test_multiclass_nms_op.py 18.9 KB
Newer Older
1
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
14 15

from __future__ import print_function
16 17 18
import unittest
import numpy as np
import copy
19
from op_test import OpTest
20
import paddle
X
xiaoting 已提交
21 22
import paddle.fluid as fluid
from paddle.fluid import Program, program_guard
23 24


25 26 27 28 29 30 31 32
def softmax(x):
    # clip to shiftx, otherwise, when calc loss with
    # log(exp(shiftx)), may get log(0)=INF
    shiftx = (x - np.max(x)).clip(-64.)
    exps = np.exp(shiftx)
    return exps / np.sum(exps)


J
jerrywgz 已提交
33
def iou(box_a, box_b, norm):
34 35 36 37 38 39 40 41 42 43 44 45
    """Apply intersection-over-union overlap between box_a and box_b
    """
    xmin_a = min(box_a[0], box_a[2])
    ymin_a = min(box_a[1], box_a[3])
    xmax_a = max(box_a[0], box_a[2])
    ymax_a = max(box_a[1], box_a[3])

    xmin_b = min(box_b[0], box_b[2])
    ymin_b = min(box_b[1], box_b[3])
    xmax_b = max(box_b[0], box_b[2])
    ymax_b = max(box_b[1], box_b[3])

J
jerrywgz 已提交
46 47 48 49
    area_a = (ymax_a - ymin_a + (norm == False)) * (xmax_a - xmin_a +
                                                    (norm == False))
    area_b = (ymax_b - ymin_b + (norm == False)) * (xmax_b - xmin_b +
                                                    (norm == False))
50 51 52 53 54 55 56 57
    if area_a <= 0 and area_b <= 0:
        return 0.0

    xa = max(xmin_a, xmin_b)
    ya = max(ymin_a, ymin_b)
    xb = min(xmax_a, xmax_b)
    yb = min(ymax_a, ymax_b)

J
jerrywgz 已提交
58 59
    inter_area = max(xb - xa + (norm == False),
                     0.0) * max(yb - ya + (norm == False), 0.0)
60 61 62 63 64 65

    iou_ratio = inter_area / (area_a + area_b - inter_area)

    return iou_ratio


J
jerrywgz 已提交
66 67 68 69 70 71 72
def nms(boxes,
        scores,
        score_threshold,
        nms_threshold,
        top_k=200,
        normalized=True,
        eta=1.0):
73 74 75 76 77
    """Apply non-maximum suppression at test time to avoid detecting too many
    overlapping bounding boxes for a given object.
    Args:
        boxes: (tensor) The location preds for the img, Shape: [num_priors,4].
        scores: (tensor) The class predscores for the img, Shape:[num_priors].
78 79 80 81 82 83
        score_threshold: (float) The confidence thresh for filtering low
            confidence boxes.
        nms_threshold: (float) The overlap thresh for suppressing unnecessary
            boxes.
        top_k: (int) The maximum number of box preds to consider.
        eta: (float) The parameter for adaptive NMS.
84 85 86 87 88 89 90 91 92
    Return:
        The indices of the kept boxes with respect to num_priors.
    """
    all_scores = copy.deepcopy(scores)
    all_scores = all_scores.flatten()
    selected_indices = np.argwhere(all_scores > score_threshold)
    selected_indices = selected_indices.flatten()
    all_scores = all_scores[selected_indices]

93
    sorted_indices = np.argsort(-all_scores, axis=0, kind='mergesort')
94
    sorted_scores = all_scores[sorted_indices]
95
    sorted_indices = selected_indices[sorted_indices]
D
dangqingqing 已提交
96
    if top_k > -1 and top_k < sorted_indices.shape[0]:
97 98 99 100 101 102 103 104 105 106 107
        sorted_indices = sorted_indices[:top_k]
        sorted_scores = sorted_scores[:top_k]

    selected_indices = []
    adaptive_threshold = nms_threshold
    for i in range(sorted_scores.shape[0]):
        idx = sorted_indices[i]
        keep = True
        for k in range(len(selected_indices)):
            if keep:
                kept_idx = selected_indices[k]
J
jerrywgz 已提交
108
                overlap = iou(boxes[idx], boxes[kept_idx], normalized)
D
dangqingqing 已提交
109
                keep = True if overlap <= adaptive_threshold else False
110 111 112 113 114 115 116 117 118 119
            else:
                break
        if keep:
            selected_indices.append(idx)
        if keep and eta < 1 and adaptive_threshold > 0.5:
            adaptive_threshold *= eta
    return selected_indices


def multiclass_nms(boxes, scores, background, score_threshold, nms_threshold,
J
jerrywgz 已提交
120 121 122 123 124 125 126
                   nms_top_k, keep_top_k, normalized, shared):
    if shared:
        class_num = scores.shape[0]
        priorbox_num = scores.shape[1]
    else:
        box_num = scores.shape[0]
        class_num = scores.shape[1]
127

