test_multiclass_nms_op.py 24.4 KB
Newer Older
1
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6 7 8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

15 16 17
import unittest
import numpy as np
import copy
18
from op_test import OpTest
19
import paddle
X
xiaoting 已提交
20
import paddle.fluid as fluid
21 22 23 24 25 26
from paddle.fluid import (
    Program,
    program_guard,
    in_dygraph_mode,
    _non_static_mode,
)
27
from paddle.fluid.layer_helper import LayerHelper
28
from paddle import _C_ops, _legacy_C_ops
29 30


31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
def multiclass_nms3(
    bboxes,
    scores,
    rois_num=None,
    score_threshold=0.3,
    nms_top_k=1000,
    keep_top_k=100,
    nms_threshold=0.3,
    normalized=True,
    nms_eta=1.0,
    background_label=-1,
    return_index=True,
    return_rois_num=True,
    name=None,
):
46 47 48 49

    helper = LayerHelper('multiclass_nms3', **locals())

    if in_dygraph_mode():
50 51 52 53 54 55 56 57 58
        attrs = (
            score_threshold,
            nms_top_k,
            keep_top_k,
            nms_threshold,
            normalized,
            nms_eta,
            background_label,
        )
59
        output, index, nms_rois_num = _C_ops.multiclass_nms3(
60 61
            bboxes, scores, rois_num, *attrs
        )
62 63 64 65
        if not return_index:
            index = None
        return output, index, nms_rois_num
    elif _non_static_mode():
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
        attrs = (
            'background_label',
            background_label,
            'score_threshold',
            score_threshold,
            'nms_top_k',
            nms_top_k,
            'nms_threshold',
            nms_threshold,
            'keep_top_k',
            keep_top_k,
            'nms_eta',
            nms_eta,
            'normalized',
            normalized,
        )
82
        output, index, nms_rois_num = _legacy_C_ops.multiclass_nms3(
83 84
            bboxes, scores, rois_num, *attrs
        )
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
        if not return_index:
            index = None
        return output, index, nms_rois_num

    else:
        output = helper.create_variable_for_type_inference(dtype=bboxes.dtype)
        index = helper.create_variable_for_type_inference(dtype='int32')

        inputs = {'BBoxes': bboxes, 'Scores': scores}
        outputs = {'Out': output, 'Index': index}

        if rois_num is not None:
            inputs['RoisNum'] = rois_num

        if return_rois_num:
            nms_rois_num = helper.create_variable_for_type_inference(
101 102
                dtype='int32'
            )
103 104
            outputs['NmsRoisNum'] = nms_rois_num

105 106 107 108 109 110 111 112 113 114 115 116 117 118
        helper.append_op(
            type="multiclass_nms3",
            inputs=inputs,
            attrs={
                'background_label': background_label,
                'score_threshold': score_threshold,
                'nms_top_k': nms_top_k,
                'nms_threshold': nms_threshold,
                'keep_top_k': keep_top_k,
                'nms_eta': nms_eta,
                'normalized': normalized,
            },
            outputs=outputs,
        )
119 120 121 122 123 124 125 126
        output.stop_gradient = True
        index.stop_gradient = True
        if not return_index:
            index = None
        if not return_rois_num:
            nms_rois_num = None

        return output, nms_rois_num, index
127 128


129 130 131
def softmax(x):
    # clip to shiftx, otherwise, when calc loss with
    # log(exp(shiftx)), may get log(0)=INF
132
    shiftx = (x - np.max(x)).clip(-64.0)
133 134 135 136
    exps = np.exp(shiftx)
    return exps / np.sum(exps)


J
jerrywgz 已提交
137
def iou(box_a, box_b, norm):
138
    """Apply intersection-over-union overlap between box_a and box_b"""
139 140 141 142 143 144 145 146 147 148
    xmin_a = min(box_a[0], box_a[2])
    ymin_a = min(box_a[1], box_a[3])
    xmax_a = max(box_a[0], box_a[2])
    ymax_a = max(box_a[1], box_a[3])

    xmin_b = min(box_b[0], box_b[2])
    ymin_b = min(box_b[1], box_b[3])
    xmax_b = max(box_b[0], box_b[2])
    ymax_b = max(box_b[1], box_b[3])

