generate_op.py 26.8 KB
Newer Older
1
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
9 10 11 12 13 14 15
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
16
import math
17 18 19 20
import os
from pathlib import Path

import yaml
21
from filters import (
22
    assert_dense_or_sr,
23
    cartesian_prod_mapping,
24 25
    delete_last_underline,
    find_optinal_inputs_name,
J
Jiabin Yang 已提交
26
    to_composite_grad_opmaker_name,
27
    to_input_name,
28 29
    to_int_array_tensor_name,
    to_int_array_tensors_name,
30 31 32 33
    to_op_attr_type,
    to_opmaker_name,
    to_opmaker_name_cstr,
    to_pascal_case,
34
    to_scalar_tensor_name,
35
    to_variable_names,
36
)
37 38
from jinja2 import Environment, FileSystemLoader, StrictUndefined
from parse_utils import to_named_dict
C
Charles-hit 已提交
39
from tests_utils import (
40
    is_base_op,
J
Jiabin Yang 已提交
41
    is_composite_op,
42
    is_initializer_list,
43 44
    is_scalar,
    is_vec,
45 46 47
    supports_inplace,
    supports_no_need_buffer,
)
48 49

file_loader = FileSystemLoader(Path(__file__).parent / "templates")
50 51 52 53 54 55 56 57
env = Environment(
    loader=file_loader,
    keep_trailing_newline=True,
    trim_blocks=True,
    lstrip_blocks=True,
    undefined=StrictUndefined,
    extensions=['jinja2.ext.do'],
)
58 59 60
env.filters["to_op_attr_type"] = to_op_attr_type
env.filters["to_opmaker_name"] = to_opmaker_name
env.filters["to_pascal_case"] = to_pascal_case
61 62 63
env.filters["to_scalar_tensor_name"] = to_scalar_tensor_name
env.filters["to_int_array_tensor_name"] = to_int_array_tensor_name
env.filters["to_int_array_tensors_name"] = to_int_array_tensors_name
64 65
env.filters["to_input_name"] = to_input_name
env.filters["to_opmaker_name_cstr"] = to_opmaker_name_cstr
66
env.filters["cartesian_prod_mapping"] = cartesian_prod_mapping
J
Jiabin Yang 已提交
67
env.filters["to_composite_grad_opmaker_name"] = to_composite_grad_opmaker_name
68
env.filters["to_variable_names"] = to_variable_names
69 70
env.filters["assert_dense_or_sr"] = assert_dense_or_sr
env.filters["find_optinal_inputs_name"] = find_optinal_inputs_name
71
env.tests["base_op"] = is_base_op
J
Jiabin Yang 已提交
72
env.tests["composite_op"] = is_composite_op
73 74 75 76 77 78 79
env.tests["vec"] = is_vec
env.tests["scalar"] = is_scalar
env.tests["initializer_list"] = is_initializer_list
env.tests["supports_inplace"] = supports_inplace
env.tests["supports_no_need_buffer"] = supports_no_need_buffer


80 81 82 83 84
def restruct_io(op):
    op["input_dict"] = to_named_dict(op["inputs"])
    op["attr_dict"] = to_named_dict(op["attrs"])
    op["output_dict"] = to_named_dict(op["outputs"])
    return op
85 86


87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
def process_scalar(op_item, scalar_configs):
    scalar_map = {
        'Scalar': 'float',
        'Scalar(float)': 'float',
        'Scalar(int)': 'int',
        'Scalar(int64_t)': 'int64_t',
    }
    if scalar_configs is not None:
        for attr_item in op_item['attrs']:
            if attr_item['name'] in scalar_configs:
                attr_type = attr_item['typename']
                assert (
                    attr_type in scalar_map
                ), f"{op_item['name']}'s scalar in op_compat.yaml is error, the data_type of {attr_item['name']} is expected to be one of Scalar, Scalar(float), Scalar(int) or Scalar(int64_t), but now is {attr_type}."

