test_elementwise_mul_op.py 11.7 KB
Newer Older
1
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6 7 8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
16

17
import unittest
18

19
import numpy as np
20 21
import paddle
import paddle.fluid as fluid
22
import paddle.fluid.core as core
23
from paddle.fluid import Program, compiler, program_guard
24
from paddle.fluid.op import Operator
25

26
from paddle.fluid.tests.unittests.op_test import OpTest, skip_check_grad_ci, convert_float_to_uint16
27 28


G
gongweibao 已提交
29
class ElementwiseMulOp(OpTest):
30 31 32
    def init_kernel_type(self):
        self.use_mkldnn = False

33 34
    def setUp(self):
        self.op_type = "elementwise_mul"
35
        self.dtype = np.float64
36 37 38 39 40 41
        self.axis = -1
        self.init_dtype()
        self.init_input_output()
        self.init_kernel_type()
        self.init_axis()

42
        self.inputs = {
43 44
            'X': OpTest.np_dtype_to_fluid_dtype(self.x),
            'Y': OpTest.np_dtype_to_fluid_dtype(self.y)
45
        }
46 47
        self.outputs = {'Out': self.out}
        self.attrs = {'axis': self.axis, 'use_mkldnn': self.use_mkldnn}
48 49

    def test_check_output(self):
50 51
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
        self.check_output(check_dygraph=(self.use_mkldnn == False))
52 53

    def test_check_grad_normal(self):
54 55 56
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
        self.check_grad(
            ['X', 'Y'], 'Out', check_dygraph=(self.use_mkldnn == False))
57 58

    def test_check_grad_ingore_x(self):
59 60 61 62 63 64
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
        self.check_grad(
            ['Y'],
            'Out',
            no_grad_set=set("X"),
            check_dygraph=(self.use_mkldnn == False))
65 66

    def test_check_grad_ingore_y(self):
67 68 69 70 71 72
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
        self.check_grad(
            ['X'],
            'Out',
            no_grad_set=set('Y'),
            check_dygraph=(self.use_mkldnn == False))
73

74 75 76 77 78 79 80 81 82 83 84
    def init_input_output(self):
        self.x = np.random.uniform(0.1, 1, [13, 17]).astype(self.dtype)
        self.y = np.random.uniform(0.1, 1, [13, 17]).astype(self.dtype)
        self.out = np.multiply(self.x, self.y)

    def init_dtype(self):
        pass

    def init_axis(self):
        pass

85

86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
class TestBF16ElementwiseMulOp(OpTest):
    def setUp(self):
        self.op_type = "elementwise_mul"
        self.dtype = np.uint16

        self.x = np.random.uniform(0.1, 1, [13, 17]).astype(np.float32)
        self.y = np.random.uniform(0.1, 1, [13, 17]).astype(np.float32)
        self.out = np.multiply(self.x, self.y)

        self.axis = -1

        self.inputs = {
            'X':
            OpTest.np_dtype_to_fluid_dtype(convert_float_to_uint16(self.x)),
            'Y':
            OpTest.np_dtype_to_fluid_dtype(convert_float_to_uint16(self.y))
        }
        self.outputs = {'Out': convert_float_to_uint16(self.out)}
        self.attrs = {'axis': self.axis, 'use_mkldnn': False}

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
        self.check_grad(['X', 'Y'], 'Out')

    def test_check_grad_ingore_x(self):
        self.check_grad(['Y'], 'Out', no_grad_set=set("X"))

    def test_check_grad_ingore_y(self):
        self.check_grad(['X'], 'Out', no_grad_set=set('Y'))


119 120
@skip_check_grad_ci(
    reason="[skip shape check] Use y_shape(1) to test broadcast.")
121 122 123 124
class TestElementwiseMulOp_scalar(ElementwiseMulOp):
    def setUp(self):
        self.op_type = "elementwise_mul"
        self.inputs = {
125 126
            'X': np.random.rand(10, 3, 4).astype(np.float64),
            'Y': np.random.rand(1).astype(np.float64)
127 128
        }
        self.outputs = {'Out': self.inputs['X'] * self.inputs['Y']}
129
        self.init_kernel_type()
130 131


G
gongweibao 已提交
132
class TestElementwiseMulOp_Vector(ElementwiseMulOp):
133 134 135
    def setUp(self):
        self.op_type = "elementwise_mul"
        self.inputs = {
136 137
            'X': np.random.random((100, )).astype("float64"),
            'Y': np.random.random((100, )).astype("float64")
138 139
        }
        self.outputs = {'Out': np.multiply(self.inputs['X'], self.inputs['Y'])}
140
        self.init_kernel_type()
141 142