149 150 151 152 153 154
    area_a = (ymax_a - ymin_a + (norm == False)) * (
        xmax_a - xmin_a + (norm == False)
    )
    area_b = (ymax_b - ymin_b + (norm == False)) * (
        xmax_b - xmin_b + (norm == False)
    )
155 156 157 158 159 160 161 162
    if area_a <= 0 and area_b <= 0:
        return 0.0

    xa = max(xmin_a, xmin_b)
    ya = max(ymin_a, ymin_b)
    xb = min(xmax_a, xmax_b)
    yb = min(ymax_a, ymax_b)

163 164 165
    inter_area = max(xb - xa + (norm == False), 0.0) * max(
        yb - ya + (norm == False), 0.0
    )
166 167 168 169 170 171

    iou_ratio = inter_area / (area_a + area_b - inter_area)

    return iou_ratio


172 173 174 175 176 177 178 179 180
def nms(
    boxes,
    scores,
    score_threshold,
    nms_threshold,
    top_k=200,
    normalized=True,
    eta=1.0,
):
181 182 183 184 185
    """Apply non-maximum suppression at test time to avoid detecting too many
    overlapping bounding boxes for a given object.
    Args:
        boxes: (tensor) The location preds for the img, Shape: [num_priors,4].
        scores: (tensor) The class predscores for the img, Shape:[num_priors].
186 187 188 189 190 191
        score_threshold: (float) The confidence thresh for filtering low
            confidence boxes.
        nms_threshold: (float) The overlap thresh for suppressing unnecessary
            boxes.
        top_k: (int) The maximum number of box preds to consider.
        eta: (float) The parameter for adaptive NMS.
192 193 194 195 196 197 198 199 200
    Return:
        The indices of the kept boxes with respect to num_priors.
    """
    all_scores = copy.deepcopy(scores)
    all_scores = all_scores.flatten()
    selected_indices = np.argwhere(all_scores > score_threshold)
    selected_indices = selected_indices.flatten()
    all_scores = all_scores[selected_indices]

201
    sorted_indices = np.argsort(-all_scores, axis=0, kind='mergesort')
202
    sorted_scores = all_scores[sorted_indices]
203
    sorted_indices = selected_indices[sorted_indices]
D
dangqingqing 已提交
204
    if top_k > -1 and top_k < sorted_indices.shape[0]:
205 206 207 208 209 210 211 212 213 214 215
        sorted_indices = sorted_indices[:top_k]
        sorted_scores = sorted_scores[:top_k]

    selected_indices = []
    adaptive_threshold = nms_threshold
    for i in range(sorted_scores.shape[0]):
        idx = sorted_indices[i]
        keep = True
        for k in range(len(selected_indices)):
            if keep:
                kept_idx = selected_indices[k]
J
jerrywgz 已提交
216
                overlap = iou(boxes[idx], boxes[kept_idx], normalized)
D
dangqingqing 已提交
217
                keep = True if overlap <= adaptive_threshold else False
218 219 220 221 222 223 224 225 226
            else:
                break
        if keep:
            selected_indices.append(idx)
        if keep and eta < 1 and adaptive_threshold > 0.5:
            adaptive_threshold *= eta
    return selected_indices


227 228 229 230 231 232 233 234 235 236 237
def multiclass_nms(
    boxes,
    scores,
    background,
    score_threshold,
    nms_threshold,
    nms_top_k,
    keep_top_k,
    normalized,
    shared,
):
J
jerrywgz 已提交
238 239 240 241 242 243
    if shared:
        class_num = scores.shape[0]
        priorbox_num = scores.shape[1]
    else:
        box_num = scores.shape[0]
        class_num = scores.shape[1]
244