128
    selected_indices = {}
129 130 131
    num_det = 0
    for c in range(class_num):
        if c == background: continue
J
jerrywgz 已提交
132 133 134 135 136 137
        if shared:
            indices = nms(boxes, scores[c], score_threshold, nms_threshold,
                          nms_top_k, normalized)
        else:
            indices = nms(boxes[:, c, :], scores[:, c], score_threshold,
                          nms_threshold, nms_top_k, normalized)
138
        selected_indices[c] = indices
139 140 141 142
        num_det += len(indices)

    if keep_top_k > -1 and num_det > keep_top_k:
        score_index = []
143
        for c, indices in selected_indices.items():
144
            for idx in indices:
J
jerrywgz 已提交
145 146 147 148
                if shared:
                    score_index.append((scores[c][idx], c, idx))
                else:
                    score_index.append((scores[idx][c], c, idx))
149 150 151 152

        sorted_score_index = sorted(
            score_index, key=lambda tup: tup[0], reverse=True)
        sorted_score_index = sorted_score_index[:keep_top_k]
153 154 155 156
        selected_indices = {}

        for _, c, _ in sorted_score_index:
            selected_indices[c] = []
157
        for s, c, idx in sorted_score_index:
158
            selected_indices[c].append(idx)
J
jerrywgz 已提交
159 160 161
        if not shared:
            for labels in selected_indices:
                selected_indices[labels].sort()
162
        num_det = keep_top_k
163

164
    return selected_indices, num_det
165 166


J
jerrywgz 已提交
167 168 169
def lod_multiclass_nms(boxes, scores, background, score_threshold,
                       nms_threshold, nms_top_k, keep_top_k, box_lod,
                       normalized):
170
    num_class = boxes.shape[1]
J
jerrywgz 已提交
171 172 173 174
    det_outs = []
    lod = []
    head = 0
    for n in range(len(box_lod[0])):
175 176 177
        if box_lod[0][n] == 0:
            lod.append(0)
            continue
J
jerrywgz 已提交
178 179
        box = boxes[head:head + box_lod[0][n]]
        score = scores[head:head + box_lod[0][n]]
180
        offset = head
J
jerrywgz 已提交
181 182 183 184 185 186 187 188 189 190 191
        head = head + box_lod[0][n]
        nmsed_outs, nmsed_num = multiclass_nms(
            box,
            score,
            background,
            score_threshold,
            nms_threshold,
            nms_top_k,
            keep_top_k,
            normalized,
            shared=False)
192 193
        lod.append(nmsed_num)

J
jerrywgz 已提交
194 195
        if nmsed_num == 0:
            continue
196
        tmp_det_out = []
J
jerrywgz 已提交
197 198 199
        for c, indices in nmsed_outs.items():
            for idx in indices:
                xmin, ymin, xmax, ymax = box[idx, c, :]
200 201 202 203
                tmp_det_out.append([
                    c, score[idx][c], xmin, ymin, xmax, ymax,
                    offset * num_class + idx * num_class + c
                ])
204 205 206
        sorted_det_out = sorted(
            tmp_det_out, key=lambda tup: tup[0], reverse=False)
        det_outs.extend(sorted_det_out)
J
jerrywgz 已提交
207 208 209 210 211 212 213 214 215 216 217 218

    return det_outs, lod


def batched_multiclass_nms(boxes,
                           scores,
                           background,
                           score_threshold,
                           nms_threshold,
                           nms_top_k,
                           keep_top_k,
                           normalized=True):
219
    batch_size = scores.shape[0]
220
    num_boxes = scores.shape[2]
221
    det_outs = []
222
    index_outs = []
223
    lod = []
224
    for n in range(batch_size):
J
jerrywgz 已提交
225 226 227 228 229 230 231 232 233 234
        nmsed_outs, nmsed_num = multiclass_nms(
            boxes[n],
            scores[n],
            background,
            score_threshold,
            nms_threshold,
            nms_top_k,
            keep_top_k,
            normalized,
            shared=True)
235 236
        lod.append(nmsed_num)

