generate_op.py 23.5 KB
Newer Older
1
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
9 10 11 12 13 14 15 16 17 18 19
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import os
from pathlib import Path

import yaml
20
from filters import (
21
    cartesian_prod_mapping,
J
Jiabin Yang 已提交
22
    to_composite_grad_opmaker_name,
23
    to_input_name,
24 25
    to_int_array_tensor_name,
    to_int_array_tensors_name,
26 27 28 29
    to_op_attr_type,
    to_opmaker_name,
    to_opmaker_name_cstr,
    to_pascal_case,
30
    to_scalar_tensor_name,
31
)
32 33
from jinja2 import Environment, FileSystemLoader, StrictUndefined
from parse_utils import to_named_dict
34
from tests import (
35
    is_base_op,
J
Jiabin Yang 已提交
36
    is_composite_op,
37
    is_initializer_list,
38 39
    is_scalar,
    is_vec,
40 41 42
    supports_inplace,
    supports_no_need_buffer,
)
43 44

file_loader = FileSystemLoader(Path(__file__).parent / "templates")
45 46 47 48 49 50 51 52
env = Environment(
    loader=file_loader,
    keep_trailing_newline=True,
    trim_blocks=True,
    lstrip_blocks=True,
    undefined=StrictUndefined,
    extensions=['jinja2.ext.do'],
)
53 54 55
env.filters["to_op_attr_type"] = to_op_attr_type
env.filters["to_opmaker_name"] = to_opmaker_name
env.filters["to_pascal_case"] = to_pascal_case
56 57 58
env.filters["to_scalar_tensor_name"] = to_scalar_tensor_name
env.filters["to_int_array_tensor_name"] = to_int_array_tensor_name
env.filters["to_int_array_tensors_name"] = to_int_array_tensors_name
59 60
env.filters["to_input_name"] = to_input_name
env.filters["to_opmaker_name_cstr"] = to_opmaker_name_cstr
61
env.filters["cartesian_prod_mapping"] = cartesian_prod_mapping
J
Jiabin Yang 已提交
62
env.filters["to_composite_grad_opmaker_name"] = to_composite_grad_opmaker_name
63
env.tests["base_op"] = is_base_op
J
Jiabin Yang 已提交
64
env.tests["composite_op"] = is_composite_op
65 66 67 68 69 70 71
env.tests["vec"] = is_vec
env.tests["scalar"] = is_scalar
env.tests["initializer_list"] = is_initializer_list
env.tests["supports_inplace"] = supports_inplace
env.tests["supports_no_need_buffer"] = supports_no_need_buffer


72 73 74 75 76
def restruct_io(op):
    op["input_dict"] = to_named_dict(op["inputs"])
    op["attr_dict"] = to_named_dict(op["attrs"])
    op["output_dict"] = to_named_dict(op["outputs"])
    return op
77 78


79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
def process_scalar(op_item, scalar_configs):
    scalar_map = {
        'Scalar': 'float',
        'Scalar(float)': 'float',
        'Scalar(int)': 'int',
        'Scalar(int64_t)': 'int64_t',
    }
    if scalar_configs is not None:
        for attr_item in op_item['attrs']:
            if attr_item['name'] in scalar_configs:
                attr_type = attr_item['typename']
                assert (
                    attr_type in scalar_map
                ), f"{op_item['name']}'s scalar in op_compat.yaml is error, the data_type of {attr_item['name']} is expected to be one of Scalar, Scalar(float), Scalar(int) or Scalar(int64_t), but now is {attr_type}."

