generate_op.py 25.8 KB
Newer Older
1
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
9 10 11 12 13 14 15
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
16
import math
17 18 19 20
import os
from pathlib import Path

import yaml
21
from filters import (
22
    cartesian_prod_mapping,
J
Jiabin Yang 已提交
23
    to_composite_grad_opmaker_name,
24
    to_input_name,
25 26
    to_int_array_tensor_name,
    to_int_array_tensors_name,
27 28 29 30
    to_op_attr_type,
    to_opmaker_name,
    to_opmaker_name_cstr,
    to_pascal_case,
31
    to_scalar_tensor_name,
32
    to_variable_names,
33
)
34 35
from jinja2 import Environment, FileSystemLoader, StrictUndefined
from parse_utils import to_named_dict
C
Charles-hit 已提交
36
from tests_utils import (
37
    is_base_op,
J
Jiabin Yang 已提交
38
    is_composite_op,
39
    is_initializer_list,
40 41
    is_scalar,
    is_vec,
42 43 44
    supports_inplace,
    supports_no_need_buffer,
)
45 46

file_loader = FileSystemLoader(Path(__file__).parent / "templates")
47 48 49 50 51 52 53 54
env = Environment(
    loader=file_loader,
    keep_trailing_newline=True,
    trim_blocks=True,
    lstrip_blocks=True,
    undefined=StrictUndefined,
    extensions=['jinja2.ext.do'],
)
55 56 57
env.filters["to_op_attr_type"] = to_op_attr_type
env.filters["to_opmaker_name"] = to_opmaker_name
env.filters["to_pascal_case"] = to_pascal_case
58 59 60
env.filters["to_scalar_tensor_name"] = to_scalar_tensor_name
env.filters["to_int_array_tensor_name"] = to_int_array_tensor_name
env.filters["to_int_array_tensors_name"] = to_int_array_tensors_name
61 62
env.filters["to_input_name"] = to_input_name
env.filters["to_opmaker_name_cstr"] = to_opmaker_name_cstr
63
env.filters["cartesian_prod_mapping"] = cartesian_prod_mapping
J
Jiabin Yang 已提交
64
env.filters["to_composite_grad_opmaker_name"] = to_composite_grad_opmaker_name
65
env.filters["to_variable_names"] = to_variable_names
66
env.tests["base_op"] = is_base_op
J
Jiabin Yang 已提交
67
env.tests["composite_op"] = is_composite_op
68 69 70 71 72 73 74
env.tests["vec"] = is_vec
env.tests["scalar"] = is_scalar
env.tests["initializer_list"] = is_initializer_list
env.tests["supports_inplace"] = supports_inplace
env.tests["supports_no_need_buffer"] = supports_no_need_buffer


75 76 77 78 79
def restruct_io(op):
    op["input_dict"] = to_named_dict(op["inputs"])
    op["attr_dict"] = to_named_dict(op["attrs"])
    op["output_dict"] = to_named_dict(op["outputs"])
    return op
80 81


82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
def process_scalar(op_item, scalar_configs):
    scalar_map = {
        'Scalar': 'float',
        'Scalar(float)': 'float',
        'Scalar(int)': 'int',
        'Scalar(int64_t)': 'int64_t',
    }
    if scalar_configs is not None:
        for attr_item in op_item['attrs']:
            if attr_item['name'] in scalar_configs:
                attr_type = attr_item['typename']
                assert (
                    attr_type in scalar_map
                ), f"{op_item['name']}'s scalar in op_compat.yaml is error, the data_type of {attr_item['name']} is expected to be one of Scalar, Scalar(float), Scalar(int) or Scalar(int64_t), but now is {attr_type}."

                scalar_config = scalar_configs[attr_item['name']]
                attr_item['is_support_tensor'] = (
                    True
                    if 'support_tensor' in scalar_config
                    and scalar_config['support_tensor']
                    else False
                )
104 105 106 107 108 109
                attr_item['data_type'] = (
                    scalar_config['data_type']
                    if 'data_type' in scalar_config
                    else scalar_map[attr_type]
                )
                if attr_item['is_support_tensor'] is False:
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
                    attr_item['tensor_name'] = scalar_config['tensor_name']


def process_int_array(op_item, int_array_configs):
    data_type_map = {
        'int': 'std::vector<int>',
        'int64_t': 'std::vector<int64_t>',
    }
    if int_array_configs is not None:
        for attr_item in op_item['attrs']:
            if attr_item['name'] in int_array_configs:
                attr_type = attr_item['typename']
                assert (
                    attr_item['typename'] == "IntArray"
                ), f"{op_item['name']}'s int_array in op_compat.yaml is error, the data_type of {attr_item['name']} is expected to be one of IntArray, but now is {attr_type}."

