logic.py 37.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
# TODO: define logic functions of a tensor

17
import paddle
18

19
from ..common_ops_import import Variable
20 21
from ..fluid.data_feeder import check_type, check_variable_and_dtype
from .layer_function_generator import templatedoc
22

W
wanghuancoder 已提交
23
Tensor = paddle.fluid.framework.core.eager.Tensor
24

25
from paddle import _C_ops
26
from paddle.tensor.creation import full
27

28
from ..framework import LayerHelper, in_dynamic_mode
29

30 31
__all__ = []

32

33
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
34
    if in_dynamic_mode():
35 36 37 38 39
        op = getattr(_C_ops, op_name)
        if binary_op:
            return op(x, y)
        else:
            return op(x)
40
    else:
41
        check_variable_and_dtype(
42 43
            x,
            "x",
44 45 46 47 48 49 50 51 52
            [
                "bool",
                "int8",
                "int16",
                "int32",
                "int64",
                "float16",
                "float32",
                "float64",
53
                "uint16",
54
            ],
55 56
            op_name,
        )
57 58 59 60 61 62 63 64 65 66
        if y is not None:
            check_variable_and_dtype(
                y,
                "y",
                [
                    "bool",
                    "int8",
                    "int16",
                    "int32",
                    "int64",
67
                    "float16",
68 69
                    "float32",
                    "float64",
70
                    "uint16",
71 72 73 74 75
                ],
                op_name,
            )
        if out is not None:
            check_type(out, "out", Variable, op_name)
76

77
        helper = LayerHelper(op_name, **locals())
78

79 80
        if binary_op and x.dtype != y.dtype:
            raise ValueError(
81
                f"(InvalidArgument) The DataType of {op_name} Op's Variable must be consistent, but received {x.dtype} and {y.dtype}."
82
            )
83

84 85
        if out is None:
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
86

87 88 89 90 91 92 93 94
        if binary_op:
            helper.append_op(
                type=op_name, inputs={"X": x, "Y": y}, outputs={"Out": out}
            )
        else:
            helper.append_op(
                type=op_name, inputs={"X": x}, outputs={"Out": out}
            )
95

96
        return out
97 98 99 100 101


def logical_and(x, y, out=None, name=None):
    r"""

102
    Compute element-wise logical AND on ``x`` and ``y``, and return ``out``. ``out`` is N-dim boolean ``Tensor``.
103 104 105 106 107 108
    Each element of ``out`` is calculated by

    .. math::

        out = x \&\& y

109
    Note:
I
Infinity_lee 已提交
110 111 112
        ``paddle.logical_and`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
113 114

    Args:
115 116
        x (Tensor): the input tensor, it's data type should be one of bool, int8, int16, in32, in64, float16, float32, float64.
        y (Tensor): the input tensor, it's data type should be one of bool, int8, int16, in32, in64, float16, float32, float64.
117
        out(Tensor, optional): The ``Tensor`` that specifies the output of the operator, which can be any ``Tensor`` that has been created in the program. The default value is None, and a new ``Tensor`` will be created to save the output.
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. It's dimension equals with ``x``.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([True])
            y = paddle.to_tensor([True, False, True, False])
            res = paddle.logical_and(x, y)
            print(res) # [True False True False]
    """
133
    if in_dynamic_mode():
134
        return _C_ops.logical_and(x, y)
135

136 137 138
    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True
    )
139 140 141 142 143 144 145 146 147 148 149 150


def logical_or(x, y, out=None, name=None):
    """

    ``logical_or`` operator computes element-wise logical OR on ``x`` and ``y``, and returns ``out``. ``out`` is N-dim boolean ``Tensor``.
    Each element of ``out`` is calculated by

    .. math::

        out = x || y

151
    Note:
I
Infinity_lee 已提交
152 153 154
        ``paddle.logical_or`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
155

156
    Args:
157 158
        x (Tensor): the input tensor, it's data type should be one of bool, int8, int16, in32, in64, float16, float32, float64.
        y (Tensor): the input tensor, it's data type should be one of bool, int8, int16, in32, in64, float16, float32, float64.
159 160 161 162 163 164 165 166 167 168 169
        out(Tensor): The ``Variable`` that specifies the output of the operator, which can be any ``Tensor`` that has been created in the program. The default value is None, and a new ``Tensor`` will be created to save the output.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. It's dimension equals with ``x``.

