test_elementwise_mul_op.py 11.9 KB
Newer Older
1
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6 7 8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
16

17
import unittest
18

19
import numpy as np
20 21
import paddle
import paddle.fluid as fluid
22
import paddle.fluid.core as core
23
from paddle.fluid import Program, compiler, program_guard
24
from paddle.fluid.op import Operator
25

26
from paddle.fluid.tests.unittests.op_test import OpTest, skip_check_grad_ci, convert_float_to_uint16
27 28


G
gongweibao 已提交
29
class ElementwiseMulOp(OpTest):
30

31 32 33
    def init_kernel_type(self):
        self.use_mkldnn = False

34 35
    def setUp(self):
        self.op_type = "elementwise_mul"
36
        self.dtype = np.float64
37 38 39 40 41 42
        self.axis = -1
        self.init_dtype()
        self.init_input_output()
        self.init_kernel_type()
        self.init_axis()

43
        self.inputs = {
44 45
            'X': OpTest.np_dtype_to_fluid_dtype(self.x),
            'Y': OpTest.np_dtype_to_fluid_dtype(self.y)
46
        }
47 48
        self.outputs = {'Out': self.out}
        self.attrs = {'axis': self.axis, 'use_mkldnn': self.use_mkldnn}
49 50

    def test_check_output(self):
51 52
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
        self.check_output(check_dygraph=(self.use_mkldnn == False))
53 54

    def test_check_grad_normal(self):
55
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
56 57 58
        self.check_grad(['X', 'Y'],
                        'Out',
                        check_dygraph=(self.use_mkldnn == False))
59 60

    def test_check_grad_ingore_x(self):
61
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
62 63 64 65
        self.check_grad(['Y'],
                        'Out',
                        no_grad_set=set("X"),
                        check_dygraph=(self.use_mkldnn == False))
66 67

    def test_check_grad_ingore_y(self):
68
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
69 70 71 72
        self.check_grad(['X'],
                        'Out',
                        no_grad_set=set('Y'),
                        check_dygraph=(self.use_mkldnn == False))
73

74 75 76 77 78 79 80 81 82 83 84
    def init_input_output(self):
        self.x = np.random.uniform(0.1, 1, [13, 17]).astype(self.dtype)
        self.y = np.random.uniform(0.1, 1, [13, 17]).astype(self.dtype)
        self.out = np.multiply(self.x, self.y)

    def init_dtype(self):
        pass

    def init_axis(self):
        pass

85

86
class TestBF16ElementwiseMulOp(OpTest):
87

88 89 90 91 92 93 94 95 96 97 98 99 100
    def setUp(self):
        self.op_type = "elementwise_mul"
        self.dtype = np.uint16

        self.x = np.random.uniform(0.1, 1, [13, 17]).astype(np.float32)
        self.y = np.random.uniform(0.1, 1, [13, 17]).astype(np.float32)
        self.out = np.multiply(self.x, self.y)

        self.axis = -1

        self.inputs = {
            'X':
            OpTest.np_dtype_to_fluid_dtype(convert_float_to_uint16(self.x)),
101
            'Y': OpTest.np_dtype_to_fluid_dtype(convert_float_to_uint16(self.y))
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
        }
        self.outputs = {'Out': convert_float_to_uint16(self.out)}
        self.attrs = {'axis': self.axis, 'use_mkldnn': False}

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
        self.check_grad(['X', 'Y'], 'Out')

    def test_check_grad_ingore_x(self):
        self.check_grad(['Y'], 'Out', no_grad_set=set("X"))

    def test_check_grad_ingore_y(self):
        self.check_grad(['X'], 'Out', no_grad_set=set('Y'))


119 120
@skip_check_grad_ci(
    reason="[skip shape check] Use y_shape(1) to test broadcast.")
121
class TestElementwiseMulOp_scalar(ElementwiseMulOp):
122

123 124 125
    def setUp(self):
        self.op_type = "elementwise_mul"
        self.inputs = {
126 127
            'X': np.random.rand(10, 3, 4).astype(np.float64),
            'Y': np.random.rand(1).astype(np.float64)
128 129
        }
        self.outputs = {'Out': self.inputs['X'] * self.inputs['Y']}
130
        self.init_kernel_type()
131 132


G
gongweibao 已提交
133
class TestElementwiseMulOp_Vector(ElementwiseMulOp):
134

135 136 137
    def setUp(self):
        self.op_type = "elementwise_mul"
        self.inputs = {
138 139
            'X': np.random.random((100, )).astype("float64"),
            'Y': np.random.random((100, )).astype("float64")
140 141
        }
        self.outputs = {'Out': np.multiply(self.inputs['X'], self.inputs['Y'])}
142
        self.init_kernel_type()
143 144


