test_elementwise_mul_op.py 7.8 KB
Newer Older
1
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6 7 8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
16 17
import unittest
import numpy as np
18
from op_test import OpTest
19 20
import paddle.fluid.core as core
from paddle.fluid.op import Operator
21 22
import paddle.fluid as fluid
from paddle.fluid import compiler, Program, program_guard
23 24


G
gongweibao 已提交
25
class ElementwiseMulOp(OpTest):
26 27 28
    def init_kernel_type(self):
        self.use_mkldnn = False

29 30
    def setUp(self):
        self.op_type = "elementwise_mul"
31 32 33 34 35 36 37
        self.dtype = np.float32
        self.axis = -1
        self.init_dtype()
        self.init_input_output()
        self.init_kernel_type()
        self.init_axis()

38
        self.inputs = {
39 40
            'X': OpTest.np_dtype_to_fluid_dtype(self.x),
            'Y': OpTest.np_dtype_to_fluid_dtype(self.y)
41
        }
42 43
        self.outputs = {'Out': self.out}
        self.attrs = {'axis': self.axis, 'use_mkldnn': self.use_mkldnn}
44 45

    def test_check_output(self):
46 47
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
        self.check_output(check_dygraph=(self.use_mkldnn == False))
48 49

    def test_check_grad_normal(self):
50 51 52
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
        self.check_grad(
            ['X', 'Y'], 'Out', check_dygraph=(self.use_mkldnn == False))
53 54

    def test_check_grad_ingore_x(self):
55 56 57 58 59 60
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
        self.check_grad(
            ['Y'],
            'Out',
            no_grad_set=set("X"),
            check_dygraph=(self.use_mkldnn == False))
61 62

    def test_check_grad_ingore_y(self):
63 64 65 66 67 68
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
        self.check_grad(
            ['X'],
            'Out',
            no_grad_set=set('Y'),
            check_dygraph=(self.use_mkldnn == False))
69

70 71 72 73 74 75 76 77 78 79 80
    def init_input_output(self):
        self.x = np.random.uniform(0.1, 1, [13, 17]).astype(self.dtype)
        self.y = np.random.uniform(0.1, 1, [13, 17]).astype(self.dtype)
        self.out = np.multiply(self.x, self.y)

    def init_dtype(self):
        pass

    def init_axis(self):
        pass

81

82 83 84 85 86 87 88 89
class TestElementwiseMulOp_scalar(ElementwiseMulOp):
    def setUp(self):
        self.op_type = "elementwise_mul"
        self.inputs = {
            'X': np.random.rand(2, 3, 4).astype(np.float32),
            'Y': np.random.rand(1).astype(np.float32)
        }
        self.outputs = {'Out': self.inputs['X'] * self.inputs['Y']}
90
        self.init_kernel_type()
91 92


G
gongweibao 已提交
93
class TestElementwiseMulOp_Vector(ElementwiseMulOp):
94 95 96
    def setUp(self):
        self.op_type = "elementwise_mul"
        self.inputs = {
97 98
            'X': np.random.random((32, )).astype("float64"),
            'Y': np.random.random((32, )).astype("float64")
99 100
        }
        self.outputs = {'Out': np.multiply(self.inputs['X'], self.inputs['Y'])}
101
        self.init_kernel_type()
102 103


G
gongweibao 已提交
104
class TestElementwiseMulOp_broadcast_0(ElementwiseMulOp):
105 106 107 108
    def init_input_output(self):
        self.x = np.random.rand(2, 3, 4).astype(self.dtype)
        self.y = np.random.rand(2).astype(self.dtype)
        self.out = self.x * self.y.reshape(2, 1, 1)
109

110 111
    def init_axis(self):
        self.axis = 0
112 113


G
gongweibao 已提交
114
class TestElementwiseMulOp_broadcast_1(ElementwiseMulOp):
115 116 117
    def setUp(self):
        self.op_type = "elementwise_mul"
        self.inputs = {
118 119
            'X': np.random.rand(2, 3, 4).astype(np.float64),
            'Y': np.random.rand(3).astype(np.float64)
120 121 122 123 124 125
        }

        self.attrs = {'axis': 1}
        self.outputs = {
            'Out': self.inputs['X'] * self.inputs['Y'].reshape(1, 3, 1)
        }
126
        self.init_kernel_type()
127 128


