generate_op.py 24.6 KB
Newer Older
1
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
9 10 11 12 13 14 15
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
16
import math
17 18 19 20
import os
from pathlib import Path

import yaml
21
from filters import (
22
    cartesian_prod_mapping,
J
Jiabin Yang 已提交
23
    to_composite_grad_opmaker_name,
24
    to_input_name,
25 26
    to_int_array_tensor_name,
    to_int_array_tensors_name,
27 28 29 30
    to_op_attr_type,
    to_opmaker_name,
    to_opmaker_name_cstr,
    to_pascal_case,
31
    to_scalar_tensor_name,
32
    to_variable_names,
33
)
34 35
from jinja2 import Environment, FileSystemLoader, StrictUndefined
from parse_utils import to_named_dict
36
from tests import (
37
    is_base_op,
J
Jiabin Yang 已提交
38
    is_composite_op,
39
    is_initializer_list,
40 41
    is_scalar,
    is_vec,
42 43 44
    supports_inplace,
    supports_no_need_buffer,
)
45 46

file_loader = FileSystemLoader(Path(__file__).parent / "templates")
47 48 49 50 51 52 53 54
env = Environment(
    loader=file_loader,
    keep_trailing_newline=True,
    trim_blocks=True,
    lstrip_blocks=True,
    undefined=StrictUndefined,
    extensions=['jinja2.ext.do'],
)
55 56 57
env.filters["to_op_attr_type"] = to_op_attr_type
env.filters["to_opmaker_name"] = to_opmaker_name
env.filters["to_pascal_case"] = to_pascal_case
58 59 60
env.filters["to_scalar_tensor_name"] = to_scalar_tensor_name
env.filters["to_int_array_tensor_name"] = to_int_array_tensor_name
env.filters["to_int_array_tensors_name"] = to_int_array_tensors_name
61 62
env.filters["to_input_name"] = to_input_name
env.filters["to_opmaker_name_cstr"] = to_opmaker_name_cstr
63
env.filters["cartesian_prod_mapping"] = cartesian_prod_mapping
J
Jiabin Yang 已提交
64
env.filters["to_composite_grad_opmaker_name"] = to_composite_grad_opmaker_name
65
env.filters["to_variable_names"] = to_variable_names
66
env.tests["base_op"] = is_base_op
J
Jiabin Yang 已提交
67
env.tests["composite_op"] = is_composite_op
68 69 70 71 72 73 74
env.tests["vec"] = is_vec
env.tests["scalar"] = is_scalar
env.tests["initializer_list"] = is_initializer_list
env.tests["supports_inplace"] = supports_inplace
env.tests["supports_no_need_buffer"] = supports_no_need_buffer


75 76 77 78 79
def restruct_io(op):
    op["input_dict"] = to_named_dict(op["inputs"])
    op["attr_dict"] = to_named_dict(op["attrs"])
    op["output_dict"] = to_named_dict(op["outputs"])
    return op
80 81


82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
def process_scalar(op_item, scalar_configs):
    scalar_map = {
        'Scalar': 'float',
        'Scalar(float)': 'float',
        'Scalar(int)': 'int',
        'Scalar(int64_t)': 'int64_t',
    }
    if scalar_configs is not None:
        for attr_item in op_item['attrs']:
            if attr_item['name'] in scalar_configs:
                attr_type = attr_item['typename']
                assert (
                    attr_type in scalar_map
                ), f"{op_item['name']}'s scalar in op_compat.yaml is error, the data_type of {attr_item['name']} is expected to be one of Scalar, Scalar(float), Scalar(int) or Scalar(int64_t), but now is {attr_type}."

