post_training_quantization.py 66.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
15 16
import os
import re
17 18
import logging
import numpy as np
19
import shutil
20 21 22 23
try:
    from tqdm import tqdm
except:
    from .utils import tqdm
24
from inspect import isgeneratorfunction
25 26 27
from .... import io
from .... import core
from .... import framework
28
from .... import unique_name
29
from ....executor import global_scope, Executor
30 31
from ....framework import IrGraph
from ....log_helper import get_logger
32
from .quantization_pass import QuantizationTransformPass, QuantizationTransformPassV2, QuantizationFreezePass, QuantWeightPass, AddQuantDequantPass, AddQuantDequantPassV2
33
from .cal_kl_threshold import cal_kl_threshold
34
from .adaround import run_adaround
35
from . import utils
36

37
__all__ = ['PostTrainingQuantization', 'WeightQuantization']
38 39 40 41 42

_logger = get_logger(
    __name__, logging.INFO, fmt='%(asctime)s-%(levelname)s: %(message)s')


43 44 45 46 47 48 49 50
def _all_persistable_var_names(program):
    persistable_var_names = []
    for var in program.list_vars():
        if var.persistable:
            persistable_var_names.append(var.name)
    return persistable_var_names


51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
def _remove_unused_var_nodes(graph):
    all_used_vars = set()
    ops = graph.all_op_nodes()
    for op_node in ops:
        for input_node in op_node.inputs:
            all_used_vars.add(input_node)
        for output_node in op_node.outputs:
            all_used_vars.add(output_node)

    all_used_vars = {n.node for n in all_used_vars}
    all_unused_vars = {
        n
        for n in filter(lambda node: node.node not in all_used_vars,
                        graph.all_var_nodes())
    }
    graph.safe_remove_nodes(all_unused_vars)
    return graph


def _remove_ctrl_vars(graph):
    remove_ctr_vars = set()
    for node in graph.all_var_nodes():
        if node.is_ctrl_var():
            remove_ctr_vars.add(node)
    graph.safe_remove_nodes(remove_ctr_vars)
    return graph


def _apply_pass(scope,
                graph,
                pass_name,
                attrs=None,
                attr_values=None,
                debug=False):
    ir_pass = core.get_pass(pass_name)
    cpp_graph = graph.graph
    if not cpp_graph.has('__param_scope__'):
        cpp_graph.set_not_owned('__param_scope__', scope)
    if attrs:
        assert attr_values and len(attrs) == len(
            attr_values), "Different number of pass attributes and their values."
        for attr, value in zip(attrs, attr_values):
            ir_pass.set(attr, value)
    ir_pass.apply(cpp_graph)
    if debug:
        graph.draw('.', 'qat_fp32_{}'.format(pass_name), graph.all_op_nodes())
    _remove_unused_var_nodes(graph)
    return graph


101
class PostTrainingQuantization(object):
102 103 104 105 106 107
    """
    Utilizing post training quantization methon to quantize the FP32 model,
    and it uses calibrate data to get the quantization information for all 
    quantized variables.
    """

108
    def __init__(self,
109 110 111
                 executor=None,
                 scope=None,
                 model_dir=None,
112 113
                 model_filename=None,
                 params_filename=None,
114
                 batch_generator=None,
115
                 sample_generator=None,
116
                 data_loader=None,
117 118 119
                 batch_size=10,
                 batch_nums=None,
                 algo="KL",
X
XGZhang 已提交
120
                 hist_percent=0.99999,
121
                 quantizable_op_type=["conv2d", "depthwise_conv2d", "mul"],
122 123
                 round_type='round',
                 learning_rate=0.001,
124
                 is_full_quantize=False,
X
XGZhang 已提交
125
                 bias_correction=False,
126
                 activation_bits=8,
127 128 129
                 weight_bits=8,
                 activation_quantize_type='range_abs_max',
                 weight_quantize_type='channel_wise_abs_max',
130
                 onnx_format=False,
131
                 optimize_model=False,
132
                 is_use_cache_file=False,
133
                 skip_tensor_list=None,
134
                 cache_dir=None):
135
        '''
136
        Constructor.
137 138

        Args:
139
            executor(fluid.Executor): The executor to load, run and save the
140
                quantized model.
141 142
            scope(fluid.Scope, optional): The scope of the program, use it to load 
                and save variables. If scope=None, get scope by global_scope(). 
143 144 145 146 147 148 149 150 151
            model_dir(str): The path of the fp32 model that will be quantized, 
                and the model and params files are under the path.
            model_filename(str, optional): The name of file to load the inference 
                program. If it is None, the default filename '__model__' will 
                be used. Default is 'None'.
            params_filename(str, optional): The name of file to load all parameters.
                When all parameters were saved in a single binary file, set it 
                as the real filename. If parameters were saved in separate files, 
                set it as 'None'. Default is 'None'.
152 153 154 155 156 157 158 159
            batch_generator(Python Generator): The batch generator provides 
                calibrate data for DataLoader, and it returns a batch every
                time. Note that, sample_generator and batch_generator, only one
                should be set. Beisdes, batch_generator supports lod tensor.
            sample_generator(Python Generator): The sample generator provides
                calibrate data for DataLoader, and it only returns a sample every
                time. Note that, sample_generator and batch_generator, only one
                should be set. Beisdes, sample_generator dose not support lod tensor.
160 161 162
            data_loader(Python Generator, Paddle.io.DataLoader, optional): The
                Generator or Dataloader provides calibrate data, and it could
                return a batch every time.
163 164 165 166
            batch_size(int, optional): The batch size of DataLoader. Default is 10.
            batch_nums(int, optional): If batch_nums is not None, the number of 
                calibrate data is batch_size*batch_nums. If batch_nums is None, use 
                all data provided by sample_generator as calibrate data.
167 168 169 170
            algo(str, optional): If algo='KL', use KL-divergenc method to
                get the KL threshold for quantized activations and get the abs_max
                value for quantized weights. If algo='abs_max', get the abs max 
                value for activations and weights. If algo= 'min_max', get the min 
X
XGZhang 已提交
171 172 173 174 175 176 177
                and max value for quantized activations and weights. If algo='avg',
                get the average value among the max values for activations. If 
                algo= 'hist', get the value of 'hist_percent' quantile as the threshold.
                If algo='mse', get the value which makes the quantization mse loss 
                minimal. Default is KL.
            hist_percent(float, optional): The threshold of algo 'hist' for activations.
                Default is 0.99999.
178 179
            quantizable_op_type(list[str], optional): List the type of ops 
                that will be quantized. Default is ["conv2d", "depthwise_conv2d", 
180
                "mul"].
181 182 183 184
            round_type(str, optional): The method of converting the quantized weights
                value float->int. Currently supports ['round', 'adaround'] methods.
                Default is `round`, which is rounding nearest to the nearest whole number.
            learning_rate(float, optional): The learning rate of adaround method.
185
            is_full_quantized(bool, optional): If set is_full_quantized as True, 
186
                apply quantization to all supported quantizable op type. If set
187 188
                is_full_quantized as False, only apply quantization to the op type 
                according to the input quantizable_op_type.
X
XGZhang 已提交
189 190
            bias_correction(bool, optional): If set as True, use the bias correction
                method of https://arxiv.org/abs/1810.05723. Default is False.
191
            activation_bits(int): quantization bit number for activation.
192 193 194 195 196 197 198 199 200 201 202 203
            weight_bits(int, optional): quantization bit number for weights.
            activation_quantize_type(str): quantization type for activation,
                now support 'range_abs_max', 'moving_average_abs_max' and 'abs_max'.
                This param only specifies the fake ops in saving quantized model.
                If it is 'range_abs_max' or 'moving_average_abs_max', we save the scale
                obtained by post training quantization in fake ops. Note that, if it
                is 'abs_max', the scale will not be saved in fake ops.
            weight_quantize_type(str): quantization type for weights,
                support 'abs_max' and 'channel_wise_abs_max'. This param only specifies
                the fake ops in saving quantized model, and we save the scale obtained
                by post training quantization in fake ops. Compared to 'abs_max',
                the model accuracy is usually higher when it is 'channel_wise_abs_max'.
204 205
            onnx_format(bool): Whether to export the quantized model with format of ONNX.
                Default is False.
206
            skip_tensor_list(list): List of skip quant tensor name.
207 208 209 210 211 212 213 214
            optimize_model(bool, optional): If set optimize_model as True, it applies
                some passes to the model before quantization, and it supports
                `conv2d/depthwise_conv2d + bn` pass so far. Some targets require the
                weights are quantized by tensor-wise method, which means the weights
                scale for all channel are the same. However, if fuse
                `conv2d/depthwise_conv2d + bn`, the weights scale for all channel will
                be different. In address this problem, fuse the pattern before
                quantization. Default False.
215 216
            is_use_cache_file(bool, optional): This param is deprecated.
            cache_dir(str, optional): This param is deprecated.
217 218 219
        Returns:
            None

