generate_op.py 23.0 KB
Newer Older
1
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
9 10 11 12 13 14 15 16 17 18 19
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import os
from pathlib import Path

import yaml
20
from filters import (
21
    cartesian_prod_mapping,
J
Jiabin Yang 已提交
22
    to_composite_grad_opmaker_name,
23
    to_input_name,
24 25
    to_int_array_tensor_name,
    to_int_array_tensors_name,
26 27 28 29
    to_op_attr_type,
    to_opmaker_name,
    to_opmaker_name_cstr,
    to_pascal_case,
30
    to_scalar_tensor_name,
31
    to_variable_names,
32
)
33 34
from jinja2 import Environment, FileSystemLoader, StrictUndefined
from parse_utils import to_named_dict
35
from tests import (
36
    is_base_op,
J
Jiabin Yang 已提交
37
    is_composite_op,
38
    is_initializer_list,
39 40
    is_scalar,
    is_vec,
41 42 43
    supports_inplace,
    supports_no_need_buffer,
)
44 45

file_loader = FileSystemLoader(Path(__file__).parent / "templates")
46 47 48 49 50 51 52 53
env = Environment(
    loader=file_loader,
    keep_trailing_newline=True,
    trim_blocks=True,
    lstrip_blocks=True,
    undefined=StrictUndefined,
    extensions=['jinja2.ext.do'],
)
54 55 56
env.filters["to_op_attr_type"] = to_op_attr_type
env.filters["to_opmaker_name"] = to_opmaker_name
env.filters["to_pascal_case"] = to_pascal_case
57 58 59
env.filters["to_scalar_tensor_name"] = to_scalar_tensor_name
env.filters["to_int_array_tensor_name"] = to_int_array_tensor_name
env.filters["to_int_array_tensors_name"] = to_int_array_tensors_name
60 61
env.filters["to_input_name"] = to_input_name
env.filters["to_opmaker_name_cstr"] = to_opmaker_name_cstr
62
env.filters["cartesian_prod_mapping"] = cartesian_prod_mapping
J
Jiabin Yang 已提交
63
env.filters["to_composite_grad_opmaker_name"] = to_composite_grad_opmaker_name
64
env.filters["to_variable_names"] = to_variable_names
65
env.tests["base_op"] = is_base_op
J
Jiabin Yang 已提交
66
env.tests["composite_op"] = is_composite_op
67 68 69 70 71 72 73
env.tests["vec"] = is_vec
env.tests["scalar"] = is_scalar
env.tests["initializer_list"] = is_initializer_list
env.tests["supports_inplace"] = supports_inplace
env.tests["supports_no_need_buffer"] = supports_no_need_buffer


74 75 76 77 78
def restruct_io(op):
    op["input_dict"] = to_named_dict(op["inputs"])
    op["attr_dict"] = to_named_dict(op["attrs"])
    op["output_dict"] = to_named_dict(op["outputs"])
    return op
79 80


81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
def process_scalar(op_item, scalar_configs):
    scalar_map = {
        'Scalar': 'float',
        'Scalar(float)': 'float',
        'Scalar(int)': 'int',
        'Scalar(int64_t)': 'int64_t',
    }
    if scalar_configs is not None:
        for attr_item in op_item['attrs']:
            if attr_item['name'] in scalar_configs:
                attr_type = attr_item['typename']
                assert (
                    attr_type in scalar_map
                ), f"{op_item['name']}'s scalar in op_compat.yaml is error, the data_type of {attr_item['name']} is expected to be one of Scalar, Scalar(float), Scalar(int) or Scalar(int64_t), but now is {attr_type}."

                scalar_config = scalar_configs[attr_item['name']]
                attr_item['is_support_tensor'] = (
                    True
                    if 'support_tensor' in scalar_config
                    and scalar_config['support_tensor']
                    else False
                )
                if attr_item['is_support_tensor']:
                    attr_item['typename'] = (
                        scalar_config['data_type']
                        if 'data_type' in scalar_config
                        else scalar_map[attr_type]
                    )
                else:
                    attr_item['data_type'] = (
                        scalar_config['data_type']
                        if 'data_type' in scalar_config
                        else scalar_map[attr_type]
                    )
                    attr_item['tensor_name'] = scalar_config['tensor_name']


def process_int_array(op_item, int_array_configs):
    data_type_map = {
        'int': 'std::vector<int>',
        'int64_t': 'std::vector<int64_t>',
    }
    if int_array_configs is not None:
        for attr_item in op_item['attrs']:
            if attr_item['name'] in int_array_configs:
                attr_type = attr_item['typename']
                assert (
                    attr_item['typename'] == "IntArray"
                ), f"{op_item['name']}'s int_array in op_compat.yaml is error, the data_type of {attr_item['name']} is expected to be one of IntArray, but now is {attr_type}."

