generate_op.py 19.3 KB
Newer Older
1
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
9 10 11 12 13 14 15 16 17 18 19
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import os
from pathlib import Path

import yaml
20
from filters import (
21 22
    cartesian_prod_mapping,
    to_input_name,
23 24
    to_int_array_tensor_name,
    to_int_array_tensors_name,
25 26 27 28
    to_op_attr_type,
    to_opmaker_name,
    to_opmaker_name_cstr,
    to_pascal_case,
29
    to_scalar_tensor_name,
30
)
31 32
from jinja2 import Environment, FileSystemLoader, StrictUndefined
from parse_utils import to_named_dict
33
from tests import (
34
    is_base_op,
35
    is_initializer_list,
36 37
    is_scalar,
    is_vec,
38 39 40
    supports_inplace,
    supports_no_need_buffer,
)
41 42

file_loader = FileSystemLoader(Path(__file__).parent / "templates")
43 44 45 46 47 48 49 50
env = Environment(
    loader=file_loader,
    keep_trailing_newline=True,
    trim_blocks=True,
    lstrip_blocks=True,
    undefined=StrictUndefined,
    extensions=['jinja2.ext.do'],
)
51 52 53
env.filters["to_op_attr_type"] = to_op_attr_type
env.filters["to_opmaker_name"] = to_opmaker_name
env.filters["to_pascal_case"] = to_pascal_case
54 55 56
env.filters["to_scalar_tensor_name"] = to_scalar_tensor_name
env.filters["to_int_array_tensor_name"] = to_int_array_tensor_name
env.filters["to_int_array_tensors_name"] = to_int_array_tensors_name
57 58
env.filters["to_input_name"] = to_input_name
env.filters["to_opmaker_name_cstr"] = to_opmaker_name_cstr
59
env.filters["cartesian_prod_mapping"] = cartesian_prod_mapping
60
env.tests["base_op"] = is_base_op
61 62 63 64 65 66 67
env.tests["vec"] = is_vec
env.tests["scalar"] = is_scalar
env.tests["initializer_list"] = is_initializer_list
env.tests["supports_inplace"] = supports_inplace
env.tests["supports_no_need_buffer"] = supports_no_need_buffer


68 69 70 71 72
def restruct_io(op):
    op["input_dict"] = to_named_dict(op["inputs"])
    op["attr_dict"] = to_named_dict(op["attrs"])
    op["output_dict"] = to_named_dict(op["outputs"])
    return op
73 74


75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
def process_scalar(op_item, scalar_configs):
    scalar_map = {
        'Scalar': 'float',
        'Scalar(float)': 'float',
        'Scalar(int)': 'int',
        'Scalar(int64_t)': 'int64_t',
    }
    if scalar_configs is not None:
        for attr_item in op_item['attrs']:
            if attr_item['name'] in scalar_configs:
                attr_type = attr_item['typename']
                assert (
                    attr_type in scalar_map
                ), f"{op_item['name']}'s scalar in op_compat.yaml is error, the data_type of {attr_item['name']} is expected to be one of Scalar, Scalar(float), Scalar(int) or Scalar(int64_t), but now is {attr_type}."

                scalar_config = scalar_configs[attr_item['name']]
                attr_item['is_support_tensor'] = (
                    True
                    if 'support_tensor' in scalar_config
                    and scalar_config['support_tensor']
                    else False
                )
                if attr_item['is_support_tensor']:
                    attr_item['typename'] = (
                        scalar_config['data_type']
                        if 'data_type' in scalar_config
                        else scalar_map[attr_type]
                    )
                else:
                    attr_item['data_type'] = (
                        scalar_config['data_type']
                        if 'data_type' in scalar_config
                        else scalar_map[attr_type]
                    )
                    attr_item['tensor_name'] = scalar_config['tensor_name']


def process_int_array(op_item, int_array_configs):
    data_type_map = {
        'int': 'std::vector<int>',
        'int64_t': 'std::vector<int64_t>',
    }
    if int_array_configs is not None:
        for attr_item in op_item['attrs']:
            if attr_item['name'] in int_array_configs:
                attr_type = attr_item['typename']
                assert (
                    attr_item['typename'] == "IntArray"
                ), f"{op_item['name']}'s int_array in op_compat.yaml is error, the data_type of {attr_item['name']} is expected to be one of IntArray, but now is {attr_type}."