220 221 222 223 224 225
        Examples:
        .. code-block:: python
            import paddle.fluid as fluid
            from paddle.fluid.contrib.slim.quantization import PostTrainingQuantization
            
            exe = fluid.Executor(fluid.CPUPlace())
226 227 228 229 230 231 232 233 234
            model_dir = path/to/fp32_model_params
            # set model_filename as None when the filename is __model__, 
            # otherwise set it as the real filename
            model_filename = None 
            # set params_filename as None when all parameters were saved in 
            # separate files, otherwise set it as the real filename
            params_filename = None
            save_model_path = path/to/save_model_path
            # prepare the sample generator according to the model, and the 
235
            # sample generator must return a sample every time. The reference
236 237 238
            # document: https://www.paddlepaddle.org.cn/documentation/docs/zh
            # /user_guides/howto/prepare_data/use_py_reader.html
            sample_generator = your_sample_generator
239 240 241
            batch_size = 10
            batch_nums = 10
            algo = "KL"
242
            quantizable_op_type = ["conv2d", "depthwise_conv2d", "mul"]
243 244
            ptq = PostTrainingQuantization(
                        executor=exe,
245 246 247 248
                        sample_generator=sample_generator,
                        model_dir=model_dir,
                        model_filename=model_filename,
                        params_filename=params_filename,
249 250 251 252 253 254 255
                        batch_size=batch_size,
                        batch_nums=batch_nums,
                        algo=algo,
                        quantizable_op_type=quantizable_op_type)
            ptq.quantize()
            ptq.save_quantized_model(save_model_path)
        '''
256

257 258 259 260
        self._support_activation_quantize_type = [
            'range_abs_max', 'moving_average_abs_max', 'abs_max'
        ]
        self._support_weight_quantize_type = ['abs_max', 'channel_wise_abs_max']
X
XGZhang 已提交
261
        self._support_algo_type = [
262
            'KL', 'hist', 'avg', 'mse', 'emd', 'abs_max', 'min_max'
X
XGZhang 已提交
263
        ]
264 265 266
        assert round_type in ['adaround', 'round']
        self._round_type = round_type
        self._learning_rate = learning_rate
267
        self._dynamic_quantize_op_type = ['lstm']
268
        self._support_quantize_op_type = \
269 270
            list(set(utils._weight_supported_quantizable_op_type +
                utils._act_supported_quantizable_op_type +
271
                self._dynamic_quantize_op_type))
272 273

        # Check inputs
274 275
        assert executor is not None, "The executor cannot be None."
        assert model_dir is not None, "The model_dir cannot be None."
276
        assert any([gen is not None] for gen in [sample_generator,
277 278 279 280 281
            batch_generator, data_loader]), "The sample_generator, batch_generator " \
            "and data_loader cannot be None in the same time."
        if data_loader is not None:
            assert isinstance(data_loader, (io.DataLoader, type(isgeneratorfunction))), \
                "data_loader only accepts `paddle.io.DataLoader` or Generator instance."
282 283
        assert batch_size > 0, "The batch_size should be greater than 0."
        assert algo in self._support_algo_type, \
X
XGZhang 已提交
284
            "The algo should be KL, hist, mse, avg, abs_max or min_max."
285 286 287 288 289 290 291 292
        assert activation_quantize_type in self._support_activation_quantize_type, \
            "The activation_quantize_type ({}) should in ({}).".format(
            activation_quantize_type, self._support_activation_quantize_type)
        assert weight_quantize_type in self._support_weight_quantize_type, \
            "The weight_quantize_type ({}) shoud in ({}).".format(
            weight_quantize_type, self._support_weight_quantize_type)

        # Save input params
X
XGZhang 已提交
293
        self._bias_correction = bias_correction
294
        self._executor = executor
295
        self._scope = global_scope() if scope == None else scope
296 297 298
        self._model_dir = model_dir
        self._model_filename = model_filename
        self._params_filename = params_filename
299
        self._sample_generator = sample_generator
300
        self._batch_generator = batch_generator
301 302 303
        self._batch_size = batch_size
        self._batch_nums = batch_nums
        self._algo = algo
X
XGZhang 已提交
304
        self._hist_percent = hist_percent
305 306 307 308
        self._activation_bits = activation_bits
        self._weight_bits = weight_bits
        self._activation_quantize_type = activation_quantize_type
        self._weight_quantize_type = weight_quantize_type
309
        self._onnx_format = onnx_format
310
        self._skip_tensor_list = skip_tensor_list
311
        self._is_full_quantize = is_full_quantize
312
        if is_full_quantize:
313
            self._quantizable_op_type = self._support_quantize_op_type
314 315 316
        else:
            self._quantizable_op_type = quantizable_op_type
            for op_type in self._quantizable_op_type:
317
                assert op_type in self._support_quantize_op_type, \
318
                    op_type + " is not supported for quantization."
319
        self._optimize_model = optimize_model
320

321
        # Define variables
322 323 324 325
        self._place = self._executor.place
        self._program = None
        self._feed_list = None
        self._fetch_list = None
326
        self._data_loader = data_loader
327

328
        self._out_scale_op_list = utils._out_scale_op_list
329 330
        self._quantized_weight_var_name = set()
        self._quantized_act_var_name = set()
331
        self._weight_op_pairs = {}
X
XGZhang 已提交
332
        # The vars for alog = KL or hist
333 334
        self._sampling_act_abs_min_max = {}
        self._sampling_act_histogram = {}
335
        self._sampling_data = {}
X
XGZhang 已提交
336
        self._quantized_var_threshold = {}
337 338
        self._histogram_bins = 2048
        # The vars for algo = min_max
339 340
        self._quantized_var_min = {}
        self._quantized_var_max = {}
X
XGZhang 已提交
341 342 343
        # The vars for algo = avg
        self._quantized_var_avg = {}
        # The best loss of algo = mse
344
        self._best_calibration_loss = {}
X
XGZhang 已提交
345 346
        # The threshold for algo = abs_max, mse or avg
        self._quantized_threshold = {}
347 348 349

    def quantize(self):
        '''
350 351 352
        Load the FP32 model, and use the calibrate data to calculate the forward-stage.
        Based on the sample data, we can get the quantization information, and obtain
        the final quantized model.
353 354 355 356

        Args:
            None
        Returns:
357 358
            the program of quantized model.
        '''
359
        self._load_model_data()
360
        self._collect_target_varnames()
361
        self._set_activation_persistable()
362