                int_array_config = int_array_configs[attr_item['name']]
                attr_item['is_support_tensor'] = (
                    True
                    if 'support_tensor' in int_array_config
                    and int_array_config['support_tensor']
                    else False
                )
133 134 135 136 137 138
                attr_item['data_type'] = (
                    data_type_map[int_array_config['data_type']]
                    if 'data_type' in int_array_config
                    else 'std::vector<int64_t>'
                )
                if attr_item['is_support_tensor'] is False:
139 140 141 142 143 144 145 146 147 148 149
                    attr_item['manual_flag'] = True
                    if 'tensor_name' in int_array_config:
                        attr_item['tensor_name'] = int_array_config[
                            'tensor_name'
                        ]
                    if 'tensors_name' in int_array_config:
                        attr_item['tensors_name'] = int_array_config[
                            'tensors_name'
                        ]


150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
def add_composite_info(ops, backward_ops, backward_op_dict):
    # add backward composite name in forward
    for op in ops + backward_ops:
        if (
            op["backward"] in backward_op_dict
            and "composite" in backward_op_dict[op["backward"]]
        ):
            op["backward_composite"] = op["backward"]
        else:
            op["backward_composite"] = None


# add fluid name in ops and backward ops info
def add_fluid_name(dict_list):
    for item in dict_list:
        item["fluid_name"] = item["name"]


# add fluid name of op and params for OpMaker
def add_compat_name(op_fluid_map_list, forward_op_dict, backward_op_dict):
170
    def get_phi_and_fluid_op_name(op_item):
171
        names = op_item.split('(')
172 173 174 175 176
        if len(names) == 1:
            return names[0].strip(), names[0].strip()
        else:
            return names[0].strip(), names[1].split(')')[0].strip()

177
    def add_op_param_name(op_args, args_alias_map):
178 179
        for item in op_args:
            if item['name'] in args_alias_map:
180 181 182
                item['fluid_name'] = args_alias_map[item['name']]
            else:
                item['fluid_name'] = item['name']
183

184
    def add_grad_args_name(op_args, args_alias_map):
185 186 187 188 189 190 191 192
        for item in op_args:
            if (
                item['name'].endswith('_grad')
                and item['name'][:-5] in args_alias_map
            ):
                args_alias_map[item['name']] = (
                    args_alias_map[item['name'][:-5]] + '_grad'
                )
193 194 195 196 197 198
                item['fluid_name'] = args_alias_map[item['name'][:-5]] + '_grad'
            elif (
                item['name'].endswith('_grad')
                and item['name'][:-5] not in args_alias_map
            ):
                item['fluid_name'] = item['name']
J
Jiabin Yang 已提交
199

200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
    def get_param_list_alias(param_list, args_map):
        return [
            args_map[param] if param in args_map else param
            for param in param_list
        ]

    def update_common_params_name(
        op_item, args_name_map, scalar_configs, int_array_configs
    ):
        if 'inplace' in op_item and op_item['inplace']:
            inplace_map = {}
            for key, val in op_item['inplace'].items():
                if key in args_map:
                    key = args_map[key]
                if val in args_map:
                    val = args_map[val]
                inplace_map[key] = val
            op_item['inplace'] = inplace_map
        if 'no_need_buffer' in op_item and op_item['no_need_buffer']:
            op_item['no_need_buffer'] = get_param_list_alias(
                op_item['no_need_buffer'], args_map
            )
222 223 224 225 226 227 228 229 230 231
        if 'data_transform' in op_item and op_item['data_transform']:
            data_trans_item = op_item['data_transform']
            if 'skip_transform' in data_trans_item:
                data_trans_item['skip_transform'] = get_param_list_alias(
                    data_trans_item['skip_transform'], args_map
                )
            if 'support_trans_dtype' in data_trans_item:
                data_trans_item['support_trans_dtype'] = get_param_list_alias(
                    data_trans_item['support_trans_dtype'], args_map
                )
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262

        process_scalar(op_item, scalar_configs)
        process_int_array(op_item, int_array_configs)

        if 'invoke' in op_item:
            op_item['invoke']['args'] = [
                args_map[param.strip()]
                if param.strip() in args_map
                else param.strip()
                for param in op_item['invoke']['args'].split(',')
            ]
            return
        op_item['infer_meta']['param'] = get_param_list_alias(
            op_item['infer_meta']['param'], args_name_map
        )
        op_item['kernel']['param'] = get_param_list_alias(
            op_item['kernel']['param'], args_name_map
        )
        if op_item['kernel']['data_type']:
            op_item['kernel']['data_type']['candidates'] = get_param_list_alias(
                op_item['kernel']['data_type']['candidates'], args_name_map
            )
        if op_item['kernel']['backend']:
            op_item['kernel']['backend']['candidates'] = get_param_list_alias(
                op_item['kernel']['backend']['candidates'], args_name_map
            )
        if op_item['kernel']['layout']:
            op_item['kernel']['layout']['candidates'] = get_param_list_alias(
                op_item['kernel']['layout']['candidates'], args_name_map
            )