G
gongweibao 已提交
145
class TestElementwiseMulOp_broadcast_0(ElementwiseMulOp):
146

147
    def init_input_output(self):
148 149 150
        self.x = np.random.rand(100, 2, 3).astype(self.dtype)
        self.y = np.random.rand(100).astype(self.dtype)
        self.out = self.x * self.y.reshape(100, 1, 1)
151

152 153
    def init_axis(self):
        self.axis = 0
154 155


G
gongweibao 已提交
156
class TestElementwiseMulOp_broadcast_1(ElementwiseMulOp):
157

158 159 160
    def setUp(self):
        self.op_type = "elementwise_mul"
        self.inputs = {
161 162
            'X': np.random.rand(2, 100, 3).astype(np.float64),
            'Y': np.random.rand(100).astype(np.float64)
163 164 165 166
        }

        self.attrs = {'axis': 1}
        self.outputs = {
167
            'Out': self.inputs['X'] * self.inputs['Y'].reshape(1, 100, 1)
168
        }
169
        self.init_kernel_type()
170 171


G
gongweibao 已提交
172
class TestElementwiseMulOp_broadcast_2(ElementwiseMulOp):
173

174 175 176
    def setUp(self):
        self.op_type = "elementwise_mul"
        self.inputs = {
177 178
            'X': np.random.rand(2, 3, 100).astype(np.float64),
            'Y': np.random.rand(100).astype(np.float64)
179 180 181
        }

        self.outputs = {
182
            'Out': self.inputs['X'] * self.inputs['Y'].reshape(1, 1, 100)
183
        }
184
        self.init_kernel_type()
185 186


G
gongweibao 已提交
187
class TestElementwiseMulOp_broadcast_3(ElementwiseMulOp):
188

189 190 191
    def setUp(self):
        self.op_type = "elementwise_mul"
        self.inputs = {
192 193
            'X': np.random.rand(2, 10, 12, 3).astype(np.float64),
            'Y': np.random.rand(10, 12).astype(np.float64)
194 195 196 197
        }

        self.attrs = {'axis': 1}
        self.outputs = {
198
            'Out': self.inputs['X'] * self.inputs['Y'].reshape(1, 10, 12, 1)
199
        }
200
        self.init_kernel_type()
201 202


203
class TestElementwiseMulOp_broadcast_4(ElementwiseMulOp):
204

205 206 207
    def setUp(self):
        self.op_type = "elementwise_mul"
        self.inputs = {
208 209
            'X': np.random.rand(10, 2, 11).astype(np.float64),
            'Y': np.random.rand(10, 1, 11).astype(np.float64)
210 211
        }
        self.outputs = {'Out': self.inputs['X'] * self.inputs['Y']}
212
        self.init_kernel_type()
213 214 215


class TestElementwiseMulOp_broadcast_5(ElementwiseMulOp):
216

217 218 219
    def setUp(self):
        self.op_type = "elementwise_mul"
        self.inputs = {
220 221
            'X': np.random.rand(10, 4, 2, 3).astype(np.float64),
            'Y': np.random.rand(10, 4, 1, 3).astype(np.float64)
222 223
        }
        self.outputs = {'Out': self.inputs['X'] * self.inputs['Y']}
224
        self.init_kernel_type()
225 226


227 228
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
W
Wu Yi 已提交
229
class TestElementwiseMulOpFp16(ElementwiseMulOp):
230

W
Wu Yi 已提交
231 232 233 234
    def init_dtype(self):
        self.dtype = np.float16


235
class TestElementwiseMulOp_commonuse_1(ElementwiseMulOp):
236

237 238 239
    def setUp(self):
        self.op_type = "elementwise_mul"
        self.inputs = {
240 241
            'X': np.random.rand(2, 3, 100).astype(np.float64),
            'Y': np.random.rand(1, 1, 100).astype(np.float64)
242 243
        }
        self.outputs = {'Out': self.inputs['X'] * self.inputs['Y']}
244
        self.init_kernel_type()
245 246 247


class TestElementwiseMulOp_commonuse_2(ElementwiseMulOp):
248

249 250 251
    def setUp(self):
        self.op_type = "elementwise_mul"
        self.inputs = {
252 253
            'X': np.random.rand(30, 3, 1, 5).astype(np.float64),
            'Y': np.random.rand(30, 1, 4, 1).astype(np.float64)
254 255
        }
        self.outputs = {'Out': self.inputs['X'] * self.inputs['Y']}
256
        self.init_kernel_type()
257 258 259


class TestElementwiseMulOp_xsize_lessthan_ysize(ElementwiseMulOp):
260

261 262 263
    def setUp(self):
        self.op_type = "elementwise_mul"
        self.inputs = {
264 265
            'X': np.random.rand(10, 10).astype(np.float64),
            'Y': np.random.rand(2, 2, 10, 10).astype(np.float64)
266 267 268 269 270
        }

        self.attrs = {'axis': 2}

        self.outputs = {
271
            'Out': self.inputs['X'].reshape(1, 1, 10, 10) * self.inputs['Y']
272
        }
273
        self.init_kernel_type()
274 275