X
XGZhang 已提交
363
        if self._algo in ["KL", "hist"]:
364
            batch_id = 0
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
            with tqdm(
                    total=self._batch_nums,
                    bar_format='Preparation stage, Run batch:|{bar}| {n_fmt}/{total_fmt}',
                    ncols=80) as t:
                for data in self._data_loader():
                    self._executor.run(program=self._program,
                                       feed=data,
                                       fetch_list=self._fetch_list,
                                       return_numpy=False,
                                       scope=self._scope)
                    self._collect_activation_abs_min_max()
                    batch_id += 1
                    t.update()
                    if self._batch_nums and batch_id >= self._batch_nums:
                        break
            self._init_sampling_act_histogram()

        batch_id = 0
        with tqdm(
                total=self._batch_nums,
                bar_format='Sampling stage, Run batch:|{bar}| {n_fmt}/{total_fmt}',
                ncols=80) as t:
387 388 389 390 391 392
            for data in self._data_loader():
                self._executor.run(program=self._program,
                                   feed=data,
                                   fetch_list=self._fetch_list,
                                   return_numpy=False,
                                   scope=self._scope)
393
                self._sampling()
394
                batch_id += 1
395
                t.update()
396 397
                if self._batch_nums and batch_id >= self._batch_nums:
                    break
398

X
XGZhang 已提交
399 400 401 402 403 404
        if self._algo == 'avg':
            for var_name in self._quantized_act_var_name:
                self._quantized_threshold[var_name] = \
                np.array(self._quantized_var_avg[var_name]).mean()
        if self._algo in ["KL", "hist"]:
            self._calculate_kl_hist_threshold()
405 406 407 408 409 410 411

        if self._round_type == 'adaround':
            self._adaround_apply()

        self._reset_activation_persistable()

        if self._algo is 'min_max':
412
            self._save_input_threhold()
413 414 415 416 417 418
        else:
            self._update_program()

        # save out_threshold for quantized ops.
        if not self._onnx_format:
            self._save_output_threshold()
419

420 421 422 423
        if any(op_type in self._quantizable_op_type
               for op_type in self._dynamic_quantize_op_type):
            self._collect_dynamic_quantize_op_threshold(
                self._dynamic_quantize_op_type)
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440

        # Move sub blocks persistable var to global block
        global_block = self._program.global_block()
        for _op in global_block.ops:
            if _op.type == "while":
                _block_id = _op.attr("sub_block").id
                _block = self._program.block(_block_id)
                persistables = []
                for _name, _var in _block.vars.items():
                    if _var.persistable:
                        global_block._clone_variable(_var)
                        persistables.append(_name)
                for _name in persistables:
                    _block._remove_var(_name)
                persistables.extend(_op.input('X'))
                _op.desc.set_input("X", persistables)

441 442
        return self._program

443
    def _adaround_apply(self):
444
        assert self._algo != "min_max", "The algo should not be min_max."
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
        if self._algo in ["KL", "hist"]:
            scale_dict = self._quantized_var_threshold
        else:
            scale_dict = self._quantized_threshold
        run_adaround(
            self._data_loader,
            self._program,
            self._fetch_list,
            self._executor,
            self._scope,
            self._place,
            self._quantized_op_pairs,
            self._weight_op_pairs,
            scale_dict,
            num_iterations=self._batch_nums,
            lr=self._learning_rate)

462 463 464 465
    def save_quantized_model(self,
                             save_model_path,
                             model_filename=None,
                             params_filename=None):
466 467 468 469
        '''
        Save the quantized model to the disk.

        Args:
470 471 472 473 474 475 476
            save_model_path(str): The path to save the quantized model.
            model_filename(str, optional): If the model_filename is None,
                save the model to '__model__'. Otherwise, save the model
                to the specified filename. Default: None.
            params_filename(str, optional): If the params_filename is None,
                save params to separted files. Otherwise, save all params
                to the specified filename.
477
        Returns:
478 479
            None
        '''
480
        clip_extra = True if self._onnx_format else False
481 482
        io.save_inference_model(
            dirname=save_model_path,
483 484
            model_filename=model_filename,
            params_filename=params_filename,
485 486 487
            feeded_var_names=self._feed_list,
            target_vars=self._fetch_list,
            executor=self._executor,
488 489
            main_program=self._program,
            clip_extra=clip_extra)
490
        _logger.info("The quantized model is saved in " + save_model_path)
491

492
    def _load_model_data(self):
493
        '''
494
        Load model and set data loader.
495
        '''
496
        _logger.info("Load model and set data loader ...")
497
        [self._program, self._feed_list, self._fetch_list] = \
498 499 500 501
            io.load_inference_model(dirname=self._model_dir,
                                    executor=self._executor,
                                    model_filename=self._model_filename,
                                    params_filename=self._params_filename)
502 503 504 505

        if self._optimize_model:
            self._optimize_fp32_model()

506 507
        feed_vars = [framework._get_var(str(var_name), self._program) \
            for var_name in self._feed_list]
508 509 510

        if self._data_loader is not None:
            return
511 512
        self._data_loader = io.DataLoader.from_generator(
            feed_list=feed_vars, capacity=3 * self._batch_size, iterable=True)
513 514 515 516 517 518 519 520 521 522
        if self._sample_generator is not None:
            self._data_loader.set_sample_generator(
                self._sample_generator,
                batch_size=self._batch_size,
                drop_last=True,
                places=self._place)
        elif self._batch_generator is not None:
            self._data_loader.set_batch_generator(
                self._batch_generator, places=self._place)

523 524 525 526 527 528 529 530
    def _optimize_fp32_model(self):
        '''
        Fuse the `conv2d/depthwise_conv2d + bn` in FP32 model.
        '''
        _logger.info("Optimize FP32 model ...")
        graph = IrGraph(core.Graph(self._program.desc), for_test=True)
        graph = _remove_ctrl_vars(graph)
        graph = _apply_pass(self._scope, graph, 'conv_bn_fuse_pass')
531 532
        graph = _apply_pass(self._scope, graph, 'depthwise_conv_bn_fuse_pass')
        graph = _apply_pass(self._scope, graph, 'conv_transpose_bn_fuse_pass')
533 534 535 536
        graph = _apply_pass(self._scope, graph, 'conv_eltwiseadd_bn_fuse_pass')
        graph = _apply_pass(self._scope, graph,
                            'depthwise_conv_eltwiseadd_bn_fuse_pass')

537 538
        self._program = graph.to_program()

539
    def _collect_target_varnames(self):
540 541 542 543
        '''
        Collect the variable names for sampling, and set activation
        variables to be persistable.
        '''
544
        # TODO(juncaipeng), consider the name_scope of skip_quant
545
        _logger.info("Collect quantized variable names ...")
546
        self._quantized_op_pairs = {}
547

548
        def collect_var_name(var_name_list, persistable_var_names, op_type):
549 550 551
            for var_name in var_name_list:
                if var_name in persistable_var_names:
                    self._quantized_weight_var_name.add(var_name)
552
                    self._weight_op_pairs[var_name] = op_type
553 554 555
                else:
                    self._quantized_act_var_name.add(var_name)

556
        persistable_var_names = _all_persistable_var_names(self._program)
557 558
        for block_id in range(len(self._program.blocks)):
            for op in self._program.blocks[block_id].ops:
559 560 561 562 563 564
                # skip quant form self._skip_tensor_list
                if self._skip_tensor_list is not None:
                    for inp_name in utils._get_op_input_var_names(op):
                        if inp_name in self._skip_tensor_list:
                            op._set_attr("op_namescope", "skip_quant")