                scalar_config = scalar_configs[attr_item['name']]
                attr_item['is_support_tensor'] = (
                    True
                    if 'support_tensor' in scalar_config
                    and scalar_config['support_tensor']
                    else False
                )
                if attr_item['is_support_tensor']:
                    attr_item['typename'] = (
                        scalar_config['data_type']
                        if 'data_type' in scalar_config
                        else scalar_map[attr_type]
                    )
                else:
                    attr_item['data_type'] = (
                        scalar_config['data_type']
                        if 'data_type' in scalar_config
                        else scalar_map[attr_type]
                    )
                    attr_item['tensor_name'] = scalar_config['tensor_name']


def process_int_array(op_item, int_array_configs):
    data_type_map = {
        'int': 'std::vector<int>',
        'int64_t': 'std::vector<int64_t>',
    }
    if int_array_configs is not None:
        for attr_item in op_item['attrs']:
            if attr_item['name'] in int_array_configs:
                attr_type = attr_item['typename']
                assert (
                    attr_item['typename'] == "IntArray"
                ), f"{op_item['name']}'s int_array in op_compat.yaml is error, the data_type of {attr_item['name']} is expected to be one of IntArray, but now is {attr_type}."

                int_array_config = int_array_configs[attr_item['name']]
                attr_item['is_support_tensor'] = (
                    True
                    if 'support_tensor' in int_array_config
                    and int_array_config['support_tensor']
                    else False
                )
                if attr_item['is_support_tensor']:
                    attr_item['typename'] = (
138
                        'int[]'
139
                        if 'data_type' in int_array_config
140 141
                        and int_array_config['data_type'] == 'int'
                        else 'int64_t[]'
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
                    )
                else:
                    attr_item['data_type'] = (
                        data_type_map[int_array_config['data_type']]
                        if 'data_type' in int_array_config
                        else 'std::vector<int64_t>'
                    )
                    attr_item['manual_flag'] = True
                    if 'tensor_name' in int_array_config:
                        attr_item['tensor_name'] = int_array_config[
                            'tensor_name'
                        ]
                    if 'tensors_name' in int_array_config:
                        attr_item['tensors_name'] = int_array_config[
                            'tensors_name'
                        ]


160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
def parse_composite_info(ops, backward_ops, backward_op_dict):
    for op in ops:
        if "backward" in op:
            op["phi_backward"] = op["backward"]
    for backward_op in backward_ops:
        if "backward" in backward_op:
            backward_op["phi_backward"] = backward_op["backward"]
    for backward_op_name, op_dict in backward_op_dict.items():
        if "composite" not in op_dict:
            continue
        op_dict["composite"]["phi_inputs"] = []
        op_dict["composite"]["phi_attrs"] = []
        op_dict["composite"]["phi_outputs"] = []
        for input in op_dict["inputs"]:
            op_dict["composite"]["phi_inputs"].append(input['name'])
        for attr in op_dict["attrs"]:
            op_dict["composite"]["phi_attrs"].append(attr['name'])
        for output in op_dict["outputs"]:
            op_dict["composite"]["phi_outputs"].append(output['name'])


# replace name of op and params for OpMaker
def replace_compat_name(op_fluid_map_list, forward_op_dict, backward_op_dict):
183
    def get_phi_and_fluid_op_name(op_item):
184
        names = op_item.split('(')
185 186 187 188 189
        if len(names) == 1:
            return names[0].strip(), names[0].strip()
        else:
            return names[0].strip(), names[1].split(')')[0].strip()

190
    def update_op_param_name(op_args, args_alias_map):
191 192
        for item in op_args:
            if item['name'] in args_alias_map:
193
                item['name'] = args_alias_map[item['name']]
194