                int_array_config = int_array_configs[attr_item['name']]
                attr_item['is_support_tensor'] = (
                    True
                    if 'support_tensor' in int_array_config
                    and int_array_config['support_tensor']
                    else False
                )
                if attr_item['is_support_tensor']:
                    attr_item['typename'] = (
140
                        'int[]'
141
                        if 'data_type' in int_array_config
142 143
                        and int_array_config['data_type'] == 'int'
                        else 'int64_t[]'
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
                    )
                else:
                    attr_item['data_type'] = (
                        data_type_map[int_array_config['data_type']]
                        if 'data_type' in int_array_config
                        else 'std::vector<int64_t>'
                    )
                    attr_item['manual_flag'] = True
                    if 'tensor_name' in int_array_config:
                        attr_item['tensor_name'] = int_array_config[
                            'tensor_name'
                        ]
                    if 'tensors_name' in int_array_config:
                        attr_item['tensors_name'] = int_array_config[
                            'tensors_name'
                        ]


162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
def add_composite_info(ops, backward_ops, backward_op_dict):
    # add backward composite name in forward
    for op in ops + backward_ops:
        if (
            op["backward"] in backward_op_dict
            and "composite" in backward_op_dict[op["backward"]]
        ):
            op["backward_composite"] = op["backward"]
        else:
            op["backward_composite"] = None


# add fluid name in ops and backward ops info
def add_fluid_name(dict_list):
    for item in dict_list:
        item["fluid_name"] = item["name"]


# add fluid name of op and params for OpMaker
def add_compat_name(op_fluid_map_list, forward_op_dict, backward_op_dict):
182
    def get_phi_and_fluid_op_name(op_item):
183
        names = op_item.split('(')
184 185 186 187 188
        if len(names) == 1:
            return names[0].strip(), names[0].strip()
        else:
            return names[0].strip(), names[1].split(')')[0].strip()

189
    def add_op_param_name(op_args, args_alias_map):
190 191
        for item in op_args:
            if item['name'] in args_alias_map:
192 193 194
                item['fluid_name'] = args_alias_map[item['name']]
            else:
                item['fluid_name'] = item['name']
195

196
    def add_grad_args_name(op_args, args_alias_map):
197 198 199 200 201 202 203 204
        for item in op_args:
            if (
                item['name'].endswith('_grad')
                and item['name'][:-5] in args_alias_map
            ):
                args_alias_map[item['name']] = (
                    args_alias_map[item['name'][:-5]] + '_grad'
                )
205 206 207 208 209 210
                item['fluid_name'] = args_alias_map[item['name'][:-5]] + '_grad'
            elif (
                item['name'].endswith('_grad')
                and item['name'][:-5] not in args_alias_map
            ):
                item['fluid_name'] = item['name']
J
Jiabin Yang 已提交
211

212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
    def get_param_list_alias(param_list, args_map):
        return [
            args_map[param] if param in args_map else param
            for param in param_list
        ]

    def update_common_params_name(
        op_item, args_name_map, scalar_configs, int_array_configs
    ):
        if 'inplace' in op_item and op_item['inplace']:
            inplace_map = {}
            for key, val in op_item['inplace'].items():
                if key in args_map:
                    key = args_map[key]
                if val in args_map:
                    val = args_map[val]
                inplace_map[key] = val
            op_item['inplace'] = inplace_map
        if 'no_need_buffer' in op_item and op_item['no_need_buffer']:
            op_item['no_need_buffer'] = get_param_list_alias(
                op_item['no_need_buffer'], args_map
            )
234 235 236 237 238 239 240 241 242 243
        if 'data_transform' in op_item and op_item['data_transform']:
            data_trans_item = op_item['data_transform']
            if 'skip_transform' in data_trans_item:
                data_trans_item['skip_transform'] = get_param_list_alias(
                    data_trans_item['skip_transform'], args_map
                )
            if 'support_trans_dtype' in data_trans_item:
                data_trans_item['support_trans_dtype'] = get_param_list_alias(
                    data_trans_item['support_trans_dtype'], args_map
                )
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274

        process_scalar(op_item, scalar_configs)
        process_int_array(op_item, int_array_configs)