245
    selected_indices = {}
246 247
    num_det = 0
    for c in range(class_num):
248 249
        if c == background:
            continue
J
jerrywgz 已提交
250
        if shared:
251 252 253 254 255 256 257 258
            indices = nms(
                boxes,
                scores[c],
                score_threshold,
                nms_threshold,
                nms_top_k,
                normalized,
            )
J
jerrywgz 已提交
259
        else:
260 261 262 263 264 265 266 267
            indices = nms(
                boxes[:, c, :],
                scores[:, c],
                score_threshold,
                nms_threshold,
                nms_top_k,
                normalized,
            )
268
        selected_indices[c] = indices
269 270 271 272
        num_det += len(indices)

    if keep_top_k > -1 and num_det > keep_top_k:
        score_index = []
273
        for c, indices in selected_indices.items():
274
            for idx in indices:
J
jerrywgz 已提交
275 276 277 278
                if shared:
                    score_index.append((scores[c][idx], c, idx))
                else:
                    score_index.append((scores[idx][c], c, idx))
279

280 281 282
        sorted_score_index = sorted(
            score_index, key=lambda tup: tup[0], reverse=True
        )
283
        sorted_score_index = sorted_score_index[:keep_top_k]
284 285 286 287
        selected_indices = {}

        for _, c, _ in sorted_score_index:
            selected_indices[c] = []
288
        for s, c, idx in sorted_score_index:
289
            selected_indices[c].append(idx)
J
jerrywgz 已提交
290 291 292
        if not shared:
            for labels in selected_indices:
                selected_indices[labels].sort()
293
        num_det = keep_top_k
294

295
    return selected_indices, num_det
296 297


298 299 300 301 302 303 304 305 306 307 308
def lod_multiclass_nms(
    boxes,
    scores,
    background,
    score_threshold,
    nms_threshold,
    nms_top_k,
    keep_top_k,
    box_lod,
    normalized,
):
309
    num_class = boxes.shape[1]
J
jerrywgz 已提交
310 311 312 313
    det_outs = []
    lod = []
    head = 0
    for n in range(len(box_lod[0])):
314 315 316
        if box_lod[0][n] == 0:
            lod.append(0)
            continue
317 318
        box = boxes[head : head + box_lod[0][n]]
        score = scores[head : head + box_lod[0][n]]
319
        offset = head
J
jerrywgz 已提交
320
        head = head + box_lod[0][n]
321 322 323 324 325 326 327 328 329 330 331
        nmsed_outs, nmsed_num = multiclass_nms(
            box,
            score,
            background,
            score_threshold,
            nms_threshold,
            nms_top_k,
            keep_top_k,
            normalized,
            shared=False,
        )
332 333
        lod.append(nmsed_num)

J
jerrywgz 已提交
334 335
        if nmsed_num == 0:
            continue
336
        tmp_det_out = []
J
jerrywgz 已提交
337 338 339
        for c, indices in nmsed_outs.items():
            for idx in indices:
                xmin, ymin, xmax, ymax = box[idx, c, :]
340 341 342 343 344 345 346 347 348 349 350 351 352 353
                tmp_det_out.append(
                    [
                        c,
                        score[idx][c],
                        xmin,
                        ymin,
                        xmax,
                        ymax,
                        offset * num_class + idx * num_class + c,
                    ]
                )
        sorted_det_out = sorted(
            tmp_det_out, key=lambda tup: tup[0], reverse=False
        )
354
        det_outs.extend(sorted_det_out)
J
jerrywgz 已提交
355 356 357 358

    return det_outs, lod


359 360 361 362 363 364 365 366 367 368
def batched_multiclass_nms(
    boxes,
    scores,
    background,
    score_threshold,
    nms_threshold,
    nms_top_k,
    keep_top_k,
    normalized=True,
):
369
    batch_size = scores.shape[0]
370
    num_boxes = scores.shape[2]
371
    det_outs = []
372
    index_outs = []
373
    lod = []
374
    for n in range(batch_size):
375 376 377 378 379 380 381 382 383 384 385
        nmsed_outs, nmsed_num = multiclass_nms(
            boxes[n],
            scores[n],
            background,
            score_threshold,
            nms_threshold,
            nms_top_k,
            keep_top_k,
            normalized,
            shared=True,
        )
386 387
        lod.append(nmsed_num)