195
    def update_grad_args_name(op_args, args_alias_map):
196 197 198 199 200 201 202 203
        for item in op_args:
            if (
                item['name'].endswith('_grad')
                and item['name'][:-5] in args_alias_map
            ):
                args_alias_map[item['name']] = (
                    args_alias_map[item['name'][:-5]] + '_grad'
                )
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
                item['name'] = args_alias_map[item['name'][:-5]] + '_grad'

    def add_fluid_info_in_composite(composite_map, args_alias_map):
        fluid_input_list = []
        fluid_attr_list = []
        fluid_output_list = []
        # add fluid op inputs
        for input in composite_map["phi_inputs"]:
            if input in args_alias_map:
                fluid_input_list.append(args_alias_map[input])
            else:
                fluid_input_list.append(input)
        # add fluid op attrs
        for attr in composite_map["phi_attrs"]:
            if attr in args_alias_map:
                fluid_attr_list.append(args_alias_map[attr])
            else:
                fluid_attr_list.append(attr)
        # add fluid op outputs
        for output in composite_map["phi_outputs"]:
            if output in args_alias_map:
                fluid_output_list.append(args_alias_map[output])
            else:
                fluid_output_list.append(output)

        composite_map.update(
            {
                "fluid_inputs": fluid_input_list,
                "fluid_attrs": fluid_attr_list,
                "fluid_outputs": fluid_output_list,
            }
        )
J
Jiabin Yang 已提交
236

237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
    def get_param_list_alias(param_list, args_map):
        return [
            args_map[param] if param in args_map else param
            for param in param_list
        ]

    def update_common_params_name(
        op_item, args_name_map, scalar_configs, int_array_configs
    ):
        if 'inplace' in op_item and op_item['inplace']:
            inplace_map = {}
            for key, val in op_item['inplace'].items():
                if key in args_map:
                    key = args_map[key]
                if val in args_map:
                    val = args_map[val]
                inplace_map[key] = val
            op_item['inplace'] = inplace_map
        if 'no_need_buffer' in op_item and op_item['no_need_buffer']:
            op_item['no_need_buffer'] = get_param_list_alias(
                op_item['no_need_buffer'], args_map
            )
259 260 261 262 263 264 265 266 267 268
        if 'data_transform' in op_item and op_item['data_transform']:
            data_trans_item = op_item['data_transform']
            if 'skip_transform' in data_trans_item:
                data_trans_item['skip_transform'] = get_param_list_alias(
                    data_trans_item['skip_transform'], args_map
                )
            if 'support_trans_dtype' in data_trans_item:
                data_trans_item['support_trans_dtype'] = get_param_list_alias(
                    data_trans_item['support_trans_dtype'], args_map
                )
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299

        process_scalar(op_item, scalar_configs)
        process_int_array(op_item, int_array_configs)

        if 'invoke' in op_item:
            op_item['invoke']['args'] = [
                args_map[param.strip()]
                if param.strip() in args_map
                else param.strip()
                for param in op_item['invoke']['args'].split(',')
            ]
            return
        op_item['infer_meta']['param'] = get_param_list_alias(
            op_item['infer_meta']['param'], args_name_map
        )
        op_item['kernel']['param'] = get_param_list_alias(
            op_item['kernel']['param'], args_name_map
        )
        if op_item['kernel']['data_type']:
            op_item['kernel']['data_type']['candidates'] = get_param_list_alias(
                op_item['kernel']['data_type']['candidates'], args_name_map
            )
        if op_item['kernel']['backend']:
            op_item['kernel']['backend']['candidates'] = get_param_list_alias(
                op_item['kernel']['backend']['candidates'], args_name_map
            )
        if op_item['kernel']['layout']:
            op_item['kernel']['layout']['candidates'] = get_param_list_alias(
                op_item['kernel']['layout']['candidates'], args_name_map
            )

300 301 302 303 304 305 306 307 308
    def update_grad_op_compat_name(grad_op_item, args_name_map):
        update_op_param_name(grad_op_item['inputs'], args_name_map)
        update_op_param_name(grad_op_item['outputs'], args_name_map)
        update_op_param_name(grad_op_item['attrs'], args_name_map)
        update_op_param_name(grad_op_item['forward']['inputs'], args_name_map)
        update_op_param_name(grad_op_item['forward']['outputs'], args_name_map)
        update_op_param_name(grad_op_item['forward']['attrs'], args_name_map)
        update_grad_args_name(grad_op_item['inputs'], args_map)
        update_grad_args_name(grad_op_item['outputs'], args_map)
309 310 311