                scalar_config = scalar_configs[attr_item['name']]
                attr_item['is_support_tensor'] = (
                    True
                    if 'support_tensor' in scalar_config
                    and scalar_config['support_tensor']
                    else False
                )
                if attr_item['is_support_tensor']:
                    attr_item['typename'] = (
                        scalar_config['data_type']
                        if 'data_type' in scalar_config
                        else scalar_map[attr_type]
                    )
                else:
                    attr_item['data_type'] = (
                        scalar_config['data_type']
                        if 'data_type' in scalar_config
                        else scalar_map[attr_type]
                    )
                    attr_item['tensor_name'] = scalar_config['tensor_name']


def process_int_array(op_item, int_array_configs):
    data_type_map = {
        'int': 'std::vector<int>',
        'int64_t': 'std::vector<int64_t>',
    }
    if int_array_configs is not None:
        for attr_item in op_item['attrs']:
            if attr_item['name'] in int_array_configs:
                attr_type = attr_item['typename']
                assert (
                    attr_item['typename'] == "IntArray"
                ), f"{op_item['name']}'s int_array in op_compat.yaml is error, the data_type of {attr_item['name']} is expected to be one of IntArray, but now is {attr_type}."

                int_array_config = int_array_configs[attr_item['name']]
                attr_item['is_support_tensor'] = (
                    True
                    if 'support_tensor' in int_array_config
                    and int_array_config['support_tensor']
                    else False
                )
                if attr_item['is_support_tensor']:
                    attr_item['typename'] = (
141
                        'int[]'
142
                        if 'data_type' in int_array_config
143 144
                        and int_array_config['data_type'] == 'int'
                        else 'int64_t[]'
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
                    )
                else:
                    attr_item['data_type'] = (
                        data_type_map[int_array_config['data_type']]
                        if 'data_type' in int_array_config
                        else 'std::vector<int64_t>'
                    )
                    attr_item['manual_flag'] = True
                    if 'tensor_name' in int_array_config:
                        attr_item['tensor_name'] = int_array_config[
                            'tensor_name'
                        ]
                    if 'tensors_name' in int_array_config:
                        attr_item['tensors_name'] = int_array_config[
                            'tensors_name'
                        ]


163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
def add_composite_info(ops, backward_ops, backward_op_dict):
    # add backward composite name in forward
    for op in ops + backward_ops:
        if (
            op["backward"] in backward_op_dict
            and "composite" in backward_op_dict[op["backward"]]
        ):
            op["backward_composite"] = op["backward"]
        else:
            op["backward_composite"] = None


# add fluid name in ops and backward ops info
def add_fluid_name(dict_list):
    for item in dict_list:
        item["fluid_name"] = item["name"]


# add fluid name of op and params for OpMaker
def add_compat_name(op_fluid_map_list, forward_op_dict, backward_op_dict):
183
    def get_phi_and_fluid_op_name(op_item):
184
        names = op_item.split('(')
185 186 187 188 189
        if len(names) == 1:
            return names[0].strip(), names[0].strip()
        else:
            return names[0].strip(), names[1].split(')')[0].strip()

190
    def add_op_param_name(op_args, args_alias_map):
191 192
        for item in op_args:
            if item['name'] in args_alias_map:
193 194 195
                item['fluid_name'] = args_alias_map[item['name']]
            else:
                item['fluid_name'] = item['name']
196

197
    def add_grad_args_name(op_args, args_alias_map):
198 199 200 201 202 203 204 205
        for item in op_args:
            if (
                item['name'].endswith('_grad')
                and item['name'][:-5] in args_alias_map
            ):
                args_alias_map[item['name']] = (
                    args_alias_map[item['name'][:-5]] + '_grad'
                )
206 207 208 209 210 211
                item['fluid_name'] = args_alias_map[item['name'][:-5]] + '_grad'
            elif (
                item['name'].endswith('_grad')
                and item['name'][:-5] not in args_alias_map
            ):
                item['fluid_name'] = item['name']
J
Jiabin Yang 已提交
212

213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
    def get_param_list_alias(param_list, args_map):
        return [
            args_map[param] if param in args_map else param
            for param in param_list
        ]