J
jerrywgz 已提交
388 389
        if nmsed_num == 0:
            continue
390
        tmp_det_out = []
391
        for c, indices in nmsed_outs.items():
392
            for idx in indices:
393
                xmin, ymin, xmax, ymax = boxes[n][idx][:]
394 395 396 397 398 399 400 401 402 403 404 405 406 407
                tmp_det_out.append(
                    [
                        c,
                        scores[n][c][idx],
                        xmin,
                        ymin,
                        xmax,
                        ymax,
                        idx + n * num_boxes,
                    ]
                )
        sorted_det_out = sorted(
            tmp_det_out, key=lambda tup: tup[0], reverse=False
        )
408
        det_outs.extend(sorted_det_out)
409 410 411 412
    return det_outs, lod


class TestMulticlassNMSOp(OpTest):
413 414 415
    def set_argument(self):
        self.score_threshold = 0.01

416
    def setUp(self):
417
        self.set_argument()
418
        N = 7
419
        M = 1200
420 421 422 423 424 425
        C = 21
        BOX_SIZE = 4
        background = 0
        nms_threshold = 0.3
        nms_top_k = 400
        keep_top_k = 200
426
        score_threshold = self.score_threshold
427

D
dangqingqing 已提交
428 429 430 431 432 433
        scores = np.random.random((N * M, C)).astype('float32')

        scores = np.apply_along_axis(softmax, 1, scores)
        scores = np.reshape(scores, (N, M, C))
        scores = np.transpose(scores, (0, 2, 1))

434 435 436
        boxes = np.random.random((N, M, BOX_SIZE)).astype('float32')
        boxes[:, :, 0:2] = boxes[:, :, 0:2] * 0.5
        boxes[:, :, 2:4] = boxes[:, :, 2:4] * 0.5 + 0.5
437

438 439 440 441 442 443 444 445 446
        det_outs, lod = batched_multiclass_nms(
            boxes,
            scores,
            background,
            score_threshold,
            nms_threshold,
            nms_top_k,
            keep_top_k,
        )
447 448 449 450
        lod = [1] if not det_outs else lod
        det_outs = [[-1, 0]] if not det_outs else det_outs
        det_outs = np.array(det_outs)
        nmsed_outs = det_outs[:, :-1].astype('float32')
D
dangqingqing 已提交
451 452

        self.op_type = 'multiclass_nms'
D
dangqingqing 已提交
453
        self.inputs = {'BBoxes': boxes, 'Scores': scores}
454
        self.outputs = {'Out': (nmsed_outs, [lod])}
D
dangqingqing 已提交
455 456 457 458 459 460 461
        self.attrs = {
            'background_label': 0,
            'nms_threshold': nms_threshold,
            'nms_top_k': nms_top_k,
            'keep_top_k': keep_top_k,
            'score_threshold': score_threshold,
            'nms_eta': 1.0,
J
jerrywgz 已提交
462
            'normalized': True,
D
dangqingqing 已提交
463
        }
464 465 466 467 468

    def test_check_output(self):
        self.check_output()


469 470 471
class TestMulticlassNMSOpNoOutput(TestMulticlassNMSOp):
    def set_argument(self):
        # Here set 2.0 to test the case there is no outputs.
472
        # In practical use, 0.0 < score_threshold < 1.0
473 474 475
        self.score_threshold = 2.0


J
jerrywgz 已提交
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
class TestMulticlassNMSLoDInput(OpTest):
    def set_argument(self):
        self.score_threshold = 0.01

    def setUp(self):
        self.set_argument()
        M = 1200
        C = 21
        BOX_SIZE = 4
        box_lod = [[1200]]
        background = 0
        nms_threshold = 0.3
        nms_top_k = 400
        keep_top_k = 200
        score_threshold = self.score_threshold
        normalized = False

        scores = np.random.random((M, C)).astype('float32')

        scores = np.apply_along_axis(softmax, 1, scores)

        boxes = np.random.random((M, C, BOX_SIZE)).astype('float32')
        boxes[:, :, 0] = boxes[:, :, 0] * 10
        boxes[:, :, 1] = boxes[:, :, 1] * 10
        boxes[:, :, 2] = boxes[:, :, 2] * 10 + 10
        boxes[:, :, 3] = boxes[:, :, 3] * 10 + 10