    for op_args in op_fluid_map_list:
        new_op_name, op_name = get_phi_and_fluid_op_name(op_args['op'])
312
        if new_op_name not in forward_op_dict:
313
            continue
314 315
        forward_op_item = forward_op_dict[new_op_name]
        has_backward = True if forward_op_item['backward'] else False
316
        if has_backward:
317 318 319
            backward_op_item = backward_op_dict[forward_op_item['backward']]
        if new_op_name != op_name:
            forward_op_item['op_name'] = op_name
320

321 322 323 324 325 326
        scalar_configs = None
        int_array_configs = None
        if 'scalar' in op_args:
            scalar_configs = op_args['scalar']
        if 'int_array' in op_args:
            int_array_configs = op_args['int_array']
327 328 329 330
        if 'extra' in op_args and 'outputs' in op_args['extra']:
            for out_item in forward_op_item['outputs']:
                if out_item['name'] in op_args['extra']['outputs']:
                    out_item['is_extra'] = True
331

332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
        key_set = ['inputs', 'attrs', 'outputs']
        args_map = {}
        for key in key_set:
            if key in op_args:
                args_map.update(op_args[key])
                for args_item in forward_op_item[key]:
                    if args_item['name'] in op_args[key]:
                        if (
                            scalar_configs
                            and args_item['name'] in scalar_configs
                        ):
                            scalar_configs[
                                op_args[key][args_item['name']]
                            ] = scalar_configs[args_item['name']]
                        if (
                            int_array_configs
                            and args_item['name'] in int_array_configs
                        ):
                            int_array_configs[
                                op_args[key][args_item['name']]
                            ] = int_array_configs[args_item['name']]
353 354 355 356 357 358
                        args_item['name'] = op_args[key][args_item['name']]
                if has_backward:
                    for args_item in backward_op_item['forward'][key]:
                        if args_item['name'] in op_args[key]:
                            args_item['name'] = op_args[key][args_item['name']]
        forward_op_item["attr_dict"] = to_named_dict(forward_op_item["attrs"])
359 360 361 362 363
        update_common_params_name(
            forward_op_item, args_map, scalar_configs, int_array_configs
        )

        if has_backward:
364
            update_grad_op_compat_name(backward_op_item, args_map)
365 366 367
            update_common_params_name(
                backward_op_item, args_map, scalar_configs, int_array_configs
            )
368 369 370
            backward_op_item["attr_dict"] = to_named_dict(
                backward_op_item["attrs"]
            )
371 372 373

            if 'backward' not in op_args:
                continue
374

375
            backward_op_list = op_args['backward'].split(',')
376 377 378 379 380 381 382 383 384 385
            # add fluid args name in composite map
            for backward_op in backward_op_list:
                if (
                    "composite"
                    in backward_op_dict[backward_op.split('(')[0].strip()]
                ):
                    add_fluid_info_in_composite(
                        backward_op_dict[backward_op]["composite"], args_map
                    )
            _, bw_op_name = get_phi_and_fluid_op_name(backward_op_list[0])
386 387
            forward_op_item['backward'] = bw_op_name
            backward_op_item['op_name'] = bw_op_name
388

389 390
            # for double grad
            if len(backward_op_list) > 1:
391
                (
392
                    phi_double_grad_op_name,
393
                    double_grad_op_name,
394 395
                ) = get_phi_and_fluid_op_name(backward_op_list[1])
                double_grad_item = backward_op_dict[phi_double_grad_op_name]
396
                backward_op_item['backward'] = double_grad_op_name
397
                double_grad_item['op_name'] = double_grad_op_name
398
                update_grad_op_compat_name(double_grad_item, args_map)
399 400 401 402 403 404
                update_common_params_name(
                    double_grad_item,
                    args_map,
                    scalar_configs,
                    int_array_configs,
                )
405 406 407
                double_grad_item["attr_dict"] = to_named_dict(
                    double_grad_item["attrs"]
                )
408