                scalar_config = scalar_configs[attr_item['name']]
                attr_item['is_support_tensor'] = (
                    True
                    if 'support_tensor' in scalar_config
                    and scalar_config['support_tensor']
                    else False
                )
109 110 111 112 113 114
                attr_item['data_type'] = (
                    scalar_config['data_type']
                    if 'data_type' in scalar_config
                    else scalar_map[attr_type]
                )
                if attr_item['is_support_tensor'] is False:
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
                    attr_item['tensor_name'] = scalar_config['tensor_name']


def process_int_array(op_item, int_array_configs):
    data_type_map = {
        'int': 'std::vector<int>',
        'int64_t': 'std::vector<int64_t>',
    }
    if int_array_configs is not None:
        for attr_item in op_item['attrs']:
            if attr_item['name'] in int_array_configs:
                attr_type = attr_item['typename']
                assert (
                    attr_item['typename'] == "IntArray"
                ), f"{op_item['name']}'s int_array in op_compat.yaml is error, the data_type of {attr_item['name']} is expected to be one of IntArray, but now is {attr_type}."

                int_array_config = int_array_configs[attr_item['name']]
                attr_item['is_support_tensor'] = (
                    True
                    if 'support_tensor' in int_array_config
                    and int_array_config['support_tensor']
                    else False
                )
138 139 140 141 142 143
                attr_item['data_type'] = (
                    data_type_map[int_array_config['data_type']]
                    if 'data_type' in int_array_config
                    else 'std::vector<int64_t>'
                )
                if attr_item['is_support_tensor'] is False:
144 145 146 147 148 149 150 151 152 153 154
                    attr_item['manual_flag'] = True
                    if 'tensor_name' in int_array_config:
                        attr_item['tensor_name'] = int_array_config[
                            'tensor_name'
                        ]
                    if 'tensors_name' in int_array_config:
                        attr_item['tensors_name'] = int_array_config[
                            'tensors_name'
                        ]


155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
def add_composite_info(ops, backward_ops, backward_op_dict):
    # add backward composite name in forward
    for op in ops + backward_ops:
        if (
            op["backward"] in backward_op_dict
            and "composite" in backward_op_dict[op["backward"]]
        ):
            op["backward_composite"] = op["backward"]
        else:
            op["backward_composite"] = None


# add fluid name in ops and backward ops info
def add_fluid_name(dict_list):
    for item in dict_list:
        item["fluid_name"] = item["name"]


# add fluid name of op and params for OpMaker
def add_compat_name(op_fluid_map_list, forward_op_dict, backward_op_dict):
175
    def get_phi_and_fluid_op_name(op_item):
176
        names = op_item.split('(')
177 178 179 180 181
        if len(names) == 1:
            return names[0].strip(), names[0].strip()
        else:
            return names[0].strip(), names[1].split(')')[0].strip()

182
    def add_op_param_name(op_args, args_alias_map):
183 184
        for item in op_args:
            if item['name'] in args_alias_map:
185 186 187
                item['fluid_name'] = args_alias_map[item['name']]
            else:
                item['fluid_name'] = item['name']
188

189
    def add_grad_args_name(op_args, args_alias_map):
190 191 192 193 194 195 196 197
        for item in op_args:
            if (
                item['name'].endswith('_grad')
                and item['name'][:-5] in args_alias_map
            ):
                args_alias_map[item['name']] = (
                    args_alias_map[item['name'][:-5]] + '_grad'
                )
198 199 200 201 202 203
                item['fluid_name'] = args_alias_map[item['name'][:-5]] + '_grad'
            elif (
                item['name'].endswith('_grad')
                and item['name'][:-5] not in args_alias_map
            ):
                item['fluid_name'] = item['name']
J
Jiabin Yang 已提交
204