J
jerrywgz 已提交
237 238
        if nmsed_num == 0:
            continue
239
        tmp_det_out = []
240
        for c, indices in nmsed_outs.items():
241
            for idx in indices:
242
                xmin, ymin, xmax, ymax = boxes[n][idx][:]
243 244 245 246
                tmp_det_out.append([
                    c, scores[n][c][idx], xmin, ymin, xmax, ymax,
                    idx + n * num_boxes
                ])
247 248 249
        sorted_det_out = sorted(
            tmp_det_out, key=lambda tup: tup[0], reverse=False)
        det_outs.extend(sorted_det_out)
250 251 252 253
    return det_outs, lod


class TestMulticlassNMSOp(OpTest):
254 255 256
    def set_argument(self):
        self.score_threshold = 0.01

257
    def setUp(self):
258
        self.set_argument()
259
        N = 7
260
        M = 1200
261 262 263 264 265 266
        C = 21
        BOX_SIZE = 4
        background = 0
        nms_threshold = 0.3
        nms_top_k = 400
        keep_top_k = 200
267
        score_threshold = self.score_threshold
268

D
dangqingqing 已提交
269 270 271 272 273 274
        scores = np.random.random((N * M, C)).astype('float32')

        scores = np.apply_along_axis(softmax, 1, scores)
        scores = np.reshape(scores, (N, M, C))
        scores = np.transpose(scores, (0, 2, 1))

275 276 277
        boxes = np.random.random((N, M, BOX_SIZE)).astype('float32')
        boxes[:, :, 0:2] = boxes[:, :, 0:2] * 0.5
        boxes[:, :, 2:4] = boxes[:, :, 2:4] * 0.5 + 0.5
278

279 280 281 282 283 284 285
        det_outs, lod = batched_multiclass_nms(boxes, scores, background,
                                               score_threshold, nms_threshold,
                                               nms_top_k, keep_top_k)
        lod = [1] if not det_outs else lod
        det_outs = [[-1, 0]] if not det_outs else det_outs
        det_outs = np.array(det_outs)
        nmsed_outs = det_outs[:, :-1].astype('float32')
D
dangqingqing 已提交
286 287

        self.op_type = 'multiclass_nms'
D
dangqingqing 已提交
288
        self.inputs = {'BBoxes': boxes, 'Scores': scores}
289
        self.outputs = {'Out': (nmsed_outs, [lod])}
D
dangqingqing 已提交
290 291 292 293 294 295 296
        self.attrs = {
            'background_label': 0,
            'nms_threshold': nms_threshold,
            'nms_top_k': nms_top_k,
            'keep_top_k': keep_top_k,
            'score_threshold': score_threshold,
            'nms_eta': 1.0,
J
jerrywgz 已提交
297
            'normalized': True,
D
dangqingqing 已提交
298
        }
299 300 301 302 303

    def test_check_output(self):
        self.check_output()


304 305 306
class TestMulticlassNMSOpNoOutput(TestMulticlassNMSOp):
    def set_argument(self):
        # Here set 2.0 to test the case there is no outputs.
307
        # In practical use, 0.0 < score_threshold < 1.0
308 309 310
        self.score_threshold = 2.0


J
jerrywgz 已提交
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
class TestMulticlassNMSLoDInput(OpTest):
    def set_argument(self):
        self.score_threshold = 0.01

    def setUp(self):
        self.set_argument()
        M = 1200
        C = 21
        BOX_SIZE = 4
        box_lod = [[1200]]
        background = 0
        nms_threshold = 0.3
        nms_top_k = 400
        keep_top_k = 200
        score_threshold = self.score_threshold
        normalized = False

        scores = np.random.random((M, C)).astype('float32')

        scores = np.apply_along_axis(softmax, 1, scores)

        boxes = np.random.random((M, C, BOX_SIZE)).astype('float32')
        boxes[:, :, 0] = boxes[:, :, 0] * 10
        boxes[:, :, 1] = boxes[:, :, 1] * 10
        boxes[:, :, 2] = boxes[:, :, 2] * 10 + 10
        boxes[:, :, 3] = boxes[:, :, 3] * 10 + 10