565 566 567 568 569 570 571 572
                op_type = op.type
                if self._is_full_quantize and \
                    op_type not in self._quantizable_op_type:
                    _logger.warning(op_type +
                                    " is not supported for quantization.")
                # For quantized ops, sample inputs and outputs
                if op_type in self._quantizable_op_type:
                    collect_var_name(
573 574
                        utils._get_op_input_var_names(op),
                        persistable_var_names, op_type)
575
                    collect_var_name(
576 577
                        utils._get_op_output_var_names(op),
                        persistable_var_names, op_type)
578
                    # collect quanted op output var name
579 580
                    for out_var_name in utils._get_op_output_var_names(op):
                        for in_var_name in utils._get_op_input_var_names(op):
581 582 583
                            if in_var_name in persistable_var_names:
                                self._quantized_op_pairs[
                                    in_var_name] = out_var_name
584 585 586
                # For other op, only sample output scale
                elif op_type in self._out_scale_op_list:
                    collect_var_name(
587 588
                        utils._get_op_output_var_names(op),
                        persistable_var_names, op_type)
589 590 591 592 593 594

    def _set_activation_persistable(self):
        '''
        Set activation variables to be persistable, so can obtain 
        the tensor data in sample_data
        '''
595 596 597 598
        for var in self._program.list_vars():
            if var.name in self._quantized_act_var_name:
                var.persistable = True

599 600 601 602
    def _reset_activation_persistable(self):
        '''
        Reset activations to be not persistable.
        '''
603
        to_erase = []
604 605 606
        for var in self._program.list_vars():
            if var.name in self._quantized_act_var_name:
                var.persistable = False
607 608
                to_erase.append(var.name)
        self._scope.erase(to_erase)
609

610
    def _sampling(self):
611
        '''
612
        Sample the min/max, abs_max or histogram in every iterations.
613 614
        '''
        if self._algo == "abs_max":
615
            self._sample_abs_max()
X
XGZhang 已提交
616 617
        elif self._algo == "avg":
            self._sample_avg()
618
        elif self._algo == "min_max":
619
            self._sample_min_max()
X
XGZhang 已提交
620 621
        elif self._algo == "mse":
            self._sample_mse()
622 623
        elif self._algo == "emd":
            self._sample_emd()
X
XGZhang 已提交
624
        elif self._algo in ["KL", "hist"]:
625
            self._sample_histogram()
626

X
XGZhang 已提交
627 628 629
    def _sample_mse(self):
        if self._quantized_threshold == {}:
            for var_name in self._quantized_weight_var_name:
630
                var_tensor = utils.load_variable_data(self._scope, var_name)
X
XGZhang 已提交
631 632 633 634 635
                if self._weight_quantize_type == "abs_max":
                    abs_max_value = float(np.max(np.abs(var_tensor)))
                elif self._weight_quantize_type == "channel_wise_abs_max":
                    abs_max_value = []
                    if self._weight_op_pairs[
636
                            var_name] in utils._channelwise_quant_axis1_ops:
X
XGZhang 已提交
637 638 639 640 641 642 643 644 645 646
                        for i in range(var_tensor.shape[1]):
                            abs_max_value.append(
                                float(np.max(np.abs(var_tensor[:, i]))))
                    else:
                        for i in range(var_tensor.shape[0]):
                            abs_max_value.append(
                                float(np.max(np.abs(var_tensor[i]))))
                self._quantized_threshold[var_name] = abs_max_value
        _logger.info("MSE searching stage ...")
        for var_name in self._quantized_act_var_name:
647
            var_tensor = utils.load_variable_data(self._scope, var_name)
X
XGZhang 已提交
648 649
            var_tensor = var_tensor.flatten()
            abs_max_value = float(np.max(np.abs(var_tensor)))
X
XGZhang 已提交
650
            abs_max_value = 1e-8 if abs_max_value == 0.0 else abs_max_value
X
XGZhang 已提交
651
            s = 0.3
652 653
            if var_name not in self._best_calibration_loss:
                self._best_calibration_loss[var_name] = float('inf')
X
XGZhang 已提交
654 655 656 657 658 659 660 661
            while s <= 1.0:
                scale = s * abs_max_value
                s += 0.02
                bins = 2**(self._activation_bits - 1) - 1
                quant_dequant_var = np.round(
                    np.clip(var_tensor, 0.0, scale) / scale *
                    bins) / bins * scale
                mse_loss = ((var_tensor - quant_dequant_var)**2).mean()
662 663 664 665 666 667 668
                if mse_loss <= self._best_calibration_loss[var_name]:
                    self._best_calibration_loss[var_name] = mse_loss
                    self._quantized_threshold[var_name] = scale

    def _sample_emd(self):
        if self._quantized_threshold == {}:
            for var_name in self._quantized_weight_var_name:
669
                var_tensor = utils.load_variable_data(self._scope, var_name)
670 671 672 673 674
                if self._weight_quantize_type == "abs_max":
                    abs_max_value = float(np.max(np.abs(var_tensor)))
                elif self._weight_quantize_type == "channel_wise_abs_max":
                    abs_max_value = []
                    if self._weight_op_pairs[
675
                            var_name] in utils._channelwise_quant_axis1_ops:
676 677 678 679 680 681 682 683 684 685
                        for i in range(var_tensor.shape[1]):
                            abs_max_value.append(
                                float(np.max(np.abs(var_tensor[:, i]))))
                    else:
                        for i in range(var_tensor.shape[0]):
                            abs_max_value.append(
                                float(np.max(np.abs(var_tensor[i]))))
                self._quantized_threshold[var_name] = abs_max_value
        _logger.info("EMD searching stage ...")
        for var_name in self._quantized_act_var_name:
686
            var_tensor = utils.load_variable_data(self._scope, var_name)
687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704
            var_tensor = var_tensor.flatten()
            abs_max_value = float(np.max(np.abs(var_tensor)))
            abs_max_value = 1e-8 if abs_max_value == 0.0 else abs_max_value
            s = 0.3
            if var_name not in self._best_calibration_loss:
                self._best_calibration_loss[var_name] = float('inf')
            while s <= 1.0:
                scale = s * abs_max_value
                s += 0.02
                bins = 2**(self._activation_bits - 1) - 1
                quant_dequant_var = np.round(
                    np.clip(var_tensor, 0.0, scale) / scale *
                    bins) / bins * scale
                emd_loss = np.abs(
                    np.mean(var_tensor) - np.mean(quant_dequant_var)) + np.abs(
                        np.std(var_tensor) - np.std(quant_dequant_var))
                if emd_loss <= self._best_calibration_loss[var_name]:
                    self._best_calibration_loss[var_name] = emd_loss
X
XGZhang 已提交
705 706 707 708 709
                    self._quantized_threshold[var_name] = scale

    def _sample_avg(self):
        if self._quantized_threshold == {}:
            for var_name in self._quantized_weight_var_name:
710
                var_tensor = utils.load_variable_data(self._scope, var_name)
X
XGZhang 已提交
711 712 713 714 715
                if self._weight_quantize_type == "abs_max":
                    abs_max_value = float(np.max(np.abs(var_tensor)))
                elif self._weight_quantize_type == "channel_wise_abs_max":
                    abs_max_value = []
                    if self._weight_op_pairs[
716
                            var_name] in utils._channelwise_quant_axis1_ops:
X
XGZhang 已提交
717 718 719 720 721 722 723 724 725 726
                        for i in range(var_tensor.shape[1]):
                            abs_max_value.append(
                                float(np.max(np.abs(var_tensor[:, i]))))
                    else:
                        for i in range(var_tensor.shape[0]):
                            abs_max_value.append(
                                float(np.max(np.abs(var_tensor[i]))))
                self._quantized_threshold[var_name] = abs_max_value

        for var_name in self._quantized_act_var_name:
727
            var_tensor = utils.load_variable_data(self._scope, var_name)
X
XGZhang 已提交
728 729 730 731 732 733 734 735
            abs_max_value = float(np.max(np.abs(var_tensor)))
            if (var_name not in self._quantized_var_avg):
                self._quantized_var_avg[var_name] = []
            abs_avg_value = float(np.mean(np.max(  \
            np.abs(var_tensor.reshape(var_tensor.shape[0], -1)), axis=(1))))
            self._quantized_var_avg[var_name].append(abs_avg_value)
            continue