                int_array_config = int_array_configs[attr_item['name']]
                attr_item['is_support_tensor'] = (
                    True
                    if 'support_tensor' in int_array_config
                    and int_array_config['support_tensor']
                    else False
                )
                if attr_item['is_support_tensor']:
                    attr_item['typename'] = (
134
                        'int[]'
135
                        if 'data_type' in int_array_config
136 137
                        and int_array_config['data_type'] == 'int'
                        else 'int64_t[]'
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
                    )
                else:
                    attr_item['data_type'] = (
                        data_type_map[int_array_config['data_type']]
                        if 'data_type' in int_array_config
                        else 'std::vector<int64_t>'
                    )
                    attr_item['manual_flag'] = True
                    if 'tensor_name' in int_array_config:
                        attr_item['tensor_name'] = int_array_config[
                            'tensor_name'
                        ]
                    if 'tensors_name' in int_array_config:
                        attr_item['tensors_name'] = int_array_config[
                            'tensors_name'
                        ]


156
# replace name of op and params for OpMaker
157 158
def replace_compat_name(op_fluid_map_list, forward_op_dict, backward_op_dict):
    def get_phi_and_fluid_op_name(op_item):
159
        names = op_item.split('(')
160 161 162 163 164
        if len(names) == 1:
            return names[0].strip(), names[0].strip()
        else:
            return names[0].strip(), names[1].split(')')[0].strip()

165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
    def update_op_param_name(op_args, args_alias_map):
        for item in op_args:
            if item['name'] in args_alias_map:
                item['name'] = args_alias_map[item['name']]

    def update_grad_args_name(op_args, args_alias_map):
        for item in op_args:
            if (
                item['name'].endswith('_grad')
                and item['name'][:-5] in args_alias_map
            ):
                args_alias_map[item['name']] = (
                    args_alias_map[item['name'][:-5]] + '_grad'
                )
                item['name'] = args_alias_map[item['name'][:-5]] + '_grad'
180

181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
    def get_param_list_alias(param_list, args_map):
        return [
            args_map[param] if param in args_map else param
            for param in param_list
        ]

    def update_common_params_name(
        op_item, args_name_map, scalar_configs, int_array_configs
    ):
        if 'inplace' in op_item and op_item['inplace']:
            inplace_map = {}
            for key, val in op_item['inplace'].items():
                if key in args_map:
                    key = args_map[key]
                if val in args_map:
                    val = args_map[val]
                inplace_map[key] = val
            op_item['inplace'] = inplace_map
        if 'no_need_buffer' in op_item and op_item['no_need_buffer']:
            op_item['no_need_buffer'] = get_param_list_alias(
                op_item['no_need_buffer'], args_map
            )

        process_scalar(op_item, scalar_configs)
        process_int_array(op_item, int_array_configs)

        if 'invoke' in op_item:
            op_item['invoke']['args'] = [
                args_map[param.strip()]
                if param.strip() in args_map
                else param.strip()
                for param in op_item['invoke']['args'].split(',')
            ]
            return
        op_item['infer_meta']['param'] = get_param_list_alias(
            op_item['infer_meta']['param'], args_name_map
        )
        op_item['kernel']['param'] = get_param_list_alias(
            op_item['kernel']['param'], args_name_map
        )
        if op_item['kernel']['data_type']:
            op_item['kernel']['data_type']['candidates'] = get_param_list_alias(
                op_item['kernel']['data_type']['candidates'], args_name_map
            )
        if op_item['kernel']['backend']:
            op_item['kernel']['backend']['candidates'] = get_param_list_alias(
                op_item['kernel']['backend']['candidates'], args_name_map
            )
        if op_item['kernel']['layout']:
            op_item['kernel']['layout']['candidates'] = get_param_list_alias(
                op_item['kernel']['layout']['candidates'], args_name_map
            )

    def update_grad_op_compat_name(grad_op_item, args_name_map):
        update_op_param_name(grad_op_item['inputs'], args_name_map)
        update_op_param_name(grad_op_item['outputs'], args_name_map)
        update_op_param_name(grad_op_item['attrs'], args_name_map)
        update_op_param_name(grad_op_item['forward']['inputs'], args_name_map)
        update_op_param_name(grad_op_item['forward']['outputs'], args_name_map)
        update_op_param_name(grad_op_item['forward']['attrs'], args_name_map)
        update_grad_args_name(grad_op_item['inputs'], args_map)
        update_grad_args_name(grad_op_item['outputs'], args_map)

    for op_args in op_fluid_map_list:
        new_op_name, op_name = get_phi_and_fluid_op_name(op_args['op'])
246
        if new_op_name not in forward_op_dict:
247
            continue
248 249
        forward_op_item = forward_op_dict[new_op_name]
        has_backward = True if forward_op_item['backward'] else False
250
        if has_backward:
251 252 253
            backward_op_item = backward_op_dict[forward_op_item['backward']]
        if new_op_name != op_name:
            forward_op_item['op_name'] = op_name
254