276
class TestElementwiseMulOpError(unittest.TestCase):
277

278 279 280
    def test_errors(self):
        with program_guard(Program(), Program()):
            # the input of elementwise_mul must be Variable.
281 282 283 284
            x1 = fluid.create_lod_tensor(np.array([-1, 3, 5, 5]),
                                         [[1, 1, 1, 1]], fluid.CPUPlace())
            y1 = fluid.create_lod_tensor(np.array([-1, 3, 5, 5]),
                                         [[1, 1, 1, 1]], fluid.CPUPlace())
285 286 287 288 289 290 291 292 293
            self.assertRaises(TypeError, fluid.layers.elementwise_mul, x1, y1)

            # the input dtype of elementwise_mul must be float16 or float32 or float64 or int32 or int64
            # float16 only can be set on GPU place
            x2 = fluid.layers.data(name='x2', shape=[3, 4, 5, 6], dtype="uint8")
            y2 = fluid.layers.data(name='y2', shape=[3, 4, 5, 6], dtype="uint8")
            self.assertRaises(TypeError, fluid.layers.elementwise_mul, x2, y2)


294
class TestComplexElementwiseMulOp(OpTest):
295

296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
    def setUp(self):
        self.op_type = "elementwise_mul"
        self.init_base_dtype()
        self.init_input_output()
        self.init_grad_input_output()

        self.inputs = {
            'X': OpTest.np_dtype_to_fluid_dtype(self.x),
            'Y': OpTest.np_dtype_to_fluid_dtype(self.y)
        }
        self.attrs = {'axis': -1, 'use_mkldnn': False}
        self.outputs = {'Out': self.out}

    def init_base_dtype(self):
        self.dtype = np.float64

    def init_input_output(self):
        self.x = np.random.random(
            (2, 3, 4, 5)).astype(self.dtype) + 1J * np.random.random(
                (2, 3, 4, 5)).astype(self.dtype)
        self.y = np.random.random(
            (2, 3, 4, 5)).astype(self.dtype) + 1J * np.random.random(
                (2, 3, 4, 5)).astype(self.dtype)
        self.out = self.x * self.y

    def init_grad_input_output(self):
        self.grad_out = np.ones((2, 3, 4, 5), self.dtype) + 1J * np.ones(
            (2, 3, 4, 5), self.dtype)
        self.grad_x = self.grad_out * np.conj(self.y)
        self.grad_y = self.grad_out * np.conj(self.x)

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
331 332 333 334
        self.check_grad(['X', 'Y'],
                        'Out',
                        user_defined_grads=[self.grad_x, self.grad_y],
                        user_defined_grad_outputs=[self.grad_out])
335 336

    def test_check_grad_ingore_x(self):
337 338 339 340 341
        self.check_grad(['Y'],
                        'Out',
                        no_grad_set=set("X"),
                        user_defined_grads=[self.grad_y],
                        user_defined_grad_outputs=[self.grad_out])
342 343

    def test_check_grad_ingore_y(self):
344 345 346 347 348
        self.check_grad(['X'],
                        'Out',
                        no_grad_set=set('Y'),
                        user_defined_grads=[self.grad_x],
                        user_defined_grad_outputs=[self.grad_out])
349 350


C
chentianyu03 已提交
351
class TestRealComplexElementwiseMulOp(TestComplexElementwiseMulOp):
352

C
chentianyu03 已提交
353 354 355 356 357 358 359 360 361 362 363 364 365 366
    def init_input_output(self):
        self.x = np.random.random((2, 3, 4, 5)).astype(self.dtype)
        self.y = np.random.random(
            (2, 3, 4, 5)).astype(self.dtype) + 1J * np.random.random(
                (2, 3, 4, 5)).astype(self.dtype)
        self.out = self.x * self.y

    def init_grad_input_output(self):
        self.grad_out = np.ones((2, 3, 4, 5), self.dtype) + 1J * np.ones(
            (2, 3, 4, 5), self.dtype)
        self.grad_x = np.real(self.grad_out * np.conj(self.y))
        self.grad_y = self.grad_out * np.conj(self.x)


367
if __name__ == '__main__':
368
    paddle.enable_static()
369
    unittest.main()