205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
    def get_param_list_alias(param_list, args_map):
        return [
            args_map[param] if param in args_map else param
            for param in param_list
        ]

    def update_common_params_name(
        op_item, args_name_map, scalar_configs, int_array_configs
    ):
        if 'inplace' in op_item and op_item['inplace']:
            inplace_map = {}
            for key, val in op_item['inplace'].items():
                if key in args_map:
                    key = args_map[key]
                if val in args_map:
                    val = args_map[val]
                inplace_map[key] = val
            op_item['inplace'] = inplace_map
        if 'no_need_buffer' in op_item and op_item['no_need_buffer']:
            op_item['no_need_buffer'] = get_param_list_alias(
                op_item['no_need_buffer'], args_map
            )
227 228 229 230 231 232 233 234 235 236
        if 'data_transform' in op_item and op_item['data_transform']:
            data_trans_item = op_item['data_transform']
            if 'skip_transform' in data_trans_item:
                data_trans_item['skip_transform'] = get_param_list_alias(
                    data_trans_item['skip_transform'], args_map
                )
            if 'support_trans_dtype' in data_trans_item:
                data_trans_item['support_trans_dtype'] = get_param_list_alias(
                    data_trans_item['support_trans_dtype'], args_map
                )
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267

        process_scalar(op_item, scalar_configs)
        process_int_array(op_item, int_array_configs)

        if 'invoke' in op_item:
            op_item['invoke']['args'] = [
                args_map[param.strip()]
                if param.strip() in args_map
                else param.strip()
                for param in op_item['invoke']['args'].split(',')
            ]
            return
        op_item['infer_meta']['param'] = get_param_list_alias(
            op_item['infer_meta']['param'], args_name_map
        )
        op_item['kernel']['param'] = get_param_list_alias(
            op_item['kernel']['param'], args_name_map
        )
        if op_item['kernel']['data_type']:
            op_item['kernel']['data_type']['candidates'] = get_param_list_alias(
                op_item['kernel']['data_type']['candidates'], args_name_map
            )
        if op_item['kernel']['backend']:
            op_item['kernel']['backend']['candidates'] = get_param_list_alias(
                op_item['kernel']['backend']['candidates'], args_name_map
            )
        if op_item['kernel']['layout']:
            op_item['kernel']['layout']['candidates'] = get_param_list_alias(
                op_item['kernel']['layout']['candidates'], args_name_map
            )

268 269 270 271 272 273 274 275 276
    def add_grad_op_compat_name(grad_op_item, args_name_map):
        add_op_param_name(grad_op_item['inputs'], args_name_map)
        add_op_param_name(grad_op_item['outputs'], args_name_map)
        add_op_param_name(grad_op_item['attrs'], args_name_map)
        add_op_param_name(grad_op_item['forward']['inputs'], args_name_map)
        add_op_param_name(grad_op_item['forward']['outputs'], args_name_map)
        add_op_param_name(grad_op_item['forward']['attrs'], args_name_map)
        add_grad_args_name(grad_op_item['inputs'], args_map)
        add_grad_args_name(grad_op_item['outputs'], args_map)
277 278 279

    for op_args in op_fluid_map_list:
        new_op_name, op_name = get_phi_and_fluid_op_name(op_args['op'])
280
        if new_op_name not in forward_op_dict:
281
            continue
282 283
        forward_op_item = forward_op_dict[new_op_name]
        has_backward = True if forward_op_item['backward'] else False
284
        if has_backward:
285 286 287
            backward_op_item = backward_op_dict[forward_op_item['backward']]
        if new_op_name != op_name:
            forward_op_item['op_name'] = op_name
288

289 290 291 292 293
        # add complex promote infomation
        if "complex_promote" in op_args:
            forward_op_item["complex_promote"] = op_args["complex_promote"]
            if has_backward:
                backward_op_item["complex_promote"] = op_args["complex_promote"]
294 295 296 297 298 299
        scalar_configs = None
        int_array_configs = None
        if 'scalar' in op_args:
            scalar_configs = op_args['scalar']
        if 'int_array' in op_args:
            int_array_configs = op_args['int_array']
300 301 302 303
        if 'extra' in op_args and 'outputs' in op_args['extra']:
            for out_item in forward_op_item['outputs']:
                if out_item['name'] in op_args['extra']['outputs']:
                    out_item['is_extra'] = True
304