255 256 257 258 259 260
        scalar_configs = None
        int_array_configs = None
        if 'scalar' in op_args:
            scalar_configs = op_args['scalar']
        if 'int_array' in op_args:
            int_array_configs = op_args['int_array']
261 262 263 264
        if 'extra' in op_args and 'outputs' in op_args['extra']:
            for out_item in forward_op_item['outputs']:
                if out_item['name'] in op_args['extra']['outputs']:
                    out_item['is_extra'] = True
265

266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
        key_set = ['inputs', 'attrs', 'outputs']
        args_map = {}
        for key in key_set:
            if key in op_args:
                args_map.update(op_args[key])
                for args_item in forward_op_item[key]:
                    if args_item['name'] in op_args[key]:
                        if (
                            scalar_configs
                            and args_item['name'] in scalar_configs
                        ):
                            scalar_configs[
                                op_args[key][args_item['name']]
                            ] = scalar_configs[args_item['name']]
                        if (
                            int_array_configs
                            and args_item['name'] in int_array_configs
                        ):
                            int_array_configs[
                                op_args[key][args_item['name']]
                            ] = int_array_configs[args_item['name']]
                        args_item['name'] = op_args[key][args_item['name']]
                if has_backward:
                    for args_item in backward_op_item['forward'][key]:
                        if args_item['name'] in op_args[key]:
                            args_item['name'] = op_args[key][args_item['name']]
        forward_op_item["attr_dict"] = to_named_dict(forward_op_item["attrs"])
        update_common_params_name(
            forward_op_item, args_map, scalar_configs, int_array_configs
        )

        if has_backward:
            update_grad_op_compat_name(backward_op_item, args_map)
            update_common_params_name(
                backward_op_item, args_map, scalar_configs, int_array_configs
            )
            backward_op_item["attr_dict"] = to_named_dict(
                backward_op_item["attrs"]
            )

            if 'backward' not in op_args:
                continue
308

309
            backward_op_list = op_args['backward'].split(',')
310
            _, bw_op_name = get_phi_and_fluid_op_name(backward_op_list[0])
311 312
            forward_op_item['backward'] = bw_op_name
            backward_op_item['op_name'] = bw_op_name
313

314 315
            # for double grad
            if len(backward_op_list) > 1:
316
                (
317
                    phi_double_grad_op_name,
318
                    double_grad_op_name,
319 320
                ) = get_phi_and_fluid_op_name(backward_op_list[1])
                double_grad_item = backward_op_dict[phi_double_grad_op_name]
321
                backward_op_item['backward'] = double_grad_op_name
322
                double_grad_item['op_name'] = double_grad_op_name
323 324 325 326 327 328 329 330 331 332
                update_grad_op_compat_name(double_grad_item, args_map)
                update_common_params_name(
                    double_grad_item,
                    args_map,
                    scalar_configs,
                    int_array_configs,
                )
                double_grad_item["attr_dict"] = to_named_dict(
                    double_grad_item["attrs"]
                )
333

334 335 336
                # for triple grad
                if len(backward_op_list) > 2:
                    (
337
                        phi_triple_grad_op_name,
338
                        triple_grad_op_name,
339 340
                    ) = get_phi_and_fluid_op_name(backward_op_list[2])
                    triple_grad_item = backward_op_dict[phi_triple_grad_op_name]
341 342
                    double_grad_item['backward'] = triple_grad_op_name
                    triple_grad_item['op_name'] = triple_grad_op_name
343 344 345 346 347 348
                    update_grad_op_compat_name(triple_grad_item, args_map)
                    update_common_params_name(
                        triple_grad_item,
                        args_map,
                        scalar_configs,
                        int_array_configs,
349
                    )
350 351
                    triple_grad_item["attr_dict"] = to_named_dict(
                        triple_grad_item["attrs"]
352
                    )
353