503 504 505 506 507 508 509 510 511 512 513
        det_outs, lod = lod_multiclass_nms(
            boxes,
            scores,
            background,
            score_threshold,
            nms_threshold,
            nms_top_k,
            keep_top_k,
            box_lod,
            normalized,
        )
514
        det_outs = np.array(det_outs).astype('float32')
515 516 517
        nmsed_outs = (
            det_outs[:, :-1].astype('float32') if len(det_outs) else det_outs
        )
J
jerrywgz 已提交
518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
        self.op_type = 'multiclass_nms'
        self.inputs = {
            'BBoxes': (boxes, box_lod),
            'Scores': (scores, box_lod),
        }
        self.outputs = {'Out': (nmsed_outs, [lod])}
        self.attrs = {
            'background_label': 0,
            'nms_threshold': nms_threshold,
            'nms_top_k': nms_top_k,
            'keep_top_k': keep_top_k,
            'score_threshold': score_threshold,
            'nms_eta': 1.0,
            'normalized': normalized,
        }

    def test_check_output(self):
        self.check_output()


538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
class TestMulticlassNMSNoBox(TestMulticlassNMSLoDInput):
    def setUp(self):
        self.set_argument()
        M = 1200
        C = 21
        BOX_SIZE = 4
        box_lod = [[0, 1200, 0]]
        background = 0
        nms_threshold = 0.3
        nms_top_k = 400
        keep_top_k = 200
        score_threshold = self.score_threshold
        normalized = False

        scores = np.random.random((M, C)).astype('float32')

        scores = np.apply_along_axis(softmax, 1, scores)

        boxes = np.random.random((M, C, BOX_SIZE)).astype('float32')
        boxes[:, :, 0] = boxes[:, :, 0] * 10
        boxes[:, :, 1] = boxes[:, :, 1] * 10
        boxes[:, :, 2] = boxes[:, :, 2] * 10 + 10
        boxes[:, :, 3] = boxes[:, :, 3] * 10 + 10

562 563 564 565 566 567 568 569 570 571 572
        det_outs, lod = lod_multiclass_nms(
            boxes,
            scores,
            background,
            score_threshold,
            nms_threshold,
            nms_top_k,
            keep_top_k,
            box_lod,
            normalized,
        )
573
        det_outs = np.array(det_outs).astype('float32')
574 575 576
        nmsed_outs = (
            det_outs[:, :-1].astype('float32') if len(det_outs) else det_outs
        )
577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
        self.op_type = 'multiclass_nms'
        self.inputs = {
            'BBoxes': (boxes, box_lod),
            'Scores': (scores, box_lod),
        }
        self.outputs = {'Out': (nmsed_outs, [lod])}
        self.attrs = {
            'background_label': 0,
            'nms_threshold': nms_threshold,
            'nms_top_k': nms_top_k,
            'keep_top_k': keep_top_k,
            'score_threshold': score_threshold,
            'nms_eta': 1.0,
            'normalized': normalized,
        }


594 595 596 597 598 599
class TestIOU(unittest.TestCase):
    def test_iou(self):
        box1 = np.array([4.0, 3.0, 7.0, 5.0]).astype('float32')
        box2 = np.array([3.0, 4.0, 6.0, 8.0]).astype('float32')

        expt_output = np.array([2.0 / 16.0]).astype('float32')
J
jerrywgz 已提交
600
        calc_output = np.array([iou(box1, box2, True)]).astype('float32')
601
        np.testing.assert_allclose(calc_output, expt_output, rtol=1e-05)
602 603


604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626
class TestMulticlassNMS2Op(TestMulticlassNMSOp):
    def setUp(self):
        self.set_argument()
        N = 7
        M = 1200
        C = 21
        BOX_SIZE = 4
        background = 0
        nms_threshold = 0.3
        nms_top_k = 400
        keep_top_k = 200
        score_threshold = self.score_threshold

        scores = np.random.random((N * M, C)).astype('float32')

        scores = np.apply_along_axis(softmax, 1, scores)
        scores = np.reshape(scores, (N, M, C))
        scores = np.transpose(scores, (0, 2, 1))

        boxes = np.random.random((N, M, BOX_SIZE)).astype('float32')
        boxes[:, :, 0:2] = boxes[:, :, 0:2] * 0.5
        boxes[:, :, 2:4] = boxes[:, :, 2:4] * 0.5 + 0.5