        if 'invoke' in op_item:
            op_item['invoke']['args'] = [
                args_map[param.strip()]
                if param.strip() in args_map
                else param.strip()
                for param in op_item['invoke']['args'].split(',')
            ]
            return
        op_item['infer_meta']['param'] = get_param_list_alias(
            op_item['infer_meta']['param'], args_name_map
        )
        op_item['kernel']['param'] = get_param_list_alias(
            op_item['kernel']['param'], args_name_map
        )
        if op_item['kernel']['data_type']:
            op_item['kernel']['data_type']['candidates'] = get_param_list_alias(
                op_item['kernel']['data_type']['candidates'], args_name_map
            )
        if op_item['kernel']['backend']:
            op_item['kernel']['backend']['candidates'] = get_param_list_alias(
                op_item['kernel']['backend']['candidates'], args_name_map
            )
        if op_item['kernel']['layout']:
            op_item['kernel']['layout']['candidates'] = get_param_list_alias(
                op_item['kernel']['layout']['candidates'], args_name_map
            )

275 276 277 278 279 280 281 282 283
    def add_grad_op_compat_name(grad_op_item, args_name_map):
        add_op_param_name(grad_op_item['inputs'], args_name_map)
        add_op_param_name(grad_op_item['outputs'], args_name_map)
        add_op_param_name(grad_op_item['attrs'], args_name_map)
        add_op_param_name(grad_op_item['forward']['inputs'], args_name_map)
        add_op_param_name(grad_op_item['forward']['outputs'], args_name_map)
        add_op_param_name(grad_op_item['forward']['attrs'], args_name_map)
        add_grad_args_name(grad_op_item['inputs'], args_map)
        add_grad_args_name(grad_op_item['outputs'], args_map)
284 285 286

    for op_args in op_fluid_map_list:
        new_op_name, op_name = get_phi_and_fluid_op_name(op_args['op'])
287
        if new_op_name not in forward_op_dict:
288
            continue
289 290
        forward_op_item = forward_op_dict[new_op_name]
        has_backward = True if forward_op_item['backward'] else False
291
        if has_backward:
292 293 294
            backward_op_item = backward_op_dict[forward_op_item['backward']]
        if new_op_name != op_name:
            forward_op_item['op_name'] = op_name
295

296 297 298 299 300 301
        scalar_configs = None
        int_array_configs = None
        if 'scalar' in op_args:
            scalar_configs = op_args['scalar']
        if 'int_array' in op_args:
            int_array_configs = op_args['int_array']
302 303 304 305
        if 'extra' in op_args and 'outputs' in op_args['extra']:
            for out_item in forward_op_item['outputs']:
                if out_item['name'] in op_args['extra']['outputs']:
                    out_item['is_extra'] = True
306

307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
        key_set = ['inputs', 'attrs', 'outputs']
        args_map = {}
        for key in key_set:
            if key in op_args:
                args_map.update(op_args[key])
                for args_item in forward_op_item[key]:
                    if args_item['name'] in op_args[key]:
                        if (
                            scalar_configs
                            and args_item['name'] in scalar_configs
                        ):
                            scalar_configs[
                                op_args[key][args_item['name']]
                            ] = scalar_configs[args_item['name']]
                        if (
                            int_array_configs
                            and args_item['name'] in int_array_configs
                        ):
                            int_array_configs[
                                op_args[key][args_item['name']]
                            ] = int_array_configs[args_item['name']]
328 329 330
                        args_item['fluid_name'] = op_args[key][
                            args_item['name']
                        ]
331 332 333 334 335
        update_common_params_name(
            forward_op_item, args_map, scalar_configs, int_array_configs
        )

        if has_backward:
336 337
            # update fluid info in backward
            add_grad_op_compat_name(backward_op_item, args_map)
338 339 340 341 342 343
            update_common_params_name(
                backward_op_item, args_map, scalar_configs, int_array_configs
            )

            if 'backward' not in op_args:
                continue
344

345
            backward_op_list = op_args['backward'].split(',')
346 347 348 349 350 351 352 353
            phi_bw_op_name, bw_op_name = get_phi_and_fluid_op_name(
                backward_op_list[0]
            )
            if (
                forward_op_item["backward_composite"] is not None
                and phi_bw_op_name != bw_op_name
            ):
                forward_op_item["backward_composite"] = bw_op_name
354 355
            forward_op_item['backward'] = bw_op_name
            backward_op_item['op_name'] = bw_op_name
356