    Examples:
        .. code-block:: python

            import paddle

170 171
            x = paddle.to_tensor([True, False], dtype="bool").reshape([2, 1])
            y = paddle.to_tensor([True, False, True, False], dtype="bool").reshape([2, 2])
172
            res = paddle.logical_or(x, y)
173 174 175 176
            print(res)
            # Tensor(shape=[2, 2], dtype=bool, place=Place(cpu), stop_gradient=True,
            #        [[True , True ],
            #         [True , False]])
177
    """
178
    if in_dynamic_mode():
179
        return _C_ops.logical_or(x, y)
180 181 182
    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True
    )
183 184 185 186 187 188 189 190 191 192 193 194


def logical_xor(x, y, out=None, name=None):
    r"""

    ``logical_xor`` operator computes element-wise logical XOR on ``x`` and ``y``, and returns ``out``. ``out`` is N-dim boolean ``Tensor``.
    Each element of ``out`` is calculated by

    .. math::

        out = (x || y) \&\& !(x \&\& y)

195
    Note:
I
Infinity_lee 已提交
196 197 198
        ``paddle.logical_xor`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
199 200

    Args:
201 202
        x (Tensor): the input tensor, it's data type should be one of bool, int8, int16, in32, in64, float16, float32, float64.
        y (Tensor): the input tensor, it's data type should be one of bool, int8, int16, in32, in64, float16, float32, float64.
203 204 205 206 207 208 209 210 211 212 213
        out(Tensor): The ``Tensor`` that specifies the output of the operator, which can be any ``Tensor`` that has been created in the program. The default value is None, and a new ``Tensor`` will be created to save the output.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. It's dimension equals with ``x``.

    Examples:
        .. code-block:: python

            import paddle

214 215
            x = paddle.to_tensor([True, False], dtype="bool").reshape([2, 1])
            y = paddle.to_tensor([True, False, True, False], dtype="bool").reshape([2, 2])
216
            res = paddle.logical_xor(x, y)
217 218 219 220
            print(res)
            # Tensor(shape=[2, 2], dtype=bool, place=Place(cpu), stop_gradient=True,
            #        [[False, True ],
            #         [True , False]])
221
    """
222
    if in_dynamic_mode():
223
        return _C_ops.logical_xor(x, y)
224

225 226 227
    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True
    )
228 229 230 231 232 233 234 235 236 237 238 239


def logical_not(x, out=None, name=None):
    """

    ``logical_not`` operator computes element-wise logical NOT on ``x``, and returns ``out``. ``out`` is N-dim boolean ``Variable``.
    Each element of ``out`` is calculated by

    .. math::

        out = !x

I
Infinity_lee 已提交
240 241 242 243 244
    Note:
        ``paddle.logical_not`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor

245
    Args:
246
        x(Tensor):  Operand of logical_not operator. Must be a Tensor of type bool, int8, int16, in32, in64, float16, float32, or float64.
247 248 249 250
        out(Tensor): The ``Tensor`` that specifies the output of the operator, which can be any ``Tensor`` that has been created in the program. The default value is None, and a new ``Tensor` will be created to save the output.
        name(str|None): The default value is None. Normally there is no need for users to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
251
        N-D Tensor. A location into which the result is stored. It's dimension equals with ``x``.
252 253 254 255 256 257 258 259 260 261

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([True, False, True, False])
            res = paddle.logical_not(x)
            print(res) # [False  True False  True]
    """
262
    if in_dynamic_mode():
263
        return _C_ops.logical_not(x)
264 265 266
    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False
    )
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289


def is_empty(x, name=None):
    """

    Test whether a Tensor is empty.

    Args:
        x (Tensor): The Tensor to be tested.
        name (str, optional): The default value is ``None`` . Normally users
                            don't have to set this parameter. For more information,
                            please refer to :ref:`api_guide_Name` .

    Returns:
        Tensor: A bool scalar Tensor. True if 'x' is an empty Tensor.

    Examples:
        .. code-block:: python

            import paddle

            input = paddle.rand(shape=[4, 32, 32], dtype='float32')
            res = paddle.is_empty(x=input)
290 291
            # res: Tensor(shape=[], dtype=bool, place=Place(cpu), stop_gradient=True,
            #        False)
292 293

    """
294
    if in_dynamic_mode():
295
        return _C_ops.is_empty(x)
296 297 298 299 300
    else:
        check_variable_and_dtype(
            x, 'x', ['float32', 'float64', 'int32', 'int64'], 'is_empty'
        )
        check_type(name, "name", (str, type(None)), "is_empty")
301

302 303 304 305 306 307 308
        helper = LayerHelper("is_empty", **locals())
        cond = helper.create_variable_for_type_inference(dtype='bool')
        cond.stop_gradient = True
        helper.append_op(
            type='is_empty', inputs={'X': [x]}, outputs={'Out': [cond]}
        )
        return cond
309 310


W
wawltor 已提交
311
def equal_all(x, y, name=None):
312
    """
313
    Returns the truth value of :math:`x == y`. True if two inputs have the same elements, False otherwise.
314

315
    Note:
316
        The output has no gradient.
317 318

    Args:
319 320
        x(Tensor): Tensor, data type is bool, float32, float64, int32, int64.
        y(Tensor): Tensor, data type is bool, float32, float64, int32, int64.
W
wawltor 已提交
321 322
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
323 324

    Returns:
W
wawltor 已提交
325
        Tensor: output Tensor, data type is bool, value is [False] or [True].
326 327 328 329 330