    def update_common_params_name(
        op_item, args_name_map, scalar_configs, int_array_configs
    ):
        if 'inplace' in op_item and op_item['inplace']:
            inplace_map = {}
            for key, val in op_item['inplace'].items():
                if key in args_map:
                    key = args_map[key]
                if val in args_map:
                    val = args_map[val]
                inplace_map[key] = val
            op_item['inplace'] = inplace_map
        if 'no_need_buffer' in op_item and op_item['no_need_buffer']:
            op_item['no_need_buffer'] = get_param_list_alias(
                op_item['no_need_buffer'], args_map
            )
235 236 237 238 239 240 241 242 243 244
        if 'data_transform' in op_item and op_item['data_transform']:
            data_trans_item = op_item['data_transform']
            if 'skip_transform' in data_trans_item:
                data_trans_item['skip_transform'] = get_param_list_alias(
                    data_trans_item['skip_transform'], args_map
                )
            if 'support_trans_dtype' in data_trans_item:
                data_trans_item['support_trans_dtype'] = get_param_list_alias(
                    data_trans_item['support_trans_dtype'], args_map
                )
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275

        process_scalar(op_item, scalar_configs)
        process_int_array(op_item, int_array_configs)

        if 'invoke' in op_item:
            op_item['invoke']['args'] = [
                args_map[param.strip()]
                if param.strip() in args_map
                else param.strip()
                for param in op_item['invoke']['args'].split(',')
            ]
            return
        op_item['infer_meta']['param'] = get_param_list_alias(
            op_item['infer_meta']['param'], args_name_map
        )
        op_item['kernel']['param'] = get_param_list_alias(
            op_item['kernel']['param'], args_name_map
        )
        if op_item['kernel']['data_type']:
            op_item['kernel']['data_type']['candidates'] = get_param_list_alias(
                op_item['kernel']['data_type']['candidates'], args_name_map
            )
        if op_item['kernel']['backend']:
            op_item['kernel']['backend']['candidates'] = get_param_list_alias(
                op_item['kernel']['backend']['candidates'], args_name_map
            )
        if op_item['kernel']['layout']:
            op_item['kernel']['layout']['candidates'] = get_param_list_alias(
                op_item['kernel']['layout']['candidates'], args_name_map
            )

276 277 278 279 280 281 282 283 284
    def add_grad_op_compat_name(grad_op_item, args_name_map):
        add_op_param_name(grad_op_item['inputs'], args_name_map)
        add_op_param_name(grad_op_item['outputs'], args_name_map)
        add_op_param_name(grad_op_item['attrs'], args_name_map)
        add_op_param_name(grad_op_item['forward']['inputs'], args_name_map)
        add_op_param_name(grad_op_item['forward']['outputs'], args_name_map)
        add_op_param_name(grad_op_item['forward']['attrs'], args_name_map)
        add_grad_args_name(grad_op_item['inputs'], args_map)
        add_grad_args_name(grad_op_item['outputs'], args_map)
285 286 287

    for op_args in op_fluid_map_list:
        new_op_name, op_name = get_phi_and_fluid_op_name(op_args['op'])
288
        if new_op_name not in forward_op_dict:
289
            continue
290 291
        forward_op_item = forward_op_dict[new_op_name]
        has_backward = True if forward_op_item['backward'] else False
292
        if has_backward:
293 294 295
            backward_op_item = backward_op_dict[forward_op_item['backward']]
        if new_op_name != op_name:
            forward_op_item['op_name'] = op_name
296

297 298 299 300 301
        # add complex promote infomation
        if "complex_promote" in op_args:
            forward_op_item["complex_promote"] = op_args["complex_promote"]
            if has_backward:
                backward_op_item["complex_promote"] = op_args["complex_promote"]
302 303 304 305 306 307
        scalar_configs = None
        int_array_configs = None
        if 'scalar' in op_args:
            scalar_configs = op_args['scalar']
        if 'int_array' in op_args:
            int_array_configs = op_args['int_array']
308 309 310 311
        if 'extra' in op_args and 'outputs' in op_args['extra']:
            for out_item in forward_op_item['outputs']:
                if out_item['name'] in op_args['extra']['outputs']:
                    out_item['is_extra'] = True
312