627 628 629 630 631 632 633 634 635
        det_outs, lod = batched_multiclass_nms(
            boxes,
            scores,
            background,
            score_threshold,
            nms_threshold,
            nms_top_k,
            keep_top_k,
        )
636 637
        det_outs = np.array(det_outs)

638 639 640 641 642 643
        nmsed_outs = (
            det_outs[:, :-1].astype('float32') if len(det_outs) else det_outs
        )
        index_outs = (
            det_outs[:, -1:].astype('int') if len(det_outs) else det_outs
        )
644 645 646 647
        self.op_type = 'multiclass_nms2'
        self.inputs = {'BBoxes': boxes, 'Scores': scores}
        self.outputs = {
            'Out': (nmsed_outs, [lod]),
648
            'Index': (index_outs, [lod]),
649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
        }
        self.attrs = {
            'background_label': 0,
            'nms_threshold': nms_threshold,
            'nms_top_k': nms_top_k,
            'keep_top_k': keep_top_k,
            'score_threshold': score_threshold,
            'nms_eta': 1.0,
            'normalized': True,
        }

    def test_check_output(self):
        self.check_output()


class TestMulticlassNMS2OpNoOutput(TestMulticlassNMS2Op):
    def set_argument(self):
        # Here set 2.0 to test the case there is no outputs.
        # In practical use, 0.0 < score_threshold < 1.0
        self.score_threshold = 2.0


class TestMulticlassNMS2LoDInput(TestMulticlassNMSLoDInput):
    def setUp(self):
        self.set_argument()
        M = 1200
        C = 21
        BOX_SIZE = 4
        box_lod = [[1200]]
        background = 0
        nms_threshold = 0.3
        nms_top_k = 400
        keep_top_k = 200
        score_threshold = self.score_threshold
        normalized = False

        scores = np.random.random((M, C)).astype('float32')

        scores = np.apply_along_axis(softmax, 1, scores)

        boxes = np.random.random((M, C, BOX_SIZE)).astype('float32')
        boxes[:, :, 0] = boxes[:, :, 0] * 10
        boxes[:, :, 1] = boxes[:, :, 1] * 10
        boxes[:, :, 2] = boxes[:, :, 2] * 10 + 10
        boxes[:, :, 3] = boxes[:, :, 3] * 10 + 10

695 696 697 698 699 700 701 702 703 704 705
        det_outs, lod = lod_multiclass_nms(
            boxes,
            scores,
            background,
            score_threshold,
            nms_threshold,
            nms_top_k,
            keep_top_k,
            box_lod,
            normalized,
        )
706 707

        det_outs = np.array(det_outs)
708 709 710 711 712 713
        nmsed_outs = (
            det_outs[:, :-1].astype('float32') if len(det_outs) else det_outs
        )
        index_outs = (
            det_outs[:, -1:].astype('int') if len(det_outs) else det_outs
        )
714 715 716 717 718 719 720
        self.op_type = 'multiclass_nms2'
        self.inputs = {
            'BBoxes': (boxes, box_lod),
            'Scores': (scores, box_lod),
        }
        self.outputs = {
            'Out': (nmsed_outs, [lod]),
721
            'Index': (index_outs, [lod]),
722 723 724 725 726 727 728 729 730 731 732
        }
        self.attrs = {
            'background_label': 0,
            'nms_threshold': nms_threshold,
            'nms_top_k': nms_top_k,
            'keep_top_k': keep_top_k,
            'score_threshold': score_threshold,
            'nms_eta': 1.0,
            'normalized': normalized,
        }

733 734 735

def test_check_output(self):
    self.check_output()
736 737 738 739 740 741 742 743 744


class TestMulticlassNMS2LoDNoOutput(TestMulticlassNMS2LoDInput):
    def set_argument(self):
        # Here set 2.0 to test the case there is no outputs.
        # In practical use, 0.0 < score_threshold < 1.0
        self.score_threshold = 2.0