305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
        key_set = ['inputs', 'attrs', 'outputs']
        args_map = {}
        for key in key_set:
            if key in op_args:
                args_map.update(op_args[key])
                for args_item in forward_op_item[key]:
                    if args_item['name'] in op_args[key]:
                        if (
                            scalar_configs
                            and args_item['name'] in scalar_configs
                        ):
                            scalar_configs[
                                op_args[key][args_item['name']]
                            ] = scalar_configs[args_item['name']]
                        if (
                            int_array_configs
                            and args_item['name'] in int_array_configs
                        ):
                            int_array_configs[
                                op_args[key][args_item['name']]
                            ] = int_array_configs[args_item['name']]
326 327 328
                        args_item['fluid_name'] = op_args[key][
                            args_item['name']
                        ]
329 330 331 332 333
        update_common_params_name(
            forward_op_item, args_map, scalar_configs, int_array_configs
        )

        if has_backward:
334 335
            # update fluid info in backward
            add_grad_op_compat_name(backward_op_item, args_map)
336 337 338 339 340 341
            update_common_params_name(
                backward_op_item, args_map, scalar_configs, int_array_configs
            )

            if 'backward' not in op_args:
                continue
342

343
            backward_op_list = op_args['backward'].split(',')
344 345 346 347 348 349 350 351
            phi_bw_op_name, bw_op_name = get_phi_and_fluid_op_name(
                backward_op_list[0]
            )
            if (
                forward_op_item["backward_composite"] is not None
                and phi_bw_op_name != bw_op_name
            ):
                forward_op_item["backward_composite"] = bw_op_name
352 353
            forward_op_item['backward'] = bw_op_name
            backward_op_item['op_name'] = bw_op_name
354

355 356
            # for double grad
            if len(backward_op_list) > 1:
357
                (
358
                    phi_double_grad_op_name,
359
                    double_grad_op_name,
360 361
                ) = get_phi_and_fluid_op_name(backward_op_list[1])
                double_grad_item = backward_op_dict[phi_double_grad_op_name]
362 363 364 365 366
                if (
                    backward_op_item["backward_composite"] is not None
                    and phi_double_grad_op_name != double_grad_op_name
                ):
                    backward_op_item["backward_composite"] = double_grad_op_name
367
                backward_op_item['backward'] = double_grad_op_name
368
                double_grad_item['op_name'] = double_grad_op_name
369
                add_grad_op_compat_name(double_grad_item, args_map)
370 371 372 373 374 375
                update_common_params_name(
                    double_grad_item,
                    args_map,
                    scalar_configs,
                    int_array_configs,
                )
376

377 378 379
                # for triple grad
                if len(backward_op_list) > 2:
                    (
380
                        phi_triple_grad_op_name,
381
                        triple_grad_op_name,
382 383
                    ) = get_phi_and_fluid_op_name(backward_op_list[2])
                    triple_grad_item = backward_op_dict[phi_triple_grad_op_name]
384 385 386 387 388 389 390
                    if (
                        double_grad_item["backward_composite"] is not None
                        and phi_triple_grad_op_name != triple_grad_op_name
                    ):
                        double_grad_item[
                            "backward_composite"
                        ] = triple_grad_op_name
391 392
                    double_grad_item['backward'] = triple_grad_op_name
                    triple_grad_item['op_name'] = triple_grad_op_name
393
                    add_grad_op_compat_name(triple_grad_item, args_map)
394 395 396 397 398
                    update_common_params_name(
                        triple_grad_item,
                        args_map,
                        scalar_configs,
                        int_array_configs,
399
                    )
400