357 358
            # for double grad
            if len(backward_op_list) > 1:
359
                (
360
                    phi_double_grad_op_name,
361
                    double_grad_op_name,
362 363
                ) = get_phi_and_fluid_op_name(backward_op_list[1])
                double_grad_item = backward_op_dict[phi_double_grad_op_name]
364 365 366 367 368
                if (
                    backward_op_item["backward_composite"] is not None
                    and phi_double_grad_op_name != double_grad_op_name
                ):
                    backward_op_item["backward_composite"] = double_grad_op_name
369
                backward_op_item['backward'] = double_grad_op_name
370
                double_grad_item['op_name'] = double_grad_op_name
371
                add_grad_op_compat_name(double_grad_item, args_map)
372 373 374 375 376 377
                update_common_params_name(
                    double_grad_item,
                    args_map,
                    scalar_configs,
                    int_array_configs,
                )
378

379 380 381
                # for triple grad
                if len(backward_op_list) > 2:
                    (
382
                        phi_triple_grad_op_name,
383
                        triple_grad_op_name,
384 385
                    ) = get_phi_and_fluid_op_name(backward_op_list[2])
                    triple_grad_item = backward_op_dict[phi_triple_grad_op_name]
386 387 388 389 390 391 392
                    if (
                        double_grad_item["backward_composite"] is not None
                        and phi_triple_grad_op_name != triple_grad_op_name
                    ):
                        double_grad_item[
                            "backward_composite"
                        ] = triple_grad_op_name
393 394
                    double_grad_item['backward'] = triple_grad_op_name
                    triple_grad_item['op_name'] = triple_grad_op_name
395
                    add_grad_op_compat_name(triple_grad_item, args_map)
396 397 398 399 400
                    update_common_params_name(
                        triple_grad_item,
                        args_map,
                        scalar_configs,
                        int_array_configs,
401
                    )
402

403

404 405 406 407 408
def process_invoke_op(forward_op_dict, backward_op_dict):
    for bw_op in backward_op_dict.values():
        if 'invoke' in bw_op:
            invoke_op = bw_op['invoke']['func']
            args_list = bw_op['invoke']['args']
409
            args_index = 0
410 411
            if invoke_op in forward_op_dict:
                reuse_op = forward_op_dict[invoke_op]
412
                bw_op['invoke']['func'] = reuse_op['op_name']
413 414 415
                bw_op['invoke']['inputs'] = []
                bw_op['invoke']['attrs'] = []
                bw_op['invoke']['outputs'] = []
416
                for input_item in reuse_op['inputs']:
417
                    bw_op['invoke']['inputs'].append(
418
                        {
419
                            'fluid_name': input_item['fluid_name'],
420 421 422 423
                            'name': input_item['name'],
                            'value': args_list[args_index],
                        }
                    )
424
                    args_index = args_index + 1
425 426 427
                bw_fluid_attrs_set = [
                    item['fluid_name'] for item in bw_op['attrs']
                ]
428 429
                for attr in reuse_op['attrs']:
                    if args_index < len(args_list):
430 431
                        attr_value = (
                            f"this->GetAttr(\"{args_list[args_index]}\")"
432
                            if args_list[args_index] in bw_fluid_attrs_set
433 434
                            else args_list[args_index]
                        )
435
                        bw_op['invoke']['attrs'].append(
436 437 438 439 440
                            {
                                'name': attr['name'],
                                'fluid_name': attr['fluid_name'],
                                'value': attr_value,
                            }
441
                        )
442 443 444 445
                        args_index = args_index + 1
                    else:
                        break
                for idx, output_item in enumerate(reuse_op['outputs']):
446
                    bw_op['invoke']['outputs'].append(
447 448
                        {
                            'name': output_item['name'],
449 450
                            'fluid_name': output_item['fluid_name'],
                            'value': bw_op['outputs'][idx]['fluid_name'],
451 452 453 454
                        }
                    )


455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
def parse_drop_empty_grad(op_fluid_list: list, bw_op_dict: dict):
    for op_op in op_fluid_list:
        if 'drop_empty_grad' in op_op:
            bw_names = [
                bw_name.split('(')[0].strip()
                for bw_name in op_op['backward'].split(',')
            ]
            for bw_name in bw_names:
                assert (
                    bw_name in bw_op_dict
                ), f"backward {bw_name} is not existed"
                for out_grad in op_op['drop_empty_grad']:
                    assert (
                        out_grad in bw_op_dict[bw_name]['output_dict']
                    ), f'''
                         {bw_name} with {out_grad} is not existed in output_dict '''
                    bw_op_dict[bw_name]['output_dict'][out_grad][
                        'drop_empty_grad'
                    ] = False