313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
        key_set = ['inputs', 'attrs', 'outputs']
        args_map = {}
        for key in key_set:
            if key in op_args:
                args_map.update(op_args[key])
                for args_item in forward_op_item[key]:
                    if args_item['name'] in op_args[key]:
                        if (
                            scalar_configs
                            and args_item['name'] in scalar_configs
                        ):
                            scalar_configs[
                                op_args[key][args_item['name']]
                            ] = scalar_configs[args_item['name']]
                        if (
                            int_array_configs
                            and args_item['name'] in int_array_configs
                        ):
                            int_array_configs[
                                op_args[key][args_item['name']]
                            ] = int_array_configs[args_item['name']]
334 335 336
                        args_item['fluid_name'] = op_args[key][
                            args_item['name']
                        ]
337 338 339 340 341
        update_common_params_name(
            forward_op_item, args_map, scalar_configs, int_array_configs
        )

        if has_backward:
342 343
            # update fluid info in backward
            add_grad_op_compat_name(backward_op_item, args_map)
344 345 346 347 348 349
            update_common_params_name(
                backward_op_item, args_map, scalar_configs, int_array_configs
            )

            if 'backward' not in op_args:
                continue
350

351
            backward_op_list = op_args['backward'].split(',')
352 353 354 355 356 357 358 359
            phi_bw_op_name, bw_op_name = get_phi_and_fluid_op_name(
                backward_op_list[0]
            )
            if (
                forward_op_item["backward_composite"] is not None
                and phi_bw_op_name != bw_op_name
            ):
                forward_op_item["backward_composite"] = bw_op_name
360 361
            forward_op_item['backward'] = bw_op_name
            backward_op_item['op_name'] = bw_op_name
362

363 364
            # for double grad
            if len(backward_op_list) > 1:
365
                (
366
                    phi_double_grad_op_name,
367
                    double_grad_op_name,
368 369
                ) = get_phi_and_fluid_op_name(backward_op_list[1])
                double_grad_item = backward_op_dict[phi_double_grad_op_name]
370 371 372 373 374
                if (
                    backward_op_item["backward_composite"] is not None
                    and phi_double_grad_op_name != double_grad_op_name
                ):
                    backward_op_item["backward_composite"] = double_grad_op_name
375
                backward_op_item['backward'] = double_grad_op_name
376
                double_grad_item['op_name'] = double_grad_op_name
377
                add_grad_op_compat_name(double_grad_item, args_map)
378 379 380 381 382 383
                update_common_params_name(
                    double_grad_item,
                    args_map,
                    scalar_configs,
                    int_array_configs,
                )
384

385 386 387
                # for triple grad
                if len(backward_op_list) > 2:
                    (
388
                        phi_triple_grad_op_name,
389
                        triple_grad_op_name,
390 391
                    ) = get_phi_and_fluid_op_name(backward_op_list[2])
                    triple_grad_item = backward_op_dict[phi_triple_grad_op_name]
392 393 394 395 396 397 398
                    if (
                        double_grad_item["backward_composite"] is not None
                        and phi_triple_grad_op_name != triple_grad_op_name
                    ):
                        double_grad_item[
                            "backward_composite"
                        ] = triple_grad_op_name
399 400
                    double_grad_item['backward'] = triple_grad_op_name
                    triple_grad_item['op_name'] = triple_grad_op_name
401
                    add_grad_op_compat_name(triple_grad_item, args_map)
402 403 404 405 406
                    update_common_params_name(
                        triple_grad_item,
                        args_map,
                        scalar_configs,
                        int_array_configs,
407
                    )
408