409 410 411
                # for triple grad
                if len(backward_op_list) > 2:
                    (
412
                        phi_triple_grad_op_name,
413
                        triple_grad_op_name,
414 415
                    ) = get_phi_and_fluid_op_name(backward_op_list[2])
                    triple_grad_item = backward_op_dict[phi_triple_grad_op_name]
416 417
                    double_grad_item['backward'] = triple_grad_op_name
                    triple_grad_item['op_name'] = triple_grad_op_name
418
                    update_grad_op_compat_name(triple_grad_item, args_map)
419 420 421 422 423
                    update_common_params_name(
                        triple_grad_item,
                        args_map,
                        scalar_configs,
                        int_array_configs,
424
                    )
425 426 427
                    triple_grad_item["attr_dict"] = to_named_dict(
                        triple_grad_item["attrs"]
                    )
428

429

430 431 432 433 434
def process_invoke_op(forward_op_dict, backward_op_dict):
    for bw_op in backward_op_dict.values():
        if 'invoke' in bw_op:
            invoke_op = bw_op['invoke']['func']
            args_list = bw_op['invoke']['args']
435
            args_index = 0
436 437
            if invoke_op in forward_op_dict:
                reuse_op = forward_op_dict[invoke_op]
438
                bw_op['invoke']['func'] = reuse_op['op_name']
439 440 441
                bw_op['invoke']['inputs'] = []
                bw_op['invoke']['attrs'] = []
                bw_op['invoke']['outputs'] = []
442
                for input_item in reuse_op['inputs']:
443
                    bw_op['invoke']['inputs'].append(
444 445 446 447 448
                        {
                            'name': input_item['name'],
                            'value': args_list[args_index],
                        }
                    )
449 450 451
                    args_index = args_index + 1
                for attr in reuse_op['attrs']:
                    if args_index < len(args_list):
452 453
                        attr_value = (
                            f"this->GetAttr(\"{args_list[args_index]}\")"
454
                            if args_list[args_index] in bw_op['attr_dict']
455 456
                            else args_list[args_index]
                        )
457
                        bw_op['invoke']['attrs'].append(
458
                            {'name': attr['name'], 'value': attr_value}
459
                        )
460 461 462 463
                        args_index = args_index + 1
                    else:
                        break
                for idx, output_item in enumerate(reuse_op['outputs']):
464
                    bw_op['invoke']['outputs'].append(
465 466
                        {
                            'name': output_item['name'],
467
                            'value': bw_op['outputs'][idx]['name'],
468 469 470 471
                        }
                    )


472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
def parse_drop_empty_grad(op_fluid_list: list, bw_op_dict: dict):
    for op_op in op_fluid_list:
        if 'drop_empty_grad' in op_op:
            bw_names = [
                bw_name.split('(')[0].strip()
                for bw_name in op_op['backward'].split(',')
            ]
            for bw_name in bw_names:
                assert (
                    bw_name in bw_op_dict
                ), f"backward {bw_name} is not existed"
                for out_grad in op_op['drop_empty_grad']:
                    assert (
                        out_grad in bw_op_dict[bw_name]['output_dict']
                    ), f'''
                         {bw_name} with {out_grad} is not existed in output_dict '''
                    bw_op_dict[bw_name]['output_dict'][out_grad][
                        'drop_empty_grad'
                    ] = False