736
    def _sample_abs_max(self):
X
XGZhang 已提交
737
        if self._quantized_threshold == {}:
738
            for var_name in self._quantized_weight_var_name:
739
                var_tensor = utils.load_variable_data(self._scope, var_name)
740 741 742 743
                if self._weight_quantize_type == "abs_max":
                    abs_max_value = float(np.max(np.abs(var_tensor)))
                elif self._weight_quantize_type == "channel_wise_abs_max":
                    abs_max_value = []
744
                    if self._weight_op_pairs[
745
                            var_name] in utils._channelwise_quant_axis1_ops:
746 747 748 749 750 751 752
                        for i in range(var_tensor.shape[1]):
                            abs_max_value.append(
                                float(np.max(np.abs(var_tensor[:, i]))))
                    else:
                        for i in range(var_tensor.shape[0]):
                            abs_max_value.append(
                                float(np.max(np.abs(var_tensor[i]))))
X
XGZhang 已提交
753
                self._quantized_threshold[var_name] = abs_max_value
754 755

        for var_name in self._quantized_act_var_name:
756
            var_tensor = utils.load_variable_data(self._scope, var_name)
757
            abs_max_value = float(np.max(np.abs(var_tensor)))
X
XGZhang 已提交
758 759 760
            if (var_name not in self._quantized_threshold) or \
                (abs_max_value > self._quantized_threshold[var_name]):
                self._quantized_threshold[var_name] = abs_max_value
761

762
    def _sample_min_max(self):
763 764
        if self._quantized_var_min == {} and self._quantized_var_max == {}:
            for var_name in self._quantized_weight_var_name:
765
                var_tensor = utils.load_variable_data(self._scope, var_name)
766 767 768 769 770 771
                if self._weight_quantize_type == "abs_max":
                    min_value = float(np.min(var_tensor))
                    max_value = float(np.max(var_tensor))
                elif self._weight_quantize_type == "channel_wise_abs_max":
                    min_value = []
                    max_value = []
772
                    if self._weight_op_pairs[
773
                            var_name] in utils._channelwise_quant_axis1_ops:
774 775 776 777 778 779 780 781 782 783 784
                        for i in range(var_tensor.shape[1]):
                            min_value.append(float(np.min(var_tensor[:, i])))
                            max_value.append(float(np.max(var_tensor[:, i])))
                    else:
                        for i in range(var_tensor.shape[0]):
                            min_value.append(float(np.min(var_tensor[i])))
                            max_value.append(float(np.max(var_tensor[i])))
                self._quantized_var_min[var_name] = min_value
                self._quantized_var_max[var_name] = max_value

        for var_name in self._quantized_act_var_name:
785
            var_tensor = utils.load_variable_data(self._scope, var_name)
786 787 788 789 790 791 792 793
            min_value = float(np.min(var_tensor))
            max_value = float(np.max(var_tensor))
            if (var_name not in self._quantized_var_min) or \
                (min_value < self._quantized_var_min[var_name]):
                self._quantized_var_min[var_name] = min_value
            if (var_name not in self._quantized_var_max) or \
                (max_value > self._quantized_var_max[var_name]):
                self._quantized_var_max[var_name] = max_value
794

795 796
    def _sample_histogram(self):
        for var_name in self._quantized_act_var_name:
797
            var_tensor = utils.load_variable_data(self._scope, var_name)
798 799 800 801 802
            var_tensor_abs = np.abs(var_tensor)
            bins = self._sampling_act_histogram[var_name][1]
            hist, _ = np.histogram(var_tensor_abs, bins=bins)
            self._sampling_act_histogram[var_name][0] += hist

803 804 805 806 807 808
    def _save_input_threhold(self):
        '''
        Save input threshold to the quantized op.
        '''
        assert self._algo == "min_max", \
            "The algo should be min_max to save input threshold."
809 810 811
        for block_id in range(len(self._program.blocks)):
            for op in self._program.blocks[block_id].ops:
                if op.type in self._quantizable_op_type:
812
                    for var_name in utils._get_op_input_var_names(op):
813 814 815 816 817 818 819
                        assert var_name in self._quantized_var_min
                        assert var_name in self._quantized_var_max
                        op._set_attr(var_name + ".min",
                                     self._quantized_var_min[var_name])
                        op._set_attr(var_name + ".max",
                                     self._quantized_var_max[var_name])
                        op._set_attr("with_quant_attr", True)
820

821
    def _collect_activation_abs_min_max(self):
822
        '''
823 824
        Collect the abs_min and abs_max for all activation. When algo = KL,
        get the min and max value, and then calculate the threshold.
825
        '''
826
        for var_name in self._quantized_act_var_name:
827
            var_tensor = utils.load_variable_data(self._scope, var_name)
828 829 830 831
            var_tensor = np.abs(var_tensor)
            min_value = float(np.min(var_tensor))
            max_value = float(np.max(var_tensor))
            if var_name not in self._sampling_act_abs_min_max:
832 833 834
                self._sampling_act_abs_min_max[var_name] = [
                    min_value, max_value
                ]
835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851
            else:
                if min_value < self._sampling_act_abs_min_max[var_name][0]:
                    self._sampling_act_abs_min_max[var_name][0] = min_value
                if max_value > self._sampling_act_abs_min_max[var_name][1]:
                    self._sampling_act_abs_min_max[var_name][1] = max_value

    def _init_sampling_act_histogram(self):
        '''
        Based on the min/max value, init the sampling_act_histogram.
        '''
        for var_name in self._quantized_act_var_name:
            if var_name not in self._sampling_act_histogram:
                min_val = self._sampling_act_abs_min_max[var_name][0]
                max_val = self._sampling_act_abs_min_max[var_name][1]
                hist, hist_edeges = np.histogram(
                    [], bins=self._histogram_bins, range=(min_val, max_val))
                self._sampling_act_histogram[var_name] = [hist, hist_edeges]
852

X
XGZhang 已提交
853
    def _calculate_kl_hist_threshold(self):
854
        '''
X
XGZhang 已提交
855
        Calculate the KL or hist threshold of quantized variables.
856
        '''
X
XGZhang 已提交
857 858
        _logger.info("Calculate {} threshold ...".format(self._algo))
        assert self._algo in ["KL", "hist"], "The algo should be KL or hist."
859 860

        # Abs_max threshold for weights
861
        for var_name in self._quantized_weight_var_name:
862
            weight_data = utils.load_variable_data(self._scope, var_name)
863
            if self._weight_quantize_type == "abs_max":
864
                weight_threshold = float(np.max(np.abs(weight_data)))
865 866
            elif self._weight_quantize_type == "channel_wise_abs_max":
                weight_threshold = []
867
                if self._weight_op_pairs[
868
                        var_name] in utils._channelwise_quant_axis1_ops:
869 870 871 872 873 874 875
                    for i in range(weight_data.shape[1]):
                        weight_threshold.append(
                            float(np.max(np.abs(weight_data[:, i]))))
                else:
                    for i in range(weight_data.shape[0]):
                        weight_threshold.append(
                            float(np.max(np.abs(weight_data[i]))))
X
XGZhang 已提交
876
            self._quantized_var_threshold[var_name] = weight_threshold
877

878 879
        for var_name in self._quantized_act_var_name:
            hist, hist_edeges = self._sampling_act_histogram[var_name]
X
XGZhang 已提交
880
            if self._algo == "KL":
881
                bin_width = hist_edeges[1] - hist_edeges[0]
X
XGZhang 已提交
882
                self._quantized_var_threshold[var_name] = \
883
                    cal_kl_threshold(hist, bin_width, self._activation_bits)
X
XGZhang 已提交
884 885 886
            elif self._algo == "hist":
                self._quantized_var_threshold[var_name] = \
                    self._get_hist_scaling_factor(hist, hist_edeges)
887 888 889

    def _update_program(self):
        '''
890 891
        Use QuantizationTransformPass and AddQuantDequantPass to insert 
        fake_quantize, fake_dequantize and fake_quant_dequant op. 
X
XGZhang 已提交
892
        Besides, save all threshold to the scale var node.
893
        '''
894
        _logger.info("Update the program ...")
895 896
        graph = IrGraph(core.Graph(self._program.desc), for_test=True)