476 477 478 479 480 481 482 483
def main(
    ops_yaml_path,
    backward_yaml_path,
    op_compat_yaml_path,
    op_version_yaml_path,
    output_op_path,
    output_arg_map_path,
):
484
    with open(ops_yaml_path, "rt") as f:
485 486 487
        ops = yaml.safe_load(f)
        ops = [restruct_io(op) for op in ops]
    forward_op_dict = to_named_dict(ops)
488
    with open(backward_yaml_path, "rt") as f:
489 490 491
        backward_ops = yaml.safe_load(f)
        backward_ops = [restruct_io(op) for op in backward_ops]
    backward_op_dict = to_named_dict(backward_ops)
492
    with open(op_version_yaml_path, "rt") as f:
493 494 495 496
        op_versions = yaml.safe_load(f)
    # add op version info into op
    for op_version in op_versions:
        forward_op_dict[op_version['op']]['version'] = op_version['version']
497 498

    with open(op_compat_yaml_path, "rt") as f:
499
        op_fluid_map_list = yaml.safe_load(f)
500

501 502
    for op in ops:
        op['op_name'] = op['name']
503 504 505
        add_fluid_name(op['inputs'])
        add_fluid_name(op['attrs'])
        add_fluid_name(op['outputs'])
506 507
    for bw_op in backward_ops:
        bw_op['op_name'] = bw_op['name']
508 509 510 511 512 513
        add_fluid_name(bw_op['inputs'])
        add_fluid_name(bw_op['attrs'])
        add_fluid_name(bw_op['outputs'])
        add_fluid_name(bw_op['forward']['inputs'])
        add_fluid_name(bw_op['forward']['attrs'])
        add_fluid_name(bw_op['forward']['outputs'])
514 515 516 517 518
        for bw_output in bw_op['outputs']:
            bw_output['drop_empty_grad'] = True

    # deal the drop_empty_grad of bw_op by op_compat.yaml
    parse_drop_empty_grad(op_fluid_map_list, backward_op_dict)
519

520
    add_composite_info(ops, backward_ops, backward_op_dict)
J
Jiabin Yang 已提交
521

522
    add_compat_name(op_fluid_map_list, forward_op_dict, backward_op_dict)
523 524

    # prepare for invoke case
525
    process_invoke_op(forward_op_dict, backward_op_dict)
526

527 528 529 530 531 532 533
    # fill backward field for an op if another op claims it as forward
    for name, backward_op in backward_op_dict.items():
        forward_name = backward_op["forward"]["name"]
        if forward_name in backward_op_dict:
            forward_op = backward_op_dict[forward_name]
            if forward_op["backward"] is None:
                forward_op["backward"] = name
534

535 536 537 538
    op_dict = {}
    op_dict.update(forward_op_dict)
    op_dict.update(backward_op_dict)
    if len(ops) == 0 and len(backward_ops) == 0:
539 540 541 542 543 544 545
        if os.path.isfile(output_op_path):
            os.remove(output_op_path)
        if os.path.isfile(output_arg_map_path):
            os.remove(output_arg_map_path)
        return
    op_template = env.get_template('op.c.j2')
    with open(output_op_path, "wt") as f:
546
        msg = op_template.render(
J
Jiabin Yang 已提交
547 548 549
            ops=ops,
            backward_ops=backward_ops,
            op_dict=op_dict,
550
        )
551 552 553
        f.write(msg)
    ks_template = env.get_template('ks.c.j2')
    with open(output_arg_map_path, 'wt') as f:
554
        msg = ks_template.render(ops=ops, backward_ops=backward_ops)
555 556 557 558 559
        f.write(msg)


if __name__ == "__main__":
    parser = argparse.ArgumentParser(
560
        description="Generate operator file from op yaml."
561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
    )
    parser.add_argument(
        '--ops_yaml_path', type=str, help="parsed ops yaml file."
    )
    parser.add_argument(
        '--backward_yaml_path', type=str, help="parsed backward ops yaml file."
    )
    parser.add_argument(
        '--op_compat_yaml_path', type=str, help="ops args compat yaml file."
    )
    parser.add_argument(
        '--op_version_yaml_path', type=str, help="ops version yaml file."
    )
    parser.add_argument(
        "--output_op_path", type=str, help="path to save generated operators."
    )
577 578 579
    parser.add_argument(
        "--output_arg_map_path",
        type=str,
580 581
        help="path to save generated argument mapping functions.",
    )
582 583

    args = parser.parse_args()
584 585 586 587 588 589 590 591
    main(
        args.ops_yaml_path,
        args.backward_yaml_path,
        args.op_compat_yaml_path,
        args.op_version_yaml_path,
        args.output_op_path,
        args.output_arg_map_path,
    )