401

402 403 404 405 406
def process_invoke_op(forward_op_dict, backward_op_dict):
    for bw_op in backward_op_dict.values():
        if 'invoke' in bw_op:
            invoke_op = bw_op['invoke']['func']
            args_list = bw_op['invoke']['args']
407
            args_index = 0
HappyHeavyRain's avatar
HappyHeavyRain 已提交
408
            # backward invoke forward
409 410
            if invoke_op in forward_op_dict:
                reuse_op = forward_op_dict[invoke_op]
411
                bw_op['invoke']['func'] = reuse_op['op_name']
412 413 414
                bw_op['invoke']['inputs'] = []
                bw_op['invoke']['attrs'] = []
                bw_op['invoke']['outputs'] = []
415
                for input_item in reuse_op['inputs']:
416
                    bw_op['invoke']['inputs'].append(
417
                        {
418
                            'fluid_name': input_item['fluid_name'],
419 420 421 422
                            'name': input_item['name'],
                            'value': args_list[args_index],
                        }
                    )
423
                    args_index = args_index + 1
424 425 426
                bw_fluid_attrs_set = [
                    item['fluid_name'] for item in bw_op['attrs']
                ]
427 428
                for attr in reuse_op['attrs']:
                    if args_index < len(args_list):
429 430
                        attr_value = (
                            f"this->GetAttr(\"{args_list[args_index]}\")"
431
                            if args_list[args_index] in bw_fluid_attrs_set
432 433
                            else args_list[args_index]
                        )
434
                        bw_op['invoke']['attrs'].append(
435 436 437 438 439
                            {
                                'name': attr['name'],
                                'fluid_name': attr['fluid_name'],
                                'value': attr_value,
                            }
440
                        )
441 442 443 444
                        args_index = args_index + 1
                    else:
                        break
                for idx, output_item in enumerate(reuse_op['outputs']):
445
                    bw_op['invoke']['outputs'].append(
446 447
                        {
                            'name': output_item['name'],
448 449
                            'fluid_name': output_item['fluid_name'],
                            'value': bw_op['outputs'][idx]['fluid_name'],
450 451 452 453
                        }
                    )


454
def parse_drop_empty_grad(op_fluid_list: list, bw_op_dict: dict):
455 456
    for op_comp_map in op_fluid_list:
        if 'drop_empty_grad' in op_comp_map:
457 458
            bw_names = [
                bw_name.split('(')[0].strip()
459
                for bw_name in op_comp_map['backward'].split(',')
460 461
            ]
            for bw_name in bw_names:
HappyHeavyRain's avatar
HappyHeavyRain 已提交
462 463
                # static_ops.yaml and ops.yaml use the common op_compat.yaml
                if bw_name in bw_op_dict:
464
                    for out_grad in op_comp_map['drop_empty_grad']:
HappyHeavyRain's avatar
HappyHeavyRain 已提交
465 466 467 468 469 470 471
                        assert (
                            out_grad in bw_op_dict[bw_name]['output_dict']
                        ), f'''
                            {bw_name} with {out_grad} is not existed in output_dict '''
                        bw_op_dict[bw_name]['output_dict'][out_grad][
                            'drop_empty_grad'
                        ] = False
472 473


474 475 476 477 478 479 480 481 482 483 484 485
def parse_get_expected_kerneltype(
    op_fluid_list: list, fw_op_dict: dict, bw_op_dict: dict
):
    for op_comp_map in op_fluid_list:
        if 'get_expected_kernel_type' in op_comp_map:
            fw_name = op_comp_map['op'].split('(')[0].strip()
            if fw_name in op_comp_map['get_expected_kernel_type']:
                # static_ops.yaml and ops.yaml use the common op_compat.yaml
                if fw_name in fw_op_dict:
                    fw_op_dict[fw_name][
                        "get_expected_kernel_type"
                    ] = op_comp_map['get_expected_kernel_type'][fw_name]
486 487 488 489 490 491 492 493 494 495 496 497 498 499
            if "backward" in op_comp_map:
                bw_names = [
                    bw_name.split('(')[0].strip()
                    for bw_name in op_comp_map['backward'].split(',')
                ]
                for bw_name in bw_names:
                    # static_ops.yaml and ops.yaml use the common op_compat.yaml
                    if (
                        bw_name in bw_op_dict
                        and bw_name in op_comp_map['get_expected_kernel_type']
                    ):
                        bw_op_dict[bw_name][
                            "get_expected_kernel_type"
                        ] = op_comp_map['get_expected_kernel_type'][bw_name]
500 501 502 503 504 505 506 507 508 509 510 511 512 513