897
        # use QuantizationTransformPass to insert fake_quant/fake_dequantize op
898
        major_quantizable_op_types = []
899
        for op_type in utils._weight_supported_quantizable_op_type:
900
            if op_type in self._quantizable_op_type:
901
                major_quantizable_op_types.append(op_type)
902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919
        if not self._onnx_format:
            transform_pass = QuantizationTransformPass(
                scope=self._scope,
                place=self._place,
                weight_bits=self._weight_bits,
                activation_bits=self._activation_bits,
                activation_quantize_type=self._activation_quantize_type,
                weight_quantize_type=self._weight_quantize_type,
                quantizable_op_type=major_quantizable_op_types)
        else:
            transform_pass = QuantizationTransformPassV2(
                scope=self._scope,
                place=self._place,
                weight_bits=self._weight_bits,
                activation_bits=self._activation_bits,
                activation_quantize_type=self._activation_quantize_type,
                weight_quantize_type=self._weight_quantize_type,
                quantizable_op_type=major_quantizable_op_types)
920 921 922 923 924 925

        for sub_graph in graph.all_sub_graphs():
            # Insert fake_quant/fake_dequantize op must in test graph, so
            # set per graph's _for_test is True.
            sub_graph._for_test = True
            transform_pass.apply(sub_graph)
926 927

        # use AddQuantDequantPass to insert fake_quant_dequant op
928
        minor_quantizable_op_types = []
929
        for op_type in utils._act_supported_quantizable_op_type:
930
            if op_type in self._quantizable_op_type:
931
                minor_quantizable_op_types.append(op_type)
932 933 934 935 936 937 938 939 940 941 942
        if not self._onnx_format:
            add_quant_dequant_pass = AddQuantDequantPass(
                scope=self._scope,
                place=self._place,
                quantizable_op_type=minor_quantizable_op_types)
        else:
            add_quant_dequant_pass = AddQuantDequantPassV2(
                scope=self._scope,
                place=self._place,
                quantizable_op_type=minor_quantizable_op_types,
                is_full_quantized=self._is_full_quantize)
943 944 945 946

        for sub_graph in graph.all_sub_graphs():
            sub_graph._for_test = True
            add_quant_dequant_pass.apply(sub_graph)
947

X
XGZhang 已提交
948 949 950
        # save threshold to scale var node
        if self._algo in ["KL", "hist"]:
            scale_dict = self._quantized_var_threshold
951
        else:
X
XGZhang 已提交
952
            scale_dict = self._quantized_threshold
953
        for key, val in scale_dict.items():
954
            utils.set_variable_data(
955 956 957 958
                self._scope,
                self._place,
                key + ".scale",
                np.array(
959
                    [val], dtype=np.float32))
960
            utils.set_variable_data(
961 962 963 964
                self._scope,
                self._place,
                key + ".quant_dequant.scale",
                np.array(
965 966
                    [val], dtype=np.float32))

967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986
        if not self._onnx_format:
            # apply QuantizationFreezePass, and obtain the final quant model
            freeze_pass = QuantizationFreezePass(
                scope=self._scope,
                place=self._place,
                bias_correction=self._bias_correction,
                weight_bits=self._weight_bits,
                round_type=self._round_type,
                activation_bits=self._activation_bits,
                weight_quantize_type=self._weight_quantize_type,
                quantizable_op_type=major_quantizable_op_types)

            for sub_graph in graph.all_sub_graphs():
                sub_graph._for_test = True
                freeze_pass.apply(sub_graph)
        else:
            quant_weight_pass = QuantWeightPass(self._scope, self._place)
            for sub_graph in graph.all_sub_graphs():
                sub_graph._for_test = True
                quant_weight_pass.apply(sub_graph)
987

988 989
        self._program = graph.to_program()

990
    def _save_output_threshold(self):
991
        '''
992
        Save output threshold to the quantized op.
993
        '''
994 995 996 997 998 999 1000

        def save_info(op_node, out_var_name, threshold_map, out_info_name,
                      quantized_type):
            assert out_var_name in threshold_map, \
                "The output ({}) of {} node does not have threshold.".format(
                out_var_name, op_node.type)
            op_node._set_attr(out_info_name, threshold_map[var_name])
1001
            op_node._set_attr("with_quant_attr", True)
1002 1003 1004 1005
            if op_node.type in self._quantizable_op_type:
                op._set_attr("quantization_type", quantized_type)

        def analysis_and_save_info(op_node, out_var_name):
1006
            argname_index = utils._get_output_name_index(op_node, out_var_name)
1007 1008
            assert argname_index is not None, \
                out_var_name + " is not the output of the op"
1009
            if self._algo == "KL":
1010
                # For compatibility, we save output threshold by two methods.
X
XGZhang 已提交
1011 1012
                save_info(op_node, out_var_name, self._quantized_var_threshold,
                          "out_threshold", "post_kl")
1013
                save_info(
X
XGZhang 已提交
1014
                    op_node, out_var_name, self._quantized_var_threshold,
1015 1016
                    argname_index[0] + str(argname_index[1]) + "_threshold",
                    "post_kl")
X
XGZhang 已提交
1017 1018 1019 1020
            elif self._algo == "hist":
                # For compatibility, we save output threshold by two methods.
                save_info(op_node, out_var_name, self._quantized_var_threshold,
                          "out_threshold", "post_hist")
1021
                save_info(
X
XGZhang 已提交
1022
                    op_node, out_var_name, self._quantized_var_threshold,
1023
                    argname_index[0] + str(argname_index[1]) + "_threshold",
X
XGZhang 已提交
1024 1025
                    "post_hist")

1026
            elif self._algo in ["avg", "abs_max", "mse", "emd"]:
X
XGZhang 已提交
1027 1028 1029 1030 1031 1032
                save_info(op_node, out_var_name, self._quantized_threshold,
                          "out_threshold", "post_" + str(self._algo))
                save_info(
                    op_node, out_var_name, self._quantized_threshold,
                    argname_index[0] + str(argname_index[1]) + "_threshold",
                    "post_" + str(self._algo))
1033 1034 1035 1036 1037 1038
            elif self._algo == "min_max":
                save_info(op_node, out_var_name, self._quantized_var_min,
                          "out_min", "post_min_max")
                save_info(op_node, out_var_name, self._quantized_var_max,
                          "out_max", "post_min_max")

1039 1040 1041 1042
        for block_id in range(len(self._program.blocks)):
            for op in self._program.blocks[block_id].ops:
                if op.type in (
                        self._quantizable_op_type + self._out_scale_op_list):
1043
                    out_var_names = utils._get_op_output_var_names(op)
1044 1045
                    for var_name in out_var_names:
                        analysis_and_save_info(op, var_name)
1046

1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
    def _collect_dynamic_quantize_op_threshold(self, target_ops_type):
        """
        Collect and save the weight threshold for dynamic quantize ops,
        such as lstm and gru.
        Args:
            target_ops_type(list): the op type of target ops
        Returns:
            None
        """

        target_ops = []
        for index in range(self._program.num_blocks):
            for op in self._program.block(index).ops:
                if op.type in target_ops_type:
                    target_ops.append(op)

        quantization_type = str("post_" + self._algo).lower()
        persistable_var_names = _all_persistable_var_names(self._program)
        for op in target_ops:
1066
            for var_name in utils._get_op_input_var_names(op):
1067
                if var_name in persistable_var_names:
1068
                    var_data = utils.load_variable_data(self._scope, var_name)
1069
                    threshold = float(np.max(np.abs(var_data)))
1070
                    argname, index = utils._get_input_name_index(op, var_name)
1071 1072 1073
                    op._set_attr(argname + str(index) + "_threshold", threshold)
                    op._set_attr("quantization_type", quantization_type)
                    op._set_attr("bit_length", self._weight_bits)
1074
                    op._set_attr("with_quant_attr", True)
1075