263 264 265 266 267 268 269 270 271
    def add_grad_op_compat_name(grad_op_item, args_name_map):
        add_op_param_name(grad_op_item['inputs'], args_name_map)
        add_op_param_name(grad_op_item['outputs'], args_name_map)
        add_op_param_name(grad_op_item['attrs'], args_name_map)
        add_op_param_name(grad_op_item['forward']['inputs'], args_name_map)
        add_op_param_name(grad_op_item['forward']['outputs'], args_name_map)
        add_op_param_name(grad_op_item['forward']['attrs'], args_name_map)
        add_grad_args_name(grad_op_item['inputs'], args_map)
        add_grad_args_name(grad_op_item['outputs'], args_map)
272 273 274

    for op_args in op_fluid_map_list:
        new_op_name, op_name = get_phi_and_fluid_op_name(op_args['op'])
275
        if new_op_name not in forward_op_dict:
276
            continue
277 278
        forward_op_item = forward_op_dict[new_op_name]
        has_backward = True if forward_op_item['backward'] else False
279
        if has_backward:
280 281 282
            backward_op_item = backward_op_dict[forward_op_item['backward']]
        if new_op_name != op_name:
            forward_op_item['op_name'] = op_name
283

284 285 286 287 288
        # add complex promote infomation
        if "complex_promote" in op_args:
            forward_op_item["complex_promote"] = op_args["complex_promote"]
            if has_backward:
                backward_op_item["complex_promote"] = op_args["complex_promote"]
289 290 291 292 293 294
        scalar_configs = None
        int_array_configs = None
        if 'scalar' in op_args:
            scalar_configs = op_args['scalar']
        if 'int_array' in op_args:
            int_array_configs = op_args['int_array']
295 296 297 298
        if 'extra' in op_args and 'outputs' in op_args['extra']:
            for out_item in forward_op_item['outputs']:
                if out_item['name'] in op_args['extra']['outputs']:
                    out_item['is_extra'] = True
299

300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
        key_set = ['inputs', 'attrs', 'outputs']
        args_map = {}
        for key in key_set:
            if key in op_args:
                args_map.update(op_args[key])
                for args_item in forward_op_item[key]:
                    if args_item['name'] in op_args[key]:
                        if (
                            scalar_configs
                            and args_item['name'] in scalar_configs
                        ):
                            scalar_configs[
                                op_args[key][args_item['name']]
                            ] = scalar_configs[args_item['name']]
                        if (
                            int_array_configs
                            and args_item['name'] in int_array_configs
                        ):
                            int_array_configs[
                                op_args[key][args_item['name']]
                            ] = int_array_configs[args_item['name']]
321 322 323
                        args_item['fluid_name'] = op_args[key][
                            args_item['name']
                        ]
324 325 326 327 328
        update_common_params_name(
            forward_op_item, args_map, scalar_configs, int_array_configs
        )

        if has_backward:
329 330
            # update fluid info in backward
            add_grad_op_compat_name(backward_op_item, args_map)
331 332 333 334 335 336
            update_common_params_name(
                backward_op_item, args_map, scalar_configs, int_array_configs
            )

            if 'backward' not in op_args:
                continue
337

338
            backward_op_list = op_args['backward'].split(',')
339 340 341 342 343 344 345 346
            phi_bw_op_name, bw_op_name = get_phi_and_fluid_op_name(
                backward_op_list[0]
            )
            if (
                forward_op_item["backward_composite"] is not None
                and phi_bw_op_name != bw_op_name
            ):
                forward_op_item["backward_composite"] = bw_op_name
347 348
            forward_op_item['backward'] = bw_op_name
            backward_op_item['op_name'] = bw_op_name
349