def parse_keep_signature(
    op_fluid_list: list, fw_op_dict: dict, bw_op_dict: dict
):
    for op_comp_map in op_fluid_list:
        if 'manual_signature' in op_comp_map:
            for op_name in op_comp_map['manual_signature']:
                if op_name in fw_op_dict:
                    fw_op_dict[op_name]["manual_signature"] = True
                elif op_name in bw_op_dict:
                    bw_op_dict[op_name]["manual_signature"] = True


514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
def split_ops_list(ops, backward_op_dict, split_num):
    new_ops_list = []
    new_bw_ops_list = []
    list_size = math.ceil(len(ops) / split_num)
    tmp_ops_list = []
    tmp_bw_ops_list = []
    for idx, op in enumerate(ops):
        tmp_ops_list.append(op)
        current_op = op
        while (
            'backward' in current_op
            and current_op['backward'] in backward_op_dict
        ):
            tmp_bw_ops_list.append(backward_op_dict[current_op['backward']])
            current_op = backward_op_dict[current_op['backward']]
        if (idx + 1) % list_size == 0 or idx == len(ops) - 1:
            new_ops_list.append(tmp_ops_list)
            new_bw_ops_list.append(tmp_bw_ops_list)
            tmp_ops_list = []
            tmp_bw_ops_list = []
    return new_ops_list, new_bw_ops_list


537 538 539 540 541 542 543 544 545 546 547 548 549 550
def to_phi_and_fluid_op_name_without_underline(op_item):
    '''
    If the op_name ends with '_', delete the last '_'. For an example, 'sgd_' becomes 'sgd
    '''
    names = op_item.split('(')
    if len(names) == 1:
        op_kernel_name = delete_last_underline(names[0].strip())
        return op_kernel_name
    else:
        op_name = delete_last_underline(names[0].strip())
        kernel_name = delete_last_underline(names[1].split(')')[0].strip())
        return op_name + '(' + kernel_name + ')'


551 552 553 554 555 556 557 558
def main(
    ops_yaml_path,
    backward_yaml_path,
    op_compat_yaml_path,
    op_version_yaml_path,
    output_op_path,
    output_arg_map_path,
):
559
    with open(ops_yaml_path, "rt") as f:
560 561
        ops = yaml.safe_load(f)
        ops = [restruct_io(op) for op in ops]
562
    forward_op_dict = to_named_dict(ops, True)
563
    with open(backward_yaml_path, "rt") as f:
564 565
        backward_ops = yaml.safe_load(f)
        backward_ops = [restruct_io(op) for op in backward_ops]
566
    backward_op_dict = to_named_dict(backward_ops, True)
567
    with open(op_version_yaml_path, "rt") as f:
568 569 570
        op_versions = yaml.safe_load(f)
    # add op version info into op
    for op_version in op_versions:
HappyHeavyRain's avatar
HappyHeavyRain 已提交
571 572
        if op_version['op'] in forward_op_dict:
            forward_op_dict[op_version['op']]['version'] = op_version['version']
573 574

    with open(op_compat_yaml_path, "rt") as f:
575
        op_fluid_map_list = yaml.safe_load(f)
576 577 578 579
        for op_args in op_fluid_map_list:
            op_args["op"] = to_phi_and_fluid_op_name_without_underline(
                op_args["op"]
            )
580

581 582
    for op in ops:
        op['op_name'] = op['name']
583 584 585
        add_fluid_name(op['inputs'])
        add_fluid_name(op['attrs'])
        add_fluid_name(op['outputs'])
586 587
    for bw_op in backward_ops:
        bw_op['op_name'] = bw_op['name']
588 589 590 591 592 593
        add_fluid_name(bw_op['inputs'])
        add_fluid_name(bw_op['attrs'])
        add_fluid_name(bw_op['outputs'])
        add_fluid_name(bw_op['forward']['inputs'])
        add_fluid_name(bw_op['forward']['attrs'])
        add_fluid_name(bw_op['forward']['outputs'])
594 595 596 597 598
        for bw_output in bw_op['outputs']:
            bw_output['drop_empty_grad'] = True