G
gongweibao 已提交
143
class TestElementwiseMulOp_broadcast_0(ElementwiseMulOp):
144
    def init_input_output(self):
145 146 147
        self.x = np.random.rand(100, 2, 3).astype(self.dtype)
        self.y = np.random.rand(100).astype(self.dtype)
        self.out = self.x * self.y.reshape(100, 1, 1)
148

149 150
    def init_axis(self):
        self.axis = 0
151 152


G
gongweibao 已提交
153
class TestElementwiseMulOp_broadcast_1(ElementwiseMulOp):
154 155 156
    def setUp(self):
        self.op_type = "elementwise_mul"
        self.inputs = {
157 158
            'X': np.random.rand(2, 100, 3).astype(np.float64),
            'Y': np.random.rand(100).astype(np.float64)
159 160 161 162
        }

        self.attrs = {'axis': 1}
        self.outputs = {
163
            'Out': self.inputs['X'] * self.inputs['Y'].reshape(1, 100, 1)
164
        }
165
        self.init_kernel_type()
166 167


G
gongweibao 已提交
168
class TestElementwiseMulOp_broadcast_2(ElementwiseMulOp):
169 170 171
    def setUp(self):
        self.op_type = "elementwise_mul"
        self.inputs = {
172 173
            'X': np.random.rand(2, 3, 100).astype(np.float64),
            'Y': np.random.rand(100).astype(np.float64)
174 175 176
        }

        self.outputs = {
177
            'Out': self.inputs['X'] * self.inputs['Y'].reshape(1, 1, 100)
178
        }
179
        self.init_kernel_type()
180 181


G
gongweibao 已提交
182
class TestElementwiseMulOp_broadcast_3(ElementwiseMulOp):
183 184 185
    def setUp(self):
        self.op_type = "elementwise_mul"
        self.inputs = {
186 187
            'X': np.random.rand(2, 10, 12, 3).astype(np.float64),
            'Y': np.random.rand(10, 12).astype(np.float64)
188 189 190 191
        }

        self.attrs = {'axis': 1}
        self.outputs = {
192
            'Out': self.inputs['X'] * self.inputs['Y'].reshape(1, 10, 12, 1)
193
        }
194
        self.init_kernel_type()
195 196


197 198 199 200
class TestElementwiseMulOp_broadcast_4(ElementwiseMulOp):
    def setUp(self):
        self.op_type = "elementwise_mul"
        self.inputs = {
201 202
            'X': np.random.rand(10, 2, 11).astype(np.float64),
            'Y': np.random.rand(10, 1, 11).astype(np.float64)
203 204
        }
        self.outputs = {'Out': self.inputs['X'] * self.inputs['Y']}
205
        self.init_kernel_type()
206 207 208 209 210 211


class TestElementwiseMulOp_broadcast_5(ElementwiseMulOp):
    def setUp(self):
        self.op_type = "elementwise_mul"
        self.inputs = {
212 213
            'X': np.random.rand(10, 4, 2, 3).astype(np.float64),
            'Y': np.random.rand(10, 4, 1, 3).astype(np.float64)
214 215
        }
        self.outputs = {'Out': self.inputs['X'] * self.inputs['Y']}
216
        self.init_kernel_type()
217 218


219 220
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
W
Wu Yi 已提交
221 222 223 224 225
class TestElementwiseMulOpFp16(ElementwiseMulOp):
    def init_dtype(self):
        self.dtype = np.float16


226 227 228 229
class TestElementwiseMulOp_commonuse_1(ElementwiseMulOp):
    def setUp(self):
        self.op_type = "elementwise_mul"
        self.inputs = {
230 231
            'X': np.random.rand(2, 3, 100).astype(np.float64),
            'Y': np.random.rand(1, 1, 100).astype(np.float64)
232 233
        }
        self.outputs = {'Out': self.inputs['X'] * self.inputs['Y']}
234
        self.init_kernel_type()
235 236 237 238 239 240


class TestElementwiseMulOp_commonuse_2(ElementwiseMulOp):
    def setUp(self):
        self.op_type = "elementwise_mul"
        self.inputs = {
241 242
            'X': np.random.rand(30, 3, 1, 5).astype(np.float64),
            'Y': np.random.rand(30, 1, 4, 1).astype(np.float64)
243 244
        }
        self.outputs = {'Out': self.inputs['X'] * self.inputs['Y']}
245
        self.init_kernel_type()
246 247 248 249 250 251


class TestElementwiseMulOp_xsize_lessthan_ysize(ElementwiseMulOp):
    def setUp(self):
        self.op_type = "elementwise_mul"
        self.inputs = {
252 253
            'X': np.random.rand(10, 10).astype(np.float64),
            'Y': np.random.rand(2, 2, 10, 10).astype(np.float64)
254 255 256 257 258
        }

        self.attrs = {'axis': 2}

        self.outputs = {
259
            'Out': self.inputs['X'].reshape(1, 1, 10, 10) * self.inputs['Y']
260
        }
261
        self.init_kernel_type()
262 263