X
XGZhang 已提交
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
    def _get_hist_scaling_factor(self, hist, hist_edges):
        '''
        Using the hist method to get the scaling factor.
        '''
        threshold_rate = self._hist_percent
        hist = hist / float(sum(hist))
        hist_sum = 0
        hist_index = 0
        for i in range(len(hist)):
            hist_sum += hist[i]
            if hist_sum >= threshold_rate:
                hist_index = i + 1
                break
        bin_width = hist_edges[1] - hist_edges[0]
        return (hist_index - 0.5) * bin_width

1092 1093 1094

class WeightQuantization(object):
    _supported_quantizable_op_type = ['conv2d', 'depthwise_conv2d', 'mul']
1095
    _supported_weight_quantize_type = ['channel_wise_abs_max', 'abs_max']
1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121

    def __init__(self, model_dir, model_filename=None, params_filename=None):
        '''
        This class quantizes the weight of some ops to reduce the size of model
        or improve the perforemace.

        Args:
            model_dir(str): The path of the fp32 model that will be quantized,
                and the model and params files are under the path.
            model_filename(str, optional): The name of file to load the inference
                program. If it is None, the default filename '__model__' will
                be used. Default is 'None'.
            params_filename(str, optional): The name of file to load all parameters.
                When all parameters were saved in a single binary file, set it
                as the real filename. If parameters were saved in separate files,
                set it as 'None'. Default is 'None'.
        '''
        self._model_dir = model_dir
        self._model_filename = model_filename
        self._params_filename = params_filename

    def quantize_weight_to_int(self,
                               save_model_dir,
                               save_model_filename=None,
                               save_params_filename=None,
                               quantizable_op_type=["conv2d", "mul"],
1122
                               weight_bits=8,
1123 1124
                               weight_quantize_type="channel_wise_abs_max",
                               generate_test_model=False,
1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
                               threshold_rate=0.0):
        '''
        In order to reduce the size of model, this api quantizes the weight
        of some ops from float32 to int8/16. In the inference stage, the 
        quantized weight will be dequantized to float32 again.
        
        Args:
            save_model_dir(str): The path to save the quantized model.
            save_model_filename(str, optional): The name of file to 
                save the inference program. If it is None, the default 
                filename '__model__' will be used. Default is 'None'.
            save_params_filename(str, optional): The name of file to 
                save all parameters. If it is None, parameters were 
                saved in separate files. If it is not None, all 
                parameters were saved in a single binary file.
            quantizable_op_type(list[str], optional): The list of ops 
                that will be quantized, and the quantized ops should be
                contained in ["conv2d", "depthwise_conv2d", "mul"]. 
                Default is ["conv2d","mul"].
1144 1145
            weight_bits(int, optional): The bits for the quantized weight, 
                and it should be 8 or 16. Default is 8.
1146 1147 1148 1149 1150 1151 1152
            weight_quantize_type(str, optional): quantization type for weights,
                support 'channel_wise_abs_max' and 'abs_max'. Set it as
                'channel_wise_abs_max', the accuracy performs better.
            generate_test_model(bool, optional): If set generate_test_model 
                as True, it saves a fake quantized model, in which the weights 
                are quantized and dequantized. We can use PaddlePaddle to load 
                the fake quantized model and test the accuracy on GPU or CPU.
1153 1154 1155 1156 1157 1158 1159 1160 1161
            threshold_rate(float, optional): This api uses abs_max methd to 
                quantize the weight from float32 to int8/16, and the abs max 
                value is important for quantization diff. When the abs_max 
                value is far away from the center of the numerical distribution, 
                we can set threshold_rate between 1e-6 and 1e-8, so the abs max 
                value will be optimized. Default is 0.0.
        '''
        for op_type in quantizable_op_type:
            assert op_type in self._supported_quantizable_op_type, \
1162
                "Input error:" + op_type + \
1163
                " is not supported for weight quantization."
1164
        assert weight_bits in [8, 16], \
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
            "Input error: weight_bits should be 8 or 16."
        assert weight_quantize_type in self._supported_weight_quantize_type, \
            "Input error: weight_quantize_type should in {}".format(
                self._supported_weight_quantize_type)

        quantized_model_dir = os.path.join(save_model_dir, "quantized_model")
        self._quantize_weight_to_int(quantized_model_dir, save_model_filename,
                                     save_params_filename, quantizable_op_type,
                                     weight_bits, weight_quantize_type, False,
                                     threshold_rate)

        if generate_test_model:
            test_model_dir = os.path.join(save_model_dir, "test_model")
            self._quantize_weight_to_int(
                test_model_dir, save_model_filename, save_params_filename,
                quantizable_op_type, weight_bits, weight_quantize_type, True,
                threshold_rate)

1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
    def convert_weight_to_fp16(self, save_model_dir):
        """
        Convert all presistable vars from fp32 to fp16.
        Note that, this api only changes the data type of variables in
        __params__ file, and the __model__ file remains unchanged. 

        Args:
            save_model_dir(str): The path to save the fp16 model.
        """

        # Load model
        place = core.CPUPlace()
        exe = Executor(place)
        scope = global_scope()
        [infer_program, feed_list, fetch_list] = \
            io.load_inference_model(dirname=self._model_dir,
                                    executor=exe,
                                    model_filename=self._model_filename,
                                    params_filename=self._params_filename)

        # Clone and save fp16 weights
        save_program = framework.Program()
        save_block = save_program.global_block()
        save_var_map = {}

        for var in infer_program.list_vars():
            if (var.type == core.VarDesc.VarType.RAW) or \
                (not var.persistable) or (var.name in ['feed', 'fetch']) \
                or (var.dtype != core.VarDesc.VarType.FP32):
                continue

            #new_var = _clone_var_to_block_(var, save_block)
            new_var = save_block._clone_variable(var)
            if self._params_filename is not None:
                save_var_map[new_var.name] = new_var
            else:
                save_file_path = os.path.join(
                    os.path.normpath(save_model_dir), new_var.name)
                save_block.append_op(
                    type='save',
                    inputs={'X': [new_var]},
                    outputs={},
                    attrs={
                        'file_path': os.path.normpath(save_file_path),
                        'save_as_fp16': True
                    })

        if self._params_filename is not None:
            save_var_list = []
            for name in sorted(save_var_map.keys()):
                save_var_list.append(save_var_map[name])

            saved_params_var = save_block.create_var(
                type=core.VarDesc.VarType.RAW,
                name=unique_name.generate("saved_params"))
            saved_params_var.desc.set_persistable(True)

            save_path = os.path.join(
                os.path.normpath(save_model_dir), self._params_filename)
            save_block.append_op(
                type='save_combine',
                inputs={'X': save_var_list},
                outputs={'Y': saved_params_var},
                attrs={'file_path': save_path,
                       'save_as_fp16': True})

        save_program._sync_with_cpp()
        exe.run(save_program)

        # Copy model
        model_filename = "__model__" if self._model_filename is None \
                    else self._model_filename
        src_model = os.path.join(self._model_dir, model_filename)
        dest_model = os.path.join(save_model_dir, model_filename)
        shutil.copyfile(src_model, dest_model)