409

410 411 412 413 414
def process_invoke_op(forward_op_dict, backward_op_dict):
    for bw_op in backward_op_dict.values():
        if 'invoke' in bw_op:
            invoke_op = bw_op['invoke']['func']
            args_list = bw_op['invoke']['args']
415
            args_index = 0
HappyHeavyRain's avatar
HappyHeavyRain 已提交
416
            # backward invoke forward
417 418
            if invoke_op in forward_op_dict:
                reuse_op = forward_op_dict[invoke_op]
419
                bw_op['invoke']['func'] = reuse_op['op_name']
420 421 422
                bw_op['invoke']['inputs'] = []
                bw_op['invoke']['attrs'] = []
                bw_op['invoke']['outputs'] = []
423
                for input_item in reuse_op['inputs']:
424
                    bw_op['invoke']['inputs'].append(
425
                        {
426
                            'fluid_name': input_item['fluid_name'],
427 428 429 430
                            'name': input_item['name'],
                            'value': args_list[args_index],
                        }
                    )
431
                    args_index = args_index + 1
432 433 434
                bw_fluid_attrs_set = [
                    item['fluid_name'] for item in bw_op['attrs']
                ]
435 436
                for attr in reuse_op['attrs']:
                    if args_index < len(args_list):
437 438
                        attr_value = (
                            f"this->GetAttr(\"{args_list[args_index]}\")"
439
                            if args_list[args_index] in bw_fluid_attrs_set
440 441
                            else args_list[args_index]
                        )
442
                        bw_op['invoke']['attrs'].append(
443 444 445 446 447
                            {
                                'name': attr['name'],
                                'fluid_name': attr['fluid_name'],
                                'value': attr_value,
                            }
448
                        )
449 450 451 452
                        args_index = args_index + 1
                    else:
                        break
                for idx, output_item in enumerate(reuse_op['outputs']):
453
                    bw_op['invoke']['outputs'].append(
454 455
                        {
                            'name': output_item['name'],
456 457
                            'fluid_name': output_item['fluid_name'],
                            'value': bw_op['outputs'][idx]['fluid_name'],
458 459 460 461
                        }
                    )


462 463 464 465 466 467 468 469
def parse_drop_empty_grad(op_fluid_list: list, bw_op_dict: dict):
    for op_op in op_fluid_list:
        if 'drop_empty_grad' in op_op:
            bw_names = [
                bw_name.split('(')[0].strip()
                for bw_name in op_op['backward'].split(',')
            ]
            for bw_name in bw_names:
HappyHeavyRain's avatar
HappyHeavyRain 已提交
470 471 472 473 474 475 476 477 478 479
                # static_ops.yaml and ops.yaml use the common op_compat.yaml
                if bw_name in bw_op_dict:
                    for out_grad in op_op['drop_empty_grad']:
                        assert (
                            out_grad in bw_op_dict[bw_name]['output_dict']
                        ), f'''
                            {bw_name} with {out_grad} is not existed in output_dict '''
                        bw_op_dict[bw_name]['output_dict'][out_grad][
                            'drop_empty_grad'
                        ] = False
480 481


482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
def split_ops_list(ops, backward_op_dict, split_num):
    new_ops_list = []
    new_bw_ops_list = []
    list_size = math.ceil(len(ops) / split_num)
    tmp_ops_list = []
    tmp_bw_ops_list = []
    for idx, op in enumerate(ops):
        tmp_ops_list.append(op)
        current_op = op
        while (
            'backward' in current_op
            and current_op['backward'] in backward_op_dict
        ):
            tmp_bw_ops_list.append(backward_op_dict[current_op['backward']])
            current_op = backward_op_dict[current_op['backward']]
        if (idx + 1) % list_size == 0 or idx == len(ops) - 1:
            new_ops_list.append(tmp_ops_list)
            new_bw_ops_list.append(tmp_bw_ops_list)
            tmp_ops_list = []
            tmp_bw_ops_list = []
    return new_ops_list, new_bw_ops_list


505 506 507 508 509 510 511 512
def main(
    ops_yaml_path,
    backward_yaml_path,
    op_compat_yaml_path,
    op_version_yaml_path,
    output_op_path,
    output_arg_map_path,
):
513
    with open(ops_yaml_path, "rt") as f:
514 515 516
        ops = yaml.safe_load(f)
        ops = [restruct_io(op) for op in ops]
    forward_op_dict = to_named_dict(ops)
517
    with open(backward_yaml_path, "rt") as f:
518 519 520
        backward_ops = yaml.safe_load(f)
        backward_ops = [restruct_io(op) for op in backward_ops]
    backward_op_dict = to_named_dict(backward_ops)
521
    with open(op_version_yaml_path, "rt") as f:
522 523 524
        op_versions = yaml.safe_load(f)
    # add op version info into op
    for op_version in op_versions:
HappyHeavyRain's avatar
HappyHeavyRain 已提交
525 526
        if op_version['op'] in forward_op_dict:
            forward_op_dict[op_version['op']]['version'] = op_version['version']
527 528

    with open(op_compat_yaml_path, "rt") as f:
529
        op_fluid_map_list = yaml.safe_load(f)
530