493 494 495 496 497 498 499 500
def main(
    ops_yaml_path,
    backward_yaml_path,
    op_compat_yaml_path,
    op_version_yaml_path,
    output_op_path,
    output_arg_map_path,
):
501
    with open(ops_yaml_path, "rt") as f:
502 503 504
        ops = yaml.safe_load(f)
        ops = [restruct_io(op) for op in ops]
    forward_op_dict = to_named_dict(ops)
505
    with open(backward_yaml_path, "rt") as f:
506 507 508
        backward_ops = yaml.safe_load(f)
        backward_ops = [restruct_io(op) for op in backward_ops]
    backward_op_dict = to_named_dict(backward_ops)
509
    with open(op_version_yaml_path, "rt") as f:
510 511 512 513
        op_versions = yaml.safe_load(f)
    # add op version info into op
    for op_version in op_versions:
        forward_op_dict[op_version['op']]['version'] = op_version['version']
514 515

    with open(op_compat_yaml_path, "rt") as f:
516
        op_fluid_map_list = yaml.safe_load(f)
517

518 519 520 521
    for op in ops:
        op['op_name'] = op['name']
    for bw_op in backward_ops:
        bw_op['op_name'] = bw_op['name']
522 523 524 525 526
        for bw_output in bw_op['outputs']:
            bw_output['drop_empty_grad'] = True

    # deal the drop_empty_grad of bw_op by op_compat.yaml
    parse_drop_empty_grad(op_fluid_map_list, backward_op_dict)
527

528
    parse_composite_info(ops, backward_ops, backward_op_dict)
J
Jiabin Yang 已提交
529

530
    replace_compat_name(op_fluid_map_list, forward_op_dict, backward_op_dict)
531 532

    # prepare for invoke case
533
    process_invoke_op(forward_op_dict, backward_op_dict)
534

535 536 537 538 539 540 541
    # fill backward field for an op if another op claims it as forward
    for name, backward_op in backward_op_dict.items():
        forward_name = backward_op["forward"]["name"]
        if forward_name in backward_op_dict:
            forward_op = backward_op_dict[forward_name]
            if forward_op["backward"] is None:
                forward_op["backward"] = name
542

543 544 545 546
    op_dict = {}
    op_dict.update(forward_op_dict)
    op_dict.update(backward_op_dict)
    if len(ops) == 0 and len(backward_ops) == 0:
547 548 549 550 551 552 553
        if os.path.isfile(output_op_path):
            os.remove(output_op_path)
        if os.path.isfile(output_arg_map_path):
            os.remove(output_arg_map_path)
        return
    op_template = env.get_template('op.c.j2')
    with open(output_op_path, "wt") as f:
554
        msg = op_template.render(
J
Jiabin Yang 已提交
555 556 557
            ops=ops,
            backward_ops=backward_ops,
            op_dict=op_dict,
558
            composite_gen_flag=True,
559
        )
560 561 562
        f.write(msg)
    ks_template = env.get_template('ks.c.j2')
    with open(output_arg_map_path, 'wt') as f:
563
        msg = ks_template.render(ops=ops, backward_ops=backward_ops)
564 565 566 567 568
        f.write(msg)


if __name__ == "__main__":
    parser = argparse.ArgumentParser(
569
        description="Generate operator file from op yaml."
570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
    )
    parser.add_argument(
        '--ops_yaml_path', type=str, help="parsed ops yaml file."
    )
    parser.add_argument(
        '--backward_yaml_path', type=str, help="parsed backward ops yaml file."
    )
    parser.add_argument(
        '--op_compat_yaml_path', type=str, help="ops args compat yaml file."
    )
    parser.add_argument(
        '--op_version_yaml_path', type=str, help="ops version yaml file."
    )
    parser.add_argument(
        "--output_op_path", type=str, help="path to save generated operators."
    )
586 587 588
    parser.add_argument(
        "--output_arg_map_path",
        type=str,
589 590
        help="path to save generated argument mapping functions.",
    )
591 592

    args = parser.parse_args()
593 594 595 596 597 598 599 600
    main(
        args.ops_yaml_path,
        args.backward_yaml_path,
        args.op_compat_yaml_path,
        args.op_version_yaml_path,
        args.output_op_path,
        args.output_arg_map_path,
    )