    Examples:
        .. code-block:: python

          import paddle
W
wawltor 已提交
331

332 333 334
          x = paddle.to_tensor([1, 2, 3])
          y = paddle.to_tensor([1, 2, 3])
          z = paddle.to_tensor([1, 4, 3])
W
wawltor 已提交
335
          result1 = paddle.equal_all(x, y)
336
          print(result1) # result1 = True
W
wawltor 已提交
337
          result2 = paddle.equal_all(x, z)
338
          print(result2) # result2 = False
339
    """
340
    if in_dynamic_mode():
341
        return _C_ops.equal_all(x, y)
342 343 344 345 346 347 348 349 350
    else:
        helper = LayerHelper("equal_all", **locals())
        out = helper.create_variable_for_type_inference(dtype='bool')
        helper.append_op(
            type='equal_all',
            inputs={'X': [x], 'Y': [y]},
            outputs={'Out': [out]},
        )
        return out
Z
Zhen Wang 已提交
351 352 353


@templatedoc()
354
def allclose(x, y, rtol=1e-05, atol=1e-08, equal_nan=False, name=None):
355 356 357 358 359 360
    r"""
    Check if all :math:`x` and :math:`y` satisfy the condition:

    .. math::
        \left| x - y \right| \leq atol + rtol \times \left| y \right|

H
hg-1099255210 已提交
361
    elementwise, for all elements of :math:`x` and :math:`y`. This is analogous to :math:`numpy.allclose`, namely that it returns :math:`True` if
362
    two tensors are elementwise equal within a tolerance.
Z
Zhen Wang 已提交
363 364

    Args:
365 366
        x(Tensor): The input tensor, it's data type should be float16, float32, float64..
        y(Tensor): The input tensor, it's data type should be float16, float32, float64..
H
huangxu96 已提交
367 368
        rtol(rtoltype, optional): The relative tolerance. Default: :math:`1e-5` .
        atol(atoltype, optional): The absolute tolerance. Default: :math:`1e-8` .
369 370 371
        equal_nan(equalnantype, optional): ${equal_nan_comment}.
        name (str, optional): Name for the operation. For more information, please
            refer to :ref:`api_guide_Name`. Default: None.
Z
Zhen Wang 已提交
372 373

    Returns:
374
        Tensor: The output tensor, it's data type is bool.
375

Z
Zhen Wang 已提交
376 377 378 379 380
    Examples:
        .. code-block:: python

          import paddle

381 382
          x = paddle.to_tensor([10000., 1e-07])
          y = paddle.to_tensor([10000.1, 1e-08])
383
          result1 = paddle.allclose(x, y, rtol=1e-05, atol=1e-08,
Z
Zhen Wang 已提交
384
                                  equal_nan=False, name="ignore_nan")
385
          # False
386

387
          result2 = paddle.allclose(x, y, rtol=1e-05, atol=1e-08,
Z
Zhen Wang 已提交
388
                                      equal_nan=True, name="equal_nan")
389
          # False
390

391 392
          x = paddle.to_tensor([1.0, float('nan')])
          y = paddle.to_tensor([1.0, float('nan')])
393 394
          result1 = paddle.allclose(x, y, rtol=1e-05, atol=1e-08,
                                  equal_nan=False, name="ignore_nan")
395
          # False
396

397 398
          result2 = paddle.allclose(x, y, rtol=1e-05, atol=1e-08,
                                      equal_nan=True, name="equal_nan")
399
          # True
Z
Zhen Wang 已提交
400 401
    """

402
    if in_dynamic_mode():
403
        return _C_ops.allclose(x, y, rtol, atol, equal_nan)
404
    else:
405 406 407 408 409 410
        check_variable_and_dtype(
            x, "input", ['float16', 'float32', 'float64'], 'allclose'
        )
        check_variable_and_dtype(
            y, "input", ['float16', 'float32', 'float64'], 'allclose'
        )
411 412 413 414 415 416 417 418 419 420 421 422
        check_type(rtol, 'rtol', float, 'allclose')
        check_type(atol, 'atol', float, 'allclose')
        check_type(equal_nan, 'equal_nan', bool, 'allclose')

        helper = LayerHelper("allclose", **locals())
        out = helper.create_variable_for_type_inference(dtype='bool')

        inputs = {'Input': x, 'Other': y}
        outputs = {'Out': out}
        attrs = {'rtol': str(rtol), 'atol': str(atol), 'equal_nan': equal_nan}
        helper.append_op(
            type='allclose', inputs=inputs, outputs=outputs, attrs=attrs
423
        )
Z
Zhen Wang 已提交
424

425
        return out
426 427


W
wawltor 已提交
428 429
@templatedoc()
def equal(x, y, name=None):
430
    """
S
swtkiwi 已提交
431

432
    This layer returns the truth value of :math:`x == y` elementwise.
N
Noel 已提交
433

434
    Note:
435
        The output has no gradient.
436 437

    Args:
陈沧夜 已提交
438 439
        x(Tensor): Tensor, data type is bool, float16, float32, float64, int32, int64.
        y(Tensor): Tensor, data type is bool, float16, float32, float64, int32, int64.
440 441 442 443
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
W
wawltor 已提交
444
        Tensor: output Tensor, it's shape is the same as the input's Tensor,
445
        and the data type is bool. The result of this op is stop_gradient.
446 447 448 449