531 532
    for op in ops:
        op['op_name'] = op['name']
533 534 535
        add_fluid_name(op['inputs'])
        add_fluid_name(op['attrs'])
        add_fluid_name(op['outputs'])
536 537
    for bw_op in backward_ops:
        bw_op['op_name'] = bw_op['name']
538 539 540 541 542 543
        add_fluid_name(bw_op['inputs'])
        add_fluid_name(bw_op['attrs'])
        add_fluid_name(bw_op['outputs'])
        add_fluid_name(bw_op['forward']['inputs'])
        add_fluid_name(bw_op['forward']['attrs'])
        add_fluid_name(bw_op['forward']['outputs'])
544 545 546 547 548
        for bw_output in bw_op['outputs']:
            bw_output['drop_empty_grad'] = True

    # deal the drop_empty_grad of bw_op by op_compat.yaml
    parse_drop_empty_grad(op_fluid_map_list, backward_op_dict)
549

550
    add_composite_info(ops, backward_ops, backward_op_dict)
J
Jiabin Yang 已提交
551

552
    add_compat_name(op_fluid_map_list, forward_op_dict, backward_op_dict)
553 554

    # prepare for invoke case
555
    process_invoke_op(forward_op_dict, backward_op_dict)
556

557 558 559 560 561 562 563
    # fill backward field for an op if another op claims it as forward
    for name, backward_op in backward_op_dict.items():
        forward_name = backward_op["forward"]["name"]
        if forward_name in backward_op_dict:
            forward_op = backward_op_dict[forward_name]
            if forward_op["backward"] is None:
                forward_op["backward"] = name
564

565 566 567 568
    op_dict = {}
    op_dict.update(forward_op_dict)
    op_dict.update(backward_op_dict)
    if len(ops) == 0 and len(backward_ops) == 0:
569 570 571 572 573 574
        if os.path.isfile(output_op_path):
            os.remove(output_op_path)
        if os.path.isfile(output_arg_map_path):
            os.remove(output_arg_map_path)
        return
    op_template = env.get_template('op.c.j2')
575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591

    backward_fluid_op_dict = {}
    for bw_op in backward_ops:
        backward_fluid_op_dict[bw_op['op_name']] = bw_op
    output_op_files_num = len(output_op_path)
    new_ops_list, new_bw_ops_list = split_ops_list(
        ops, backward_fluid_op_dict, output_op_files_num
    )
    for idx, output_op_file in enumerate(output_op_path):
        with open(output_op_file, "wt") as f:
            msg = op_template.render(
                ops=new_ops_list[idx],
                backward_ops=new_bw_ops_list[idx],
                op_dict=op_dict,
            )
            f.write(msg)

592 593
    ks_template = env.get_template('ks.c.j2')
    with open(output_arg_map_path, 'wt') as f:
594
        msg = ks_template.render(ops=ops, backward_ops=backward_ops)
595 596 597 598 599
        f.write(msg)


if __name__ == "__main__":
    parser = argparse.ArgumentParser(
600
        description="Generate operator file from op yaml."
601 602 603 604 605 606 607 608 609 610 611 612 613 614
    )
    parser.add_argument(
        '--ops_yaml_path', type=str, help="parsed ops yaml file."
    )
    parser.add_argument(
        '--backward_yaml_path', type=str, help="parsed backward ops yaml file."
    )
    parser.add_argument(
        '--op_compat_yaml_path', type=str, help="ops args compat yaml file."
    )
    parser.add_argument(
        '--op_version_yaml_path', type=str, help="ops version yaml file."
    )
    parser.add_argument(
615 616 617 618
        "--output_op_path",
        type=str,
        nargs='+',
        help="path to save generated operators.",
619
    )
620 621 622
    parser.add_argument(
        "--output_arg_map_path",
        type=str,
623 624
        help="path to save generated argument mapping functions.",
    )
625 626

    args = parser.parse_args()
627 628 629 630 631 632 633 634
    main(
        args.ops_yaml_path,
        args.backward_yaml_path,
        args.op_compat_yaml_path,
        args.op_version_yaml_path,
        args.output_op_path,
        args.output_arg_map_path,
    )