1259 1260 1261 1262 1263 1264 1265 1266
    def _quantize_weight_to_int(self, save_model_dir, save_model_filename,
                                save_params_filename, quantizable_op_type,
                                weight_bits, weight_quantize_type, for_test,
                                threshold_rate):
        """
        Generate quantized model or fake quantized model.
        """
        # Load model
1267 1268 1269 1270 1271 1272 1273 1274 1275
        place = core.CPUPlace()
        exe = Executor(place)
        scope = global_scope()
        [program, feed_list, fetch_list] = \
            io.load_inference_model(dirname=self._model_dir,
                                    executor=exe,
                                    model_filename=self._model_filename,
                                    params_filename=self._params_filename)

1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
        quantized_ops = []
        for index in range(program.num_blocks):
            block = program.block(index)
            for op in block.ops:
                if op.type in quantizable_op_type:
                    quantized_ops.append(op)

        # Quantize weights
        persistable_var_names = _all_persistable_var_names(program)
        for op in quantized_ops:
            for var_name in op.input_arg_names:
                if var_name in persistable_var_names:
                    if weight_quantize_type == "abs_max":
                        self._weight_abs_max_quantization(
                            scope, place, weight_bits, threshold_rate, op,
                            var_name, for_test)
                    elif weight_quantize_type == "channel_wise_abs_max":
                        self._weight_channel_wise_abs_max_quantization(
                            scope, place, weight_bits, op, var_name, for_test)
1295 1296 1297 1298 1299 1300 1301 1302 1303 1304

        io.save_inference_model(
            dirname=save_model_dir,
            feeded_var_names=feed_list,
            target_vars=fetch_list,
            executor=exe,
            main_program=program,
            model_filename=save_model_filename,
            params_filename=save_params_filename)

1305 1306 1307 1308 1309 1310 1311 1312 1313
    def _weight_abs_max_quantization(self, scope, place, weight_bits,
                                     threshold_rate, op, var_name, for_test):
        '''
        Use abs_max method to quantize weight.
        '''
        quantize_range = (1 << (weight_bits - 1)) - 1
        save_weight_dtype = np.int8 if weight_bits == 8 else np.int16

        # Get quantized scale and weight data
1314
        weight_data = utils.load_variable_data(scope, var_name)
1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
        if abs(threshold_rate) < 1e-10:
            threshold_value = np.max(np.abs(weight_data))
        else:
            threshold_value = self._calculate_threshold(\
                weight_data, threshold_rate)
            weight_data[weight_data > threshold_value] = threshold_value
            weight_data[weight_data < -threshold_value] = -threshold_value
        scale = threshold_value / quantize_range
        quantized_weight_data = \
            np.around(weight_data / scale).astype(save_weight_dtype)

        # Set weight data
        if not for_test:
1328 1329
            utils.set_variable_data(scope, place, var_name,
                                    quantized_weight_data)
1330 1331 1332
        else:
            dequantized_weight_data = \
                (quantized_weight_data * scale).astype(np.float32)
1333 1334
            utils.set_variable_data(scope, place, var_name,
                                    dequantized_weight_data)
1335 1336 1337 1338 1339

        # Save info
        op._set_attr('quantization_type', 'post_weight_abs_max')
        op._set_attr('quantize_weight_bits', weight_bits)
        op._set_attr(var_name + "_quant_scale", [scale])  # Save as list
1340
        op._set_attr("with_quant_attr", True)
1341 1342 1343 1344 1345 1346 1347 1348 1349 1350

    def _weight_channel_wise_abs_max_quantization(
            self, scope, place, weight_bits, op, var_name, for_test):
        ''' 
        Use channel_wise_abs_max method to quantize weight.
        '''
        quantize_range = (1 << (weight_bits - 1)) - 1
        save_weight_dtype = np.int8 if weight_bits == 8 else np.int16

        # Get quantized scale and weight data
1351
        weight_data = utils.load_variable_data(scope, var_name)
1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
        if op.type == "mul":
            scales, quantized_weight_data = \
                self._mul_channel_wise_quantization(weight_data,
                    quantize_range, save_weight_dtype)
        elif op.type in ["conv2d", "depthwise_conv2d"]:
            scales, quantized_weight_data = \
                self._conv_channel_wise_quantization(weight_data,
                    quantize_range, save_weight_dtype)
        else:
            _logger.error(op.type + " is not supported by weight quantization")

        # Set weight data
        if not for_test:
1365 1366
            utils.set_variable_data(scope, place, var_name,
                                    quantized_weight_data)
1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
        else:
            if op.type == "mul":
                dequantized_weight_data = \
                    self._mul_channel_wise_dequantization(quantized_weight_data, scales)
            elif op.type in ["conv2d", "depthwise_conv2d"]:
                dequantized_weight_data = \
                    self._conv_channel_wise_dequantization(quantized_weight_data, scales)
            else:
                _logger.error(op.type +
                              " is not supported by weight quantization")
1377 1378
            utils.set_variable_data(scope, place, var_name,
                                    dequantized_weight_data)
1379 1380 1381 1382 1383

        # Save info
        op._set_attr('quantization_type', 'post_weight_channel_wise_abs_max')
        op._set_attr('quantize_weight_bits', weight_bits)
        op._set_attr(var_name + "_quant_scale", scales)
1384
        op._set_attr("with_quant_attr", True)
1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441

    def _conv_channel_wise_quantization(self, weight_data, quantize_range,
                                        save_weight_dtype):
        '''
        Get channel wise scale for the weights of conv2d and depthwise_conv2d,
        and quantize the weights.
        '''
        scales = []
        quantized_weight_data = np.zeros_like(
            weight_data, dtype=save_weight_dtype)
        channel_num = weight_data.shape[0]
        for i in range(channel_num):
            scale = np.max(np.abs(weight_data[i])) / quantize_range
            scales.append(scale)
            quantized_weight_data[i] = \
                np.around(weight_data[i] / scale).astype(save_weight_dtype)
        return scales, quantized_weight_data

    def _conv_channel_wise_dequantization(self, quantized_weight_data, scales):
        '''
        For conv2d and depthwise_conv2d, dequantize the weights to fp32.
        '''
        dequantized_weight_data = np.zeros_like(
            quantized_weight_data, dtype=np.float32)
        for i in range(len(scales)):
            dequantized_weight_data[i] = \
                (quantized_weight_data[i] * scales[i]).astype(np.float32)
        return dequantized_weight_data

    def _mul_channel_wise_quantization(self, weight_data, quantize_range,
                                       save_weight_dtype):
        '''
        Get channel wise scale for the weights of conv2d and depthwise_conv2d,
        and quantize the weights.
        '''
        scales = []
        quantized_weight_data = np.zeros_like(
            weight_data, dtype=save_weight_dtype)
        channel_num = weight_data.shape[-1]
        for i in range(channel_num):
            scale = np.max(np.abs(weight_data[:, i])) / quantize_range
            scales.append(scale)
            quantized_weight_data[:, i] = \
                np.around(weight_data[:, i] / scale).astype(save_weight_dtype)
        return scales, quantized_weight_data

    def _mul_channel_wise_dequantization(self, quantized_weight_data, scales):
        '''
        For mul, dequantize the weights to fp32.
        '''
        dequantized_weight_data = np.zeros_like(
            quantized_weight_data, dtype=np.float32)
        for i in range(len(scales)):
            dequantized_weight_data[:, i] = \
                (quantized_weight_data[:, i] * scales[i]).astype(np.float32)
        return dequantized_weight_data

1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
    def _calculate_threshold(self, input, threshold_rate, histogram_bins=5000):
        input_abs = np.abs(input)
        hist, hist_edeges = np.histogram(
            input_abs, bins=histogram_bins, range=(0, np.max(input_abs)))
        hist = hist / float(sum(hist))
        hist_sum = 0
        hist_index = 0
        for i in range(len(hist)):
            hist_sum += hist[i]
            if hist_sum >= 1.0 - threshold_rate:
                hist_index = i + 1
                break
        bin_width = hist_edeges[1] - hist_edeges[0]
        return hist_index * bin_width