    Examples:
        .. code-block:: python

W
wawltor 已提交
450 451
          import paddle

452 453
          x = paddle.to_tensor([1, 2, 3])
          y = paddle.to_tensor([1, 3, 2])
W
wawltor 已提交
454
          result1 = paddle.equal(x, y)
N
Noel 已提交
455
          print(result1)  # result1 = [True False False]
456
    """
457 458
    if not isinstance(y, (int, bool, float, Variable)):
        raise TypeError(
459 460 461 462
            "Type of input args must be float, bool, int or Tensor, but received type {}".format(
                type(y)
            )
        )
463
    if not isinstance(y, Variable):
464
        y = full(shape=[], dtype=x.dtype, fill_value=y)
465

466
    if in_dynamic_mode():
467
        return _C_ops.equal(x, y)
J
Jiabin Yang 已提交
468
    else:
469 470 471
        check_variable_and_dtype(
            x,
            "x",
472 473 474 475 476 477 478 479 480
            [
                "bool",
                "float16",
                "float32",
                "float64",
                "int32",
                "int64",
                "uint16",
            ],
481 482 483 484 485
            "equal",
        )
        check_variable_and_dtype(
            y,
            "y",
486 487 488 489 490 491 492 493 494
            [
                "bool",
                "float16",
                "float32",
                "float64",
                "int32",
                "int64",
                "uint16",
            ],
495 496 497 498 499
            "equal",
        )
        helper = LayerHelper("equal", **locals())
        out = helper.create_variable_for_type_inference(dtype='bool')
        out.stop_gradient = True
J
Jiabin Yang 已提交
500

501 502 503 504 505 506
        helper.append_op(
            type='equal',
            inputs={'X': [x], 'Y': [y]},
            outputs={'Out': [out]},
        )
        return out
507

W
wawltor 已提交
508 509 510 511

@templatedoc()
def greater_equal(x, y, name=None):
    """
512
    Returns the truth value of :math:`x >= y` elementwise, which is equivalent function to the overloaded operator `>=`.
N
Noel 已提交
513

514
    Note:
515
        The output has no gradient.
W
wawltor 已提交
516 517

    Args:
518 519
        x(Tensor): First input to compare which is N-D tensor. The input data type should be bool, float16, float32, float64, int32, int64.
        y(Tensor): Second input to compare which is N-D tensor. The input data type should be bool, float16, float32, float64, int32, int64.
W
wawltor 已提交
520 521 522
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
    Returns:
523
        Tensor: The output shape is same as input :attr:`x`. The output data type is bool.
W
wawltor 已提交
524 525 526

    Examples:
        .. code-block:: python
N
Noel 已提交
527

W
wawltor 已提交
528 529
            import paddle

530 531
            x = paddle.to_tensor([1, 2, 3])
            y = paddle.to_tensor([1, 3, 2])
W
wawltor 已提交
532
            result1 = paddle.greater_equal(x, y)
N
Noel 已提交
533
            print(result1)  # result1 = [True False True]
W
wawltor 已提交
534
    """
535
    if in_dynamic_mode():
536
        return _C_ops.greater_equal(x, y)
J
Jiabin Yang 已提交
537
    else:
538 539 540
        check_variable_and_dtype(
            x,
            "x",
541 542 543 544 545 546 547 548 549
            [
                "bool",
                "float16",
                "float32",
                "float64",
                "int32",
                "int64",
                "uint16",
            ],
550 551 552 553 554
            "greater_equal",
        )
        check_variable_and_dtype(
            y,
            "y",
555 556 557 558 559 560 561 562 563
            [
                "bool",
                "float16",
                "float32",
                "float64",
                "int32",
                "int64",
                "uint16",
            ],
564 565 566 567 568
            "greater_equal",
        )
        helper = LayerHelper("greater_equal", **locals())
        out = helper.create_variable_for_type_inference(dtype='bool')
        out.stop_gradient = True
J
Jiabin Yang 已提交
569

570 571 572 573 574 575
        helper.append_op(
            type='greater_equal',
            inputs={'X': [x], 'Y': [y]},
            outputs={'Out': [out]},
        )
        return out
W
wawltor 已提交
576 577 578 579 580


@templatedoc()
def greater_than(x, y, name=None):
    """
581
    Returns the truth value of :math:`x > y` elementwise, which is equivalent function to the overloaded operator `>`.
N
Noel 已提交
582

583
    Note:
584
        The output has no gradient.
W
wawltor 已提交
585 586

    Args:
J
Jx-qi 已提交
587 588
        x(Tensor): First input to compare which is N-D tensor. The input data type should be bool, float16, float32, float64, int32, int64.
        y(Tensor): Second input to compare which is N-D tensor. The input data type should be bool, float16, float32, float64, int32, int64.
W
wawltor 已提交
589 590 591
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
    Returns:
592
        Tensor: The output shape is same as input :attr:`x`. The output data type is bool.
W
wawltor 已提交
593 594 595