    # deal the drop_empty_grad of bw_op by op_compat.yaml
    parse_drop_empty_grad(op_fluid_map_list, backward_op_dict)
599

600 601 602 603 604 605
    parse_get_expected_kerneltype(
        op_fluid_map_list, forward_op_dict, backward_op_dict
    )

    parse_keep_signature(op_fluid_map_list, forward_op_dict, backward_op_dict)

606
    add_composite_info(ops, backward_ops, backward_op_dict)
J
Jiabin Yang 已提交
607

608
    add_compat_name(op_fluid_map_list, forward_op_dict, backward_op_dict)
609 610

    # prepare for invoke case
611
    process_invoke_op(forward_op_dict, backward_op_dict)
612

613 614 615 616 617 618 619
    # fill backward field for an op if another op claims it as forward
    for name, backward_op in backward_op_dict.items():
        forward_name = backward_op["forward"]["name"]
        if forward_name in backward_op_dict:
            forward_op = backward_op_dict[forward_name]
            if forward_op["backward"] is None:
                forward_op["backward"] = name
620

621 622 623 624
    op_dict = {}
    op_dict.update(forward_op_dict)
    op_dict.update(backward_op_dict)
    if len(ops) == 0 and len(backward_ops) == 0:
625 626 627 628 629 630
        if os.path.isfile(output_op_path):
            os.remove(output_op_path)
        if os.path.isfile(output_arg_map_path):
            os.remove(output_arg_map_path)
        return
    op_template = env.get_template('op.c.j2')
631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647

    backward_fluid_op_dict = {}
    for bw_op in backward_ops:
        backward_fluid_op_dict[bw_op['op_name']] = bw_op
    output_op_files_num = len(output_op_path)
    new_ops_list, new_bw_ops_list = split_ops_list(
        ops, backward_fluid_op_dict, output_op_files_num
    )
    for idx, output_op_file in enumerate(output_op_path):
        with open(output_op_file, "wt") as f:
            msg = op_template.render(
                ops=new_ops_list[idx],
                backward_ops=new_bw_ops_list[idx],
                op_dict=op_dict,
            )
            f.write(msg)

648 649
    ks_template = env.get_template('ks.c.j2')
    with open(output_arg_map_path, 'wt') as f:
650
        msg = ks_template.render(ops=ops, backward_ops=backward_ops)
651 652 653 654 655
        f.write(msg)


if __name__ == "__main__":
    parser = argparse.ArgumentParser(
656
        description="Generate operator file from op yaml."
657 658 659 660 661 662 663 664 665 666 667 668 669 670
    )
    parser.add_argument(
        '--ops_yaml_path', type=str, help="parsed ops yaml file."
    )
    parser.add_argument(
        '--backward_yaml_path', type=str, help="parsed backward ops yaml file."
    )
    parser.add_argument(
        '--op_compat_yaml_path', type=str, help="ops args compat yaml file."
    )
    parser.add_argument(
        '--op_version_yaml_path', type=str, help="ops version yaml file."
    )
    parser.add_argument(
671 672 673 674
        "--output_op_path",
        type=str,
        nargs='+',
        help="path to save generated operators.",
675
    )
676 677 678
    parser.add_argument(
        "--output_arg_map_path",
        type=str,
679 680
        help="path to save generated argument mapping functions.",
    )
681 682

    args = parser.parse_args()
683 684 685 686 687 688 689 690
    main(
        args.ops_yaml_path,
        args.backward_yaml_path,
        args.op_compat_yaml_path,
        args.op_version_yaml_path,
        args.output_op_path,
        args.output_arg_map_path,
    )