354

355 356 357 358 359
def process_invoke_op(forward_op_dict, backward_op_dict):
    for bw_op in backward_op_dict.values():
        if 'invoke' in bw_op:
            invoke_op = bw_op['invoke']['func']
            args_list = bw_op['invoke']['args']
360
            args_index = 0
361 362
            if invoke_op in forward_op_dict:
                reuse_op = forward_op_dict[invoke_op]
363
                bw_op['invoke']['func'] = reuse_op['op_name']
364 365 366
                bw_op['invoke']['inputs'] = []
                bw_op['invoke']['attrs'] = []
                bw_op['invoke']['outputs'] = []
367
                for input_item in reuse_op['inputs']:
368
                    bw_op['invoke']['inputs'].append(
369 370 371 372 373
                        {
                            'name': input_item['name'],
                            'value': args_list[args_index],
                        }
                    )
374 375 376
                    args_index = args_index + 1
                for attr in reuse_op['attrs']:
                    if args_index < len(args_list):
377 378
                        attr_value = (
                            f"this->GetAttr(\"{args_list[args_index]}\")"
379
                            if args_list[args_index] in bw_op['attr_dict']
380 381
                            else args_list[args_index]
                        )
382
                        bw_op['invoke']['attrs'].append(
383 384
                            {'name': attr['name'], 'value': attr_value}
                        )
385 386 387 388
                        args_index = args_index + 1
                    else:
                        break
                for idx, output_item in enumerate(reuse_op['outputs']):
389
                    bw_op['invoke']['outputs'].append(
390 391
                        {
                            'name': output_item['name'],
392
                            'value': bw_op['outputs'][idx]['name'],
393 394 395 396 397 398 399 400 401 402 403 404
                        }
                    )


def main(
    ops_yaml_path,
    backward_yaml_path,
    op_compat_yaml_path,
    op_version_yaml_path,
    output_op_path,
    output_arg_map_path,
):
405
    with open(ops_yaml_path, "rt") as f:
406 407 408
        ops = yaml.safe_load(f)
        ops = [restruct_io(op) for op in ops]
    forward_op_dict = to_named_dict(ops)
409 410

    with open(backward_yaml_path, "rt") as f:
411 412 413
        backward_ops = yaml.safe_load(f)
        backward_ops = [restruct_io(op) for op in backward_ops]
    backward_op_dict = to_named_dict(backward_ops)
414 415

    with open(op_version_yaml_path, "rt") as f:
416 417 418 419
        op_versions = yaml.safe_load(f)
    # add op version info into op
    for op_version in op_versions:
        forward_op_dict[op_version['op']]['version'] = op_version['version']
420 421

    with open(op_compat_yaml_path, "rt") as f:
422
        op_fluid_map_list = yaml.safe_load(f)
423

424 425 426 427
    for op in ops:
        op['op_name'] = op['name']
    for bw_op in backward_ops:
        bw_op['op_name'] = bw_op['name']
428

429
    replace_compat_name(op_fluid_map_list, forward_op_dict, backward_op_dict)
430 431

    # prepare for invoke case
432
    process_invoke_op(forward_op_dict, backward_op_dict)
433

434 435 436 437 438 439 440
    # fill backward field for an op if another op claims it as forward
    for name, backward_op in backward_op_dict.items():
        forward_name = backward_op["forward"]["name"]
        if forward_name in backward_op_dict:
            forward_op = backward_op_dict[forward_name]
            if forward_op["backward"] is None:
                forward_op["backward"] = name
441

442 443 444
    op_dict = {}
    op_dict.update(forward_op_dict)
    op_dict.update(backward_op_dict)
445

446
    if len(ops) == 0 and len(backward_ops) == 0:
447 448 449 450 451 452 453 454
        if os.path.isfile(output_op_path):
            os.remove(output_op_path)
        if os.path.isfile(output_arg_map_path):
            os.remove(output_arg_map_path)
        return

    op_template = env.get_template('op.c.j2')
    with open(output_op_path, "wt") as f:
455
        msg = op_template.render(
456
            ops=ops, backward_ops=backward_ops, op_dict=op_dict
457
        )
458 459 460 461
        f.write(msg)

    ks_template = env.get_template('ks.c.j2')
    with open(output_arg_map_path, 'wt') as f:
462
        msg = ks_template.render(ops=ops, backward_ops=backward_ops)
463 464 465 466 467
        f.write(msg)


if __name__ == "__main__":
    parser = argparse.ArgumentParser(
468
        description="Generate operator file from op yaml."
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
    )
    parser.add_argument(
        '--ops_yaml_path', type=str, help="parsed ops yaml file."
    )
    parser.add_argument(
        '--backward_yaml_path', type=str, help="parsed backward ops yaml file."
    )
    parser.add_argument(
        '--op_compat_yaml_path', type=str, help="ops args compat yaml file."
    )
    parser.add_argument(
        '--op_version_yaml_path', type=str, help="ops version yaml file."
    )
    parser.add_argument(
        "--output_op_path", type=str, help="path to save generated operators."
    )
485 486 487
    parser.add_argument(
        "--output_arg_map_path",
        type=str,
488 489
        help="path to save generated argument mapping functions.",
    )
490 491

    args = parser.parse_args()
492 493 494 495 496 497 498 499
    main(
        args.ops_yaml_path,
        args.backward_yaml_path,
        args.op_compat_yaml_path,
        args.op_version_yaml_path,
        args.output_op_path,
        args.output_arg_map_path,
    )