    Examples:
        .. code-block:: python
N
Noel 已提交
596

W
wawltor 已提交
597 598
            import paddle

599 600
            x = paddle.to_tensor([1, 2, 3])
            y = paddle.to_tensor([1, 3, 2])
W
wawltor 已提交
601
            result1 = paddle.greater_than(x, y)
N
Noel 已提交
602
            print(result1)  # result1 = [False False True]
W
wawltor 已提交
603
    """
604
    if in_dynamic_mode():
605
        return _C_ops.greater_than(x, y)
J
Jiabin Yang 已提交
606
    else:
607 608 609
        check_variable_and_dtype(
            x,
            "x",
610 611 612 613 614 615 616 617 618
            [
                "bool",
                "float16",
                "float32",
                "float64",
                "int32",
                "int64",
                "uint16",
            ],
619 620 621 622 623
            "greater_than",
        )
        check_variable_and_dtype(
            y,
            "y",
624 625 626 627 628 629 630 631 632
            [
                "bool",
                "float16",
                "float32",
                "float64",
                "int32",
                "int64",
                "uint16",
            ],
633 634 635 636 637
            "greater_than",
        )
        helper = LayerHelper("greater_than", **locals())
        out = helper.create_variable_for_type_inference(dtype='bool')
        out.stop_gradient = True
J
Jiabin Yang 已提交
638

639 640 641 642 643 644
        helper.append_op(
            type='greater_than',
            inputs={'X': [x], 'Y': [y]},
            outputs={'Out': [out]},
        )
        return out
W
wawltor 已提交
645 646 647 648 649


@templatedoc()
def less_equal(x, y, name=None):
    """
650
    Returns the truth value of :math:`x <= y` elementwise, which is equivalent function to the overloaded operator `<=`.
N
Noel 已提交
651

652
    Note:
653
        The output has no gradient.
W
wawltor 已提交
654 655

    Args:
B
BellaZYL 已提交
656 657
        x(Tensor): First input to compare which is N-D tensor. The input data type should be bool, float16, float32, float64, int32, int64.
        y(Tensor): Second input to compare which is N-D tensor. The input data type should be bool, float16, float32, float64, int32, int64.
W
wawltor 已提交
658 659 660 661
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
662
        Tensor: The output shape is same as input :attr:`x`. The output data type is bool.
W
wawltor 已提交
663 664 665

    Examples:
        .. code-block:: python
N
Noel 已提交
666

W
wawltor 已提交
667 668
            import paddle

669 670
            x = paddle.to_tensor([1, 2, 3])
            y = paddle.to_tensor([1, 3, 2])
W
wawltor 已提交
671
            result1 = paddle.less_equal(x, y)
N
Noel 已提交
672
            print(result1)  # result1 = [True True False]
W
wawltor 已提交
673
    """
674
    if in_dynamic_mode():
675
        return _C_ops.less_equal(x, y)
J
Jiabin Yang 已提交
676
    else:
677 678 679
        check_variable_and_dtype(
            x,
            "x",
680 681 682 683 684 685 686 687 688
            [
                "bool",
                "float16",
                "float32",
                "float64",
                "int32",
                "int64",
                "uint16",
            ],
689 690 691 692 693
            "less_equal",
        )
        check_variable_and_dtype(
            y,
            "y",
694 695 696 697 698 699 700 701 702
            [
                "bool",
                "float16",
                "float32",
                "float64",
                "int32",
                "int64",
                "uint16",
            ],
703 704 705 706 707
            "less_equal",
        )
        helper = LayerHelper("less_equal", **locals())
        out = helper.create_variable_for_type_inference(dtype='bool')
        out.stop_gradient = True
J
Jiabin Yang 已提交
708

709 710 711 712 713 714
        helper.append_op(
            type='less_equal',
            inputs={'X': [x], 'Y': [y]},
            outputs={'Out': [out]},
        )
        return out
W
wawltor 已提交
715 716 717 718 719


@templatedoc()
def less_than(x, y, name=None):
    """
720
    Returns the truth value of :math:`x < y` elementwise, which is equivalent function to the overloaded operator `<`.
N
Noel 已提交
721

722
    Note:
723
        The output has no gradient.
W
wawltor 已提交
724 725

    Args:
H
hh-qiao 已提交
726 727
        x(Tensor): First input to compare which is N-D tensor. The input data type should be bool, float16, float32, float64, int32, int64.
        y(Tensor): Second input to compare which is N-D tensor. The input data type should be bool, float16, float32, float64, int32, int64.
W
wawltor 已提交
728 729 730 731
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
732
        Tensor: The output shape is same as input :attr:`x`. The output data type is bool.
W
wawltor 已提交
733 734 735