338
        det_outs, lod = lod_multiclass_nms(
J
jerrywgz 已提交
339 340
            boxes, scores, background, score_threshold, nms_threshold,
            nms_top_k, keep_top_k, box_lod, normalized)
341 342 343
        det_outs = np.array(det_outs).astype('float32')
        nmsed_outs = det_outs[:, :-1].astype('float32') if len(
            det_outs) else det_outs
J
jerrywgz 已提交
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
        self.op_type = 'multiclass_nms'
        self.inputs = {
            'BBoxes': (boxes, box_lod),
            'Scores': (scores, box_lod),
        }
        self.outputs = {'Out': (nmsed_outs, [lod])}
        self.attrs = {
            'background_label': 0,
            'nms_threshold': nms_threshold,
            'nms_top_k': nms_top_k,
            'keep_top_k': keep_top_k,
            'score_threshold': score_threshold,
            'nms_eta': 1.0,
            'normalized': normalized,
        }

    def test_check_output(self):
        self.check_output()


364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
class TestMulticlassNMSNoBox(TestMulticlassNMSLoDInput):
    def setUp(self):
        self.set_argument()
        M = 1200
        C = 21
        BOX_SIZE = 4
        box_lod = [[0, 1200, 0]]
        background = 0
        nms_threshold = 0.3
        nms_top_k = 400
        keep_top_k = 200
        score_threshold = self.score_threshold
        normalized = False

        scores = np.random.random((M, C)).astype('float32')

        scores = np.apply_along_axis(softmax, 1, scores)

        boxes = np.random.random((M, C, BOX_SIZE)).astype('float32')
        boxes[:, :, 0] = boxes[:, :, 0] * 10
        boxes[:, :, 1] = boxes[:, :, 1] * 10
        boxes[:, :, 2] = boxes[:, :, 2] * 10 + 10
        boxes[:, :, 3] = boxes[:, :, 3] * 10 + 10

        det_outs, lod = lod_multiclass_nms(
            boxes, scores, background, score_threshold, nms_threshold,
            nms_top_k, keep_top_k, box_lod, normalized)
        det_outs = np.array(det_outs).astype('float32')
        nmsed_outs = det_outs[:, :-1].astype('float32') if len(
            det_outs) else det_outs
        self.op_type = 'multiclass_nms'
        self.inputs = {
            'BBoxes': (boxes, box_lod),
            'Scores': (scores, box_lod),
        }
        self.outputs = {'Out': (nmsed_outs, [lod])}
        self.attrs = {
            'background_label': 0,
            'nms_threshold': nms_threshold,
            'nms_top_k': nms_top_k,
            'keep_top_k': keep_top_k,
            'score_threshold': score_threshold,
            'nms_eta': 1.0,
            'normalized': normalized,
        }


411 412 413 414 415 416
class TestIOU(unittest.TestCase):
    def test_iou(self):
        box1 = np.array([4.0, 3.0, 7.0, 5.0]).astype('float32')
        box2 = np.array([3.0, 4.0, 6.0, 8.0]).astype('float32')

        expt_output = np.array([2.0 / 16.0]).astype('float32')
J
jerrywgz 已提交
417
        calc_output = np.array([iou(box1, box2, True)]).astype('float32')
418 419 420
        self.assertTrue(np.allclose(calc_output, expt_output))


421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
class TestMulticlassNMS2Op(TestMulticlassNMSOp):
    def setUp(self):
        self.set_argument()
        N = 7
        M = 1200
        C = 21
        BOX_SIZE = 4
        background = 0
        nms_threshold = 0.3
        nms_top_k = 400
        keep_top_k = 200
        score_threshold = self.score_threshold

        scores = np.random.random((N * M, C)).astype('float32')

        scores = np.apply_along_axis(softmax, 1, scores)
        scores = np.reshape(scores, (N, M, C))
        scores = np.transpose(scores, (0, 2, 1))

        boxes = np.random.random((N, M, BOX_SIZE)).astype('float32')
        boxes[:, :, 0:2] = boxes[:, :, 0:2] * 0.5
        boxes[:, :, 2:4] = boxes[:, :, 2:4] * 0.5 + 0.5

        det_outs, lod = batched_multiclass_nms(boxes, scores, background,
                                               score_threshold, nms_threshold,
                                               nms_top_k, keep_top_k)
        det_outs = np.array(det_outs)