264
class TestElementwiseMulOpError(unittest.TestCase):
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
    def test_errors(self):
        with program_guard(Program(), Program()):
            # the input of elementwise_mul must be Variable.
            x1 = fluid.create_lod_tensor(
                np.array([-1, 3, 5, 5]), [[1, 1, 1, 1]], fluid.CPUPlace())
            y1 = fluid.create_lod_tensor(
                np.array([-1, 3, 5, 5]), [[1, 1, 1, 1]], fluid.CPUPlace())
            self.assertRaises(TypeError, fluid.layers.elementwise_mul, x1, y1)

            # the input dtype of elementwise_mul must be float16 or float32 or float64 or int32 or int64
            # float16 only can be set on GPU place
            x2 = fluid.layers.data(name='x2', shape=[3, 4, 5, 6], dtype="uint8")
            y2 = fluid.layers.data(name='y2', shape=[3, 4, 5, 6], dtype="uint8")
            self.assertRaises(TypeError, fluid.layers.elementwise_mul, x2, y2)


281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
class TestComplexElementwiseMulOp(OpTest):
    def setUp(self):
        self.op_type = "elementwise_mul"
        self.init_base_dtype()
        self.init_input_output()
        self.init_grad_input_output()

        self.inputs = {
            'X': OpTest.np_dtype_to_fluid_dtype(self.x),
            'Y': OpTest.np_dtype_to_fluid_dtype(self.y)
        }
        self.attrs = {'axis': -1, 'use_mkldnn': False}
        self.outputs = {'Out': self.out}

    def init_base_dtype(self):
        self.dtype = np.float64

    def init_input_output(self):
        self.x = np.random.random(
            (2, 3, 4, 5)).astype(self.dtype) + 1J * np.random.random(
                (2, 3, 4, 5)).astype(self.dtype)
        self.y = np.random.random(
            (2, 3, 4, 5)).astype(self.dtype) + 1J * np.random.random(
                (2, 3, 4, 5)).astype(self.dtype)
        self.out = self.x * self.y

    def init_grad_input_output(self):
        self.grad_out = np.ones((2, 3, 4, 5), self.dtype) + 1J * np.ones(
            (2, 3, 4, 5), self.dtype)
        self.grad_x = self.grad_out * np.conj(self.y)
        self.grad_y = self.grad_out * np.conj(self.x)

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
        self.check_grad(
            ['X', 'Y'],
            'Out',
            user_defined_grads=[self.grad_x, self.grad_y],
            user_defined_grad_outputs=[self.grad_out])

    def test_check_grad_ingore_x(self):
        self.check_grad(
            ['Y'],
            'Out',
            no_grad_set=set("X"),
            user_defined_grads=[self.grad_y],
            user_defined_grad_outputs=[self.grad_out])

    def test_check_grad_ingore_y(self):
        self.check_grad(
            ['X'],
            'Out',
            no_grad_set=set('Y'),
            user_defined_grads=[self.grad_x],
            user_defined_grad_outputs=[self.grad_out])


C
chentianyu03 已提交
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
class TestRealComplexElementwiseMulOp(TestComplexElementwiseMulOp):
    def init_input_output(self):
        self.x = np.random.random((2, 3, 4, 5)).astype(self.dtype)
        self.y = np.random.random(
            (2, 3, 4, 5)).astype(self.dtype) + 1J * np.random.random(
                (2, 3, 4, 5)).astype(self.dtype)
        self.out = self.x * self.y

    def init_grad_input_output(self):
        self.grad_out = np.ones((2, 3, 4, 5), self.dtype) + 1J * np.ones(
            (2, 3, 4, 5), self.dtype)
        self.grad_x = np.real(self.grad_out * np.conj(self.y))
        self.grad_y = self.grad_out * np.conj(self.x)


355
if __name__ == '__main__':
356
    paddle.enable_static()
357
    unittest.main()