    Examples:
        .. code-block:: python
N
Noel 已提交
736

W
wawltor 已提交
737 738
            import paddle

739 740
            x = paddle.to_tensor([1, 2, 3])
            y = paddle.to_tensor([1, 3, 2])
W
wawltor 已提交
741
            result1 = paddle.less_than(x, y)
N
Noel 已提交
742
            print(result1)  # result1 = [False True False]
W
wawltor 已提交
743
    """
744
    if in_dynamic_mode():
745
        return _C_ops.less_than(x, y)
J
Jiabin Yang 已提交
746
    else:
747 748 749
        check_variable_and_dtype(
            x,
            "x",
750 751 752 753 754 755 756 757 758
            [
                "bool",
                "float16",
                "float32",
                "float64",
                "int32",
                "int64",
                "uint16",
            ],
759 760 761 762 763
            "less_than",
        )
        check_variable_and_dtype(
            y,
            "y",
764 765 766 767 768 769 770 771 772
            [
                "bool",
                "float16",
                "float32",
                "float64",
                "int32",
                "int64",
                "uint16",
            ],
773 774 775 776 777
            "less_than",
        )
        helper = LayerHelper("less_than", **locals())
        out = helper.create_variable_for_type_inference(dtype='bool')
        out.stop_gradient = True
J
Jiabin Yang 已提交
778

779 780 781 782 783 784
        helper.append_op(
            type='less_than',
            inputs={'X': [x], 'Y': [y]},
            outputs={'Out': [out]},
        )
        return out
W
wawltor 已提交
785 786 787 788 789


@templatedoc()
def not_equal(x, y, name=None):
    """
790
    Returns the truth value of :math:`x != y` elementwise, which is equivalent function to the overloaded operator `!=`.
791 792

    Note:
793
        The output has no gradient.
W
wawltor 已提交
794 795

    Args:
796 797
        x(Tensor): First input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
        y(Tensor): Second input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
W
wawltor 已提交
798 799 800 801
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
802
        Tensor: The output shape is same as input :attr:`x`. The output data type is bool.
W
wawltor 已提交
803 804 805

    Examples:
        .. code-block:: python
806

W
wawltor 已提交
807 808
            import paddle

809 810
            x = paddle.to_tensor([1, 2, 3])
            y = paddle.to_tensor([1, 3, 2])
W
wawltor 已提交
811
            result1 = paddle.not_equal(x, y)
N
Noel 已提交
812
            print(result1)  # result1 = [False True True]
W
wawltor 已提交
813
    """
814
    if in_dynamic_mode():
815
        return _C_ops.not_equal(x, y)
J
Jiabin Yang 已提交
816
    else:
817 818 819
        check_variable_and_dtype(
            x,
            "x",
820 821 822 823 824 825 826 827 828
            [
                "bool",
                "float16",
                "float32",
                "float64",
                "int32",
                "int64",
                "uint16",
            ],
829 830 831 832 833
            "not_equal",
        )
        check_variable_and_dtype(
            y,
            "y",
834 835 836 837 838 839 840 841 842
            [
                "bool",
                "float16",
                "float32",
                "float64",
                "int32",
                "int64",
                "uint16",
            ],
843 844 845 846 847
            "not_equal",
        )
        helper = LayerHelper("not_equal", **locals())
        out = helper.create_variable_for_type_inference(dtype='bool')
        out.stop_gradient = True
J
Jiabin Yang 已提交
848

849 850 851 852 853 854
        helper.append_op(
            type='not_equal',
            inputs={'X': [x], 'Y': [y]},
            outputs={'Out': [out]},
        )
        return out
Z
zhulei 已提交
855 856 857 858 859


def is_tensor(x):
    """

C
Chen Long 已提交
860
    Tests whether input object is a paddle.Tensor.
Z
zhulei 已提交
861 862 863 864 865

    Args:
        x (object): Object to test.

    Returns:
C
Chen Long 已提交
866
        A boolean value. True if ``x`` is a paddle.Tensor, otherwise False.
Z
zhulei 已提交
867 868 869 870 871 872 873 874 875 876 877 878 879

    Examples:
        .. code-block:: python

            import paddle

            input1 = paddle.rand(shape=[2, 3, 5], dtype='float32')
            check = paddle.is_tensor(input1)
            print(check)  #True

            input3 = [1, 4]
            check = paddle.is_tensor(input3)
            print(check)  #False
880

Z
zhulei 已提交
881
    """
882
    if in_dynamic_mode():
883 884 885
        return isinstance(x, (Tensor, paddle.fluid.core.eager.Tensor))
    else:
        return isinstance(x, Variable)
886 887 888


def _bitwise_op(op_name, x, y, out=None, name=None, binary_op=True):
889
    if in_dynamic_mode():
W
wanghuancoder 已提交
890
        op = getattr(_C_ops, op_name)
891 892 893 894
        if binary_op:
            return op(x, y)
        else:
            return op(x)
895
    else:
896
        check_variable_and_dtype(
897 898
            x,
            "x",
899 900 901
            ["bool", "uint8", "int8", "int16", "int32", "int64"],
            op_name,
        )
902 903 904 905 906 907 908 909 910
        if y is not None:
            check_variable_and_dtype(
                y,
                "y",
                ["bool", "uint8", "int8", "int16", "int32", "int64"],
                op_name,
            )
        if out is not None:
            check_type(out, "out", Variable, op_name)
911