X
xiaoting 已提交
745 746 747 748 749 750 751 752 753 754 755 756 757 758
class TestMulticlassNMSError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program(), Program()):
            M = 1200
            N = 7
            C = 21
            BOX_SIZE = 4

            boxes_np = np.random.random((M, C, BOX_SIZE)).astype('float32')
            scores = np.random.random((N * M, C)).astype('float32')
            scores = np.apply_along_axis(softmax, 1, scores)
            scores = np.reshape(scores, (N, M, C))
            scores_np = np.transpose(scores, (0, 2, 1))

759 760 761 762 763 764
            boxes_data = fluid.data(
                name='bboxes', shape=[M, C, BOX_SIZE], dtype='float32'
            )
            scores_data = fluid.data(
                name='scores', shape=[N, C, M], dtype='float32'
            )
X
xiaoting 已提交
765 766 767 768 769 770 771 772 773 774 775 776 777

            def test_bboxes_Variable():
                # the bboxes type must be Variable
                fluid.layers.multiclass_nms(bboxes=boxes_np, scores=scores_data)

            def test_scores_Variable():
                # the bboxes type must be Variable
                fluid.layers.multiclass_nms(bboxes=boxes_data, scores=scores_np)

            self.assertRaises(TypeError, test_bboxes_Variable)
            self.assertRaises(TypeError, test_scores_Variable)


778 779
class TestMulticlassNMS3Op(TestMulticlassNMS2Op):
    def setUp(self):
780
        self.python_api = multiclass_nms3
781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801
        self.set_argument()
        N = 7
        M = 1200
        C = 21
        BOX_SIZE = 4
        background = 0
        nms_threshold = 0.3
        nms_top_k = 400
        keep_top_k = 200
        score_threshold = self.score_threshold

        scores = np.random.random((N * M, C)).astype('float32')

        scores = np.apply_along_axis(softmax, 1, scores)
        scores = np.reshape(scores, (N, M, C))
        scores = np.transpose(scores, (0, 2, 1))

        boxes = np.random.random((N, M, BOX_SIZE)).astype('float32')
        boxes[:, :, 0:2] = boxes[:, :, 0:2] * 0.5
        boxes[:, :, 2:4] = boxes[:, :, 2:4] * 0.5 + 0.5

802 803 804 805 806 807 808 809 810
        det_outs, lod = batched_multiclass_nms(
            boxes,
            scores,
            background,
            score_threshold,
            nms_threshold,
            nms_top_k,
            keep_top_k,
        )
811 812
        det_outs = np.array(det_outs)

813 814 815 816 817 818
        nmsed_outs = (
            det_outs[:, :-1].astype('float32') if len(det_outs) else det_outs
        )
        index_outs = (
            det_outs[:, -1:].astype('int') if len(det_outs) else det_outs
        )
819 820 821
        self.op_type = 'multiclass_nms3'
        self.inputs = {'BBoxes': boxes, 'Scores': scores}
        self.outputs = {
822 823
            'Out': nmsed_outs,
            'Index': index_outs,
824
            'NmsRoisNum': np.array(lod).astype('int32'),
825 826 827 828 829 830 831 832 833 834 835 836
        }
        self.attrs = {
            'background_label': 0,
            'nms_threshold': nms_threshold,
            'nms_top_k': nms_top_k,
            'keep_top_k': keep_top_k,
            'score_threshold': score_threshold,
            'nms_eta': 1.0,
            'normalized': True,
        }

    def test_check_output(self):
837
        self.check_output(check_eager=True)
838 839 840 841 842 843 844 845 846


class TestMulticlassNMS3OpNoOutput(TestMulticlassNMS3Op):
    def set_argument(self):
        # Here set 2.0 to test the case there is no outputs.
        # In practical use, 0.0 < score_threshold < 1.0
        self.score_threshold = 2.0


847
if __name__ == '__main__':
848
    paddle.enable_static()
849
    unittest.main()