G
gongweibao 已提交
129
class TestElementwiseMulOp_broadcast_2(ElementwiseMulOp):
130 131 132
    def setUp(self):
        self.op_type = "elementwise_mul"
        self.inputs = {
133 134
            'X': np.random.rand(2, 3, 4).astype(np.float64),
            'Y': np.random.rand(4).astype(np.float64)
135 136 137 138 139
        }

        self.outputs = {
            'Out': self.inputs['X'] * self.inputs['Y'].reshape(1, 1, 4)
        }
140
        self.init_kernel_type()
141 142


G
gongweibao 已提交
143
class TestElementwiseMulOp_broadcast_3(ElementwiseMulOp):
144 145 146
    def setUp(self):
        self.op_type = "elementwise_mul"
        self.inputs = {
147 148
            'X': np.random.rand(2, 3, 4, 5).astype(np.float64),
            'Y': np.random.rand(3, 4).astype(np.float64)
149 150 151 152 153 154
        }

        self.attrs = {'axis': 1}
        self.outputs = {
            'Out': self.inputs['X'] * self.inputs['Y'].reshape(1, 3, 4, 1)
        }
155
        self.init_kernel_type()
156 157


158 159 160 161 162 163 164 165
class TestElementwiseMulOp_broadcast_4(ElementwiseMulOp):
    def setUp(self):
        self.op_type = "elementwise_mul"
        self.inputs = {
            'X': np.random.rand(2, 3, 4).astype(np.float64),
            'Y': np.random.rand(2, 1, 4).astype(np.float64)
        }
        self.outputs = {'Out': self.inputs['X'] * self.inputs['Y']}
166
        self.init_kernel_type()
167 168 169 170 171 172 173 174 175 176


class TestElementwiseMulOp_broadcast_5(ElementwiseMulOp):
    def setUp(self):
        self.op_type = "elementwise_mul"
        self.inputs = {
            'X': np.random.rand(2, 3, 4, 5).astype(np.float64),
            'Y': np.random.rand(2, 3, 1, 5).astype(np.float64)
        }
        self.outputs = {'Out': self.inputs['X'] * self.inputs['Y']}
177
        self.init_kernel_type()
178 179


W
Wu Yi 已提交
180 181 182 183 184
class TestElementwiseMulOpFp16(ElementwiseMulOp):
    def init_dtype(self):
        self.dtype = np.float16


185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
class TestElementwiseMulOp_commonuse_1(ElementwiseMulOp):
    def setUp(self):
        self.op_type = "elementwise_mul"
        self.inputs = {
            'X': np.random.rand(2, 3, 4).astype(np.float64),
            'Y': np.random.rand(1, 1, 4).astype(np.float64)
        }
        self.outputs = {'Out': self.inputs['X'] * self.inputs['Y']}


class TestElementwiseMulOp_commonuse_2(ElementwiseMulOp):
    def setUp(self):
        self.op_type = "elementwise_mul"
        self.inputs = {
            'X': np.random.rand(2, 3, 1, 5).astype(np.float64),
            'Y': np.random.rand(2, 1, 4, 1).astype(np.float64)
        }
        self.outputs = {'Out': self.inputs['X'] * self.inputs['Y']}


class TestElementwiseMulOp_xsize_lessthan_ysize(ElementwiseMulOp):
    def setUp(self):
        self.op_type = "elementwise_mul"
        self.inputs = {
            'X': np.random.rand(4, 5).astype(np.float64),
            'Y': np.random.rand(2, 3, 4, 5).astype(np.float64)
        }

        self.attrs = {'axis': 2}

        self.outputs = {
            'Out': self.inputs['X'].reshape(1, 1, 4, 5) * self.inputs['Y']
        }


220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
class TestElementwiseMulOpError(OpTest):
    def test_errors(self):
        with program_guard(Program(), Program()):
            # the input of elementwise_mul must be Variable.
            x1 = fluid.create_lod_tensor(
                np.array([-1, 3, 5, 5]), [[1, 1, 1, 1]], fluid.CPUPlace())
            y1 = fluid.create_lod_tensor(
                np.array([-1, 3, 5, 5]), [[1, 1, 1, 1]], fluid.CPUPlace())
            self.assertRaises(TypeError, fluid.layers.elementwise_mul, x1, y1)

            # the input dtype of elementwise_mul must be float16 or float32 or float64 or int32 or int64
            # float16 only can be set on GPU place
            x2 = fluid.layers.data(name='x2', shape=[3, 4, 5, 6], dtype="uint8")
            y2 = fluid.layers.data(name='y2', shape=[3, 4, 5, 6], dtype="uint8")
            self.assertRaises(TypeError, fluid.layers.elementwise_mul, x2, y2)


237 238
if __name__ == '__main__':
    unittest.main()