912 913 914
        helper = LayerHelper(op_name, **locals())
        if binary_op:
            assert x.dtype == y.dtype
915

916 917
        if out is None:
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
918

919 920 921 922 923 924 925 926
        if binary_op:
            helper.append_op(
                type=op_name, inputs={"X": x, "Y": y}, outputs={"Out": out}
            )
        else:
            helper.append_op(
                type=op_name, inputs={"X": x}, outputs={"Out": out}
            )
927

928
        return out
929 930 931


def bitwise_and(x, y, out=None, name=None):
932 933 934 935 936 937 938 939 940 941 942
    r"""

    Apply ``bitwise_and`` on Tensor ``X`` and ``Y`` .

    .. math::
        Out = X \& Y

    .. note::
        ``paddle.bitwise_and`` supports broadcasting. If you want know more about broadcasting, please refer to please refer to `Introduction to Tensor`_ .

    .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor.
943

944
    Args:
945 946 947
        x (Tensor): Input Tensor of ``bitwise_and`` . It is a N-D Tensor of bool, uint8, int8, int16, int32, int64.
        y (Tensor): Input Tensor of ``bitwise_and`` . It is a N-D Tensor of bool, uint8, int8, int16, int32, int64.
        out(Tensor): Result of ``bitwise_and`` . It is a N-D Tensor with the same data type of input Tensor.
948 949

    Returns:
950
        Tensor: Result of ``bitwise_and`` . It is a N-D Tensor with the same data type of input Tensor.
951

952 953 954 955 956 957 958 959 960
    Examples:
        .. code-block:: python

            import paddle
            x = paddle.to_tensor([-5, -1, 1])
            y = paddle.to_tensor([4,  2, -3])
            res = paddle.bitwise_and(x, y)
            print(res)  # [0, 2, 1]
    """
961
    if in_dynamic_mode() and out is None:
962
        return _C_ops.bitwise_and(x, y)
963 964 965
    return _bitwise_op(
        op_name="bitwise_and", x=x, y=y, name=name, out=out, binary_op=True
    )
966 967 968


def bitwise_or(x, y, out=None, name=None):
969 970 971 972 973 974 975 976 977 978 979
    r"""

    Apply ``bitwise_or`` on Tensor ``X`` and ``Y`` .

    .. math::
        Out = X | Y

    .. note::
        ``paddle.bitwise_or`` supports broadcasting. If you want know more about broadcasting, please refer to please refer to `Introduction to Tensor`_ .

    .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor.
980

981
    Args:
982 983 984
        x (Tensor): Input Tensor of ``bitwise_or`` . It is a N-D Tensor of bool, uint8, int8, int16, int32, int64.
        y (Tensor): Input Tensor of ``bitwise_or`` . It is a N-D Tensor of bool, uint8, int8, int16, int32, int64.
        out(Tensor): Result of ``bitwise_or`` . It is a N-D Tensor with the same data type of input Tensor.
985 986

    Returns:
987
        Tensor: Result of ``bitwise_or`` . It is a N-D Tensor with the same data type of input Tensor.
988 989 990 991 992 993 994 995 996 997

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.to_tensor([-5, -1, 1])
            y = paddle.to_tensor([4,  2, -3])
            res = paddle.bitwise_or(x, y)
            print(res)  # [-1, -1, -3]
    """
998
    if in_dynamic_mode() and out is None:
999
        return _C_ops.bitwise_or(x, y)
H
hong 已提交
1000

1001 1002 1003
    return _bitwise_op(
        op_name="bitwise_or", x=x, y=y, name=name, out=out, binary_op=True
    )
1004 1005 1006


def bitwise_xor(x, y, out=None, name=None):
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
    r"""

    Apply ``bitwise_xor`` on Tensor ``X`` and ``Y`` .

    .. math::
        Out = X ^\wedge Y

    .. note::
        ``paddle.bitwise_xor`` supports broadcasting. If you want know more about broadcasting, please refer to please refer to `Introduction to Tensor`_ .

    .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor.
1018 1019

    Args:
1020 1021 1022
        x (Tensor): Input Tensor of ``bitwise_xor`` . It is a N-D Tensor of bool, uint8, int8, int16, int32, int64.
        y (Tensor): Input Tensor of ``bitwise_xor`` . It is a N-D Tensor of bool, uint8, int8, int16, int32, int64.
        out(Tensor): Result of ``bitwise_xor`` . It is a N-D Tensor with the same data type of input Tensor.
1023 1024

    Returns:
1025
        Tensor: Result of ``bitwise_xor`` . It is a N-D Tensor with the same data type of input Tensor.
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.to_tensor([-5, -1, 1])
            y = paddle.to_tensor([4,  2, -3])
            res = paddle.bitwise_xor(x, y)
            print(res) # [-1, -3, -4]
    """
1036
    if in_dynamic_mode() and out is None:
1037
        return _C_ops.bitwise_xor(x, y)
1038 1039 1040
    return _bitwise_op(
        op_name="bitwise_xor", x=x, y=y, name=name, out=out, binary_op=True
    )
1041 1042 1043


def bitwise_not(x, out=None, name=None):
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
    r"""

    Apply ``bitwise_not`` on Tensor ``X``.

