype('int32')
        }
        self.attrs = {
            'background_label': 0,
            'nms_threshold': nms_threshold,
            'nms_top_k': nms_top_k,
            'keep_top_k': keep_top_k,
            'score_threshold': score_threshold,
            'nms_eta': 1.0,
            'normalized': True,
        }

    def test_check_output(self):
641
        self.check_output()
642 643 644


class TestMulticlassNMS3OpNoOutput(TestMulticlassNMS3Op):
645

646 647 648 649 650 651
    def set_argument(self):
        # Here set 2.0 to test the case there is no outputs.
        # In practical use, 0.0 < score_threshold < 1.0
        self.score_threshold = 2.0


652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716
class TestMulticlassNMS3LoDInput(TestMulticlassNMS2LoDInput):

    def setUp(self):
        self.set_argument()
        M = 1200
        C = 21
        BOX_SIZE = 4
        box_lod = [[1200]]
        background = 0
        nms_threshold = 0.3
        nms_top_k = 400
        keep_top_k = 200
        score_threshold = self.score_threshold
        normalized = False

        scores = np.random.random((M, C)).astype('float32')

        scores = np.apply_along_axis(softmax, 1, scores)

        boxes = np.random.random((M, C, BOX_SIZE)).astype('float32')
        boxes[:, :, 0] = boxes[:, :, 0] * 10
        boxes[:, :, 1] = boxes[:, :, 1] * 10
        boxes[:, :, 2] = boxes[:, :, 2] * 10 + 10
        boxes[:, :, 3] = boxes[:, :, 3] * 10 + 10

        det_outs, lod = lod_multiclass_nms(boxes, scores, background,
                                           score_threshold, nms_threshold,
                                           nms_top_k, keep_top_k, box_lod,
                                           normalized)

        det_outs = np.array(det_outs)
        nmsed_outs = det_outs[:, :-1].astype('float32') if len(
            det_outs) else det_outs
        self.op_type = 'multiclass_nms3'
        self.inputs = {
            'BBoxes': (boxes, box_lod),
            'Scores': (scores, box_lod),
            'RoisNum': np.array(box_lod).astype('int32')
        }
        self.outputs = {
            'Out': (nmsed_outs, [lod]),
            'NmsRoisNum': np.array(lod).astype('int32')
        }
        self.attrs = {
            'background_label': 0,
            'nms_threshold': nms_threshold,
            'nms_top_k': nms_top_k,
            'keep_top_k': keep_top_k,
            'score_threshold': score_threshold,
            'nms_eta': 1.0,
            'normalized': normalized,
        }

    def test_check_output(self):
        self.check_output()


class TestMulticlassNMS3LoDNoOutput(TestMulticlassNMS3LoDInput):

    def set_argument(self):
        # Here set 2.0 to test the case there is no outputs.
        # In practical use, 0.0 < score_threshold < 1.0
        self.score_threshold = 2.0


717
if __name__ == '__main__':
718
    paddle.enable_static()
719
    unittest.main()