        nmsed_outs = det_outs[:, :-1].astype('float32') if len(
            det_outs) else det_outs
        index_outs = det_outs[:, -1:].astype('int') if len(
            det_outs) else det_outs
        self.op_type = 'multiclass_nms2'
        self.inputs = {'BBoxes': boxes, 'Scores': scores}
        self.outputs = {
            'Out': (nmsed_outs, [lod]),
            'Index': (index_outs, [lod])
        }
        self.attrs = {
            'background_label': 0,
            'nms_threshold': nms_threshold,
            'nms_top_k': nms_top_k,
            'keep_top_k': keep_top_k,
            'score_threshold': score_threshold,
            'nms_eta': 1.0,
            'normalized': True,
        }

    def test_check_output(self):
        self.check_output()


class TestMulticlassNMS2OpNoOutput(TestMulticlassNMS2Op):
    def set_argument(self):
        # Here set 2.0 to test the case there is no outputs.
        # In practical use, 0.0 < score_threshold < 1.0
        self.score_threshold = 2.0


class TestMulticlassNMS2LoDInput(TestMulticlassNMSLoDInput):
    def setUp(self):
        self.set_argument()
        M = 1200
        C = 21
        BOX_SIZE = 4
        box_lod = [[1200]]
        background = 0
        nms_threshold = 0.3
        nms_top_k = 400
        keep_top_k = 200
        score_threshold = self.score_threshold
        normalized = False

        scores = np.random.random((M, C)).astype('float32')

        scores = np.apply_along_axis(softmax, 1, scores)

        boxes = np.random.random((M, C, BOX_SIZE)).astype('float32')
        boxes[:, :, 0] = boxes[:, :, 0] * 10
        boxes[:, :, 1] = boxes[:, :, 1] * 10
        boxes[:, :, 2] = boxes[:, :, 2] * 10 + 10
        boxes[:, :, 3] = boxes[:, :, 3] * 10 + 10

        det_outs, lod = lod_multiclass_nms(
            boxes, scores, background, score_threshold, nms_threshold,
            nms_top_k, keep_top_k, box_lod, normalized)

        det_outs = np.array(det_outs)
        nmsed_outs = det_outs[:, :-1].astype('float32') if len(
            det_outs) else det_outs
        index_outs = det_outs[:, -1:].astype('int') if len(
            det_outs) else det_outs
        self.op_type = 'multiclass_nms2'
        self.inputs = {
            'BBoxes': (boxes, box_lod),
            'Scores': (scores, box_lod),
        }
        self.outputs = {
            'Out': (nmsed_outs, [lod]),
            'Index': (index_outs, [lod])
        }
        self.attrs = {
            'background_label': 0,
            'nms_threshold': nms_threshold,
            'nms_top_k': nms_top_k,
            'keep_top_k': keep_top_k,
            'score_threshold': score_threshold,
            'nms_eta': 1.0,
            'normalized': normalized,
        }

    def test_check_output(self):
        self.check_output()


class TestMulticlassNMS2LoDNoOutput(TestMulticlassNMS2LoDInput):
    def set_argument(self):
        # Here set 2.0 to test the case there is no outputs.
        # In practical use, 0.0 < score_threshold < 1.0
        self.score_threshold = 2.0


X
xiaoting 已提交
543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
class TestMulticlassNMSError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program(), Program()):
            M = 1200
            N = 7
            C = 21
            BOX_SIZE = 4

            boxes_np = np.random.random((M, C, BOX_SIZE)).astype('float32')
            scores = np.random.random((N * M, C)).astype('float32')
            scores = np.apply_along_axis(softmax, 1, scores)
            scores = np.reshape(scores, (N, M, C))
            scores_np = np.transpose(scores, (0, 2, 1))

            boxes_data = fluid.data(
                name='bboxes', shape=[M, C, BOX_SIZE], dtype='float32')
            scores_data = fluid.data(
                name='scores', shape=[N, C, M], dtype='float32')

            def test_bboxes_Variable():
                # the bboxes type must be Variable
                fluid.layers.multiclass_nms(bboxes=boxes_np, scores=scores_data)

            def test_scores_Variable():
                # the bboxes type must be Variable
                fluid.layers.multiclass_nms(bboxes=boxes_data, scores=scores_np)

            self.assertRaises(TypeError, test_bboxes_Variable)
            self.assertRaises(TypeError, test_scores_Variable)


574
if __name__ == '__main__':
575
    paddle.enable_static()
576
    unittest.main()