    .. math::
        Out = \sim X

    .. note::
        ``paddle.bitwise_not`` supports broadcasting. If you want know more about broadcasting, please refer to please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor.
1055 1056

    Args:
1057 1058
        x (Tensor): Input Tensor of ``bitwise_not`` . It is a N-D Tensor of bool, uint8, int8, int16, int32, int64.
        out(Tensor): Result of ``bitwise_not`` . It is a N-D Tensor with the same data type of input Tensor.
1059

1060
    Returns:
1061
        Tensor: Result of ``bitwise_not`` . It is a N-D Tensor with the same data type of input Tensor.
1062 1063 1064 1065 1066 1067 1068 1069 1070

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.to_tensor([-5, -1, 1])
            res = paddle.bitwise_not(x)
            print(res) # [4, 0, -2]
    """
1071
    if in_dynamic_mode() and out is None:
1072
        return _C_ops.bitwise_not(x)
1073

1074 1075 1076
    return _bitwise_op(
        op_name="bitwise_not", x=x, y=None, name=name, out=out, binary_op=False
    )
A
andyjpaddle 已提交
1077 1078 1079 1080


@templatedoc()
def isclose(x, y, rtol=1e-05, atol=1e-08, equal_nan=False, name=None):
1081
    r"""
1082
    Check if all :math:`x` and :math:`y` satisfy the condition:
1083 1084 1085 1086 1087 1088 1089 1090

    .. math::

        \left| x - y \right| \leq atol + rtol \times \left| y \right|

    elementwise, for all elements of :math:`x` and :math:`y`. The behaviour of this
    operator is analogous to :math:`numpy.isclose`, namely that it returns :math:`True` if
    two tensors are elementwise equal within a tolerance.
A
andyjpaddle 已提交
1091 1092

    Args:
1093 1094
        x(Tensor): The input tensor, it's data type should be float16, float32, float64.
        y(Tensor): The input tensor, it's data type should be float16, float32, float64.
A
andyjpaddle 已提交
1095 1096
        rtol(rtoltype, optional): The relative tolerance. Default: :math:`1e-5` .
        atol(atoltype, optional): The absolute tolerance. Default: :math:`1e-8` .
1097
        equal_nan(equalnantype, optional): If :math:`True` , then two :math:`NaNs` will be compared as equal. Default: :math:`False` .
A
andyjpaddle 已提交
1098 1099 1100 1101
        name (str, optional): Name for the operation. For more information, please
            refer to :ref:`api_guide_Name`. Default: None.

    Returns:
1102
        Tensor: The output tensor, it's data type is bool.
A
andyjpaddle 已提交
1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127

    Examples:
        .. code-block:: python

          import paddle

          x = paddle.to_tensor([10000., 1e-07])
          y = paddle.to_tensor([10000.1, 1e-08])
          result1 = paddle.isclose(x, y, rtol=1e-05, atol=1e-08,
                                  equal_nan=False, name="ignore_nan")
          # [True, False]
          result2 = paddle.isclose(x, y, rtol=1e-05, atol=1e-08,
                                      equal_nan=True, name="equal_nan")
          # [True, False]

          x = paddle.to_tensor([1.0, float('nan')])
          y = paddle.to_tensor([1.0, float('nan')])
          result1 = paddle.isclose(x, y, rtol=1e-05, atol=1e-08,
                                  equal_nan=False, name="ignore_nan")
          # [True, False]
          result2 = paddle.isclose(x, y, rtol=1e-05, atol=1e-08,
                                      equal_nan=True, name="equal_nan")
          # [True, True]
    """

1128
    if in_dynamic_mode():
1129
        return _C_ops.isclose(x, y, rtol, atol, equal_nan)
1130
    else:
1131 1132 1133 1134 1135 1136
        check_variable_and_dtype(
            x, "input", ['float16', 'float32', 'float64'], 'isclose'
        )
        check_variable_and_dtype(
            y, "input", ['float16', 'float32', 'float64'], 'isclose'
        )
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
        check_type(rtol, 'rtol', float, 'isclose')
        check_type(atol, 'atol', float, 'isclose')
        check_type(equal_nan, 'equal_nan', bool, 'isclose')

        helper = LayerHelper("isclose", **locals())
        out = helper.create_variable_for_type_inference(dtype='bool')

        inputs = {'Input': x, 'Other': y}
        outputs = {'Out': out}
        attrs = {'rtol': str(rtol), 'atol': str(atol), 'equal_nan': equal_nan}
        helper.append_op(
            type='isclose', inputs=inputs, outputs=outputs, attrs=attrs
1149
        )
1150
        return out