350 351
            # for double grad
            if len(backward_op_list) > 1:
352
                (
353
                    phi_double_grad_op_name,
354
                    double_grad_op_name,
355 356
                ) = get_phi_and_fluid_op_name(backward_op_list[1])
                double_grad_item = backward_op_dict[phi_double_grad_op_name]
357 358 359 360 361
                if (
                    backward_op_item["backward_composite"] is not None
                    and phi_double_grad_op_name != double_grad_op_name
                ):
                    backward_op_item["backward_composite"] = double_grad_op_name
362
                backward_op_item['backward'] = double_grad_op_name
363
                double_grad_item['op_name'] = double_grad_op_name
364
                add_grad_op_compat_name(double_grad_item, args_map)
365 366 367 368 369 370
                update_common_params_name(
                    double_grad_item,
                    args_map,
                    scalar_configs,
                    int_array_configs,
                )
371

372 373 374
                # for triple grad
                if len(backward_op_list) > 2:
                    (
375
                        phi_triple_grad_op_name,
376
                        triple_grad_op_name,
377 378
                    ) = get_phi_and_fluid_op_name(backward_op_list[2])
                    triple_grad_item = backward_op_dict[phi_triple_grad_op_name]
379 380 381 382 383 384 385
                    if (
                        double_grad_item["backward_composite"] is not None
                        and phi_triple_grad_op_name != triple_grad_op_name
                    ):
                        double_grad_item[
                            "backward_composite"
                        ] = triple_grad_op_name
386 387
                    double_grad_item['backward'] = triple_grad_op_name
                    triple_grad_item['op_name'] = triple_grad_op_name
388
                    add_grad_op_compat_name(triple_grad_item, args_map)
389 390 391 392 393
                    update_common_params_name(
                        triple_grad_item,
                        args_map,
                        scalar_configs,
                        int_array_configs,
394
                    )
395

396

397 398 399 400 401
def process_invoke_op(forward_op_dict, backward_op_dict):
    for bw_op in backward_op_dict.values():
        if 'invoke' in bw_op:
            invoke_op = bw_op['invoke']['func']
            args_list = bw_op['invoke']['args']
402
            args_index = 0
HappyHeavyRain's avatar
HappyHeavyRain 已提交
403
            # backward invoke forward
404 405
            if invoke_op in forward_op_dict:
                reuse_op = forward_op_dict[invoke_op]
406
                bw_op['invoke']['func'] = reuse_op['op_name']
407 408 409
                bw_op['invoke']['inputs'] = []
                bw_op['invoke']['attrs'] = []
                bw_op['invoke']['outputs'] = []
410
                for input_item in reuse_op['inputs']:
411
                    bw_op['invoke']['inputs'].append(
412
                        {
413
                            'fluid_name': input_item['fluid_name'],
414 415 416 417
                            'name': input_item['name'],
                            'value': args_list[args_index],
                        }
                    )
418
                    args_index = args_index + 1
419 420 421
                bw_fluid_attrs_set = [
                    item['fluid_name'] for item in bw_op['attrs']
                ]
422 423
                for attr in reuse_op['attrs']:
                    if args_index < len(args_list):
424 425
                        attr_value = (
                            f"this->GetAttr(\"{args_list[args_index]}\")"
426
                            if args_list[args_index] in bw_fluid_attrs_set
427 428
                            else args_list[args_index]
                        )
429
                        bw_op['invoke']['attrs'].append(
430 431 432 433 434
                            {
                                'name': attr['name'],
                                'fluid_name': attr['fluid_name'],
                                'value': attr_value,
                            }
435
                        )
436 437 438 439
                        args_index = args_index + 1
                    else:
                        break
                for idx, output_item in enumerate(reuse_op['outputs']):
440
                    bw_op['invoke']['outputs'].append(
441 442
                        {
                            'name': output_item['name'],
443 444
                            'fluid_name': output_item['fluid_name'],
                            'value': bw_op['outputs'][idx]['fluid_name'],
445 446 447 448
                        }
                    )


449
def parse_drop_empty_grad(op_fluid_list: list, bw_op_dict: dict):
450 451
    for op_comp_map in op_fluid_list:
        if 'drop_empty_grad' in op_comp_map:
452 453
            bw_names = [
                bw_name.split('(')[0].strip()
454
                for bw_name in op_comp_map['backward'].split(',')
455 456
            ]
            for bw_name in bw_names:
HappyHeavyRain's avatar
HappyHeavyRain 已提交
457 458
                # static_ops.yaml and ops.yaml use the common op_compat.yaml
                if bw_name in bw_op_dict:
459
                    for out_grad in op_comp_map['drop_empty_grad']:
HappyHeavyRain's avatar
HappyHeavyRain 已提交
460 461 462 463 464 465 466
                        assert (
                            out_grad in bw_op_dict[bw_name]['output_dict']
                        ), f'''
                            {bw_name} with {out_grad} is not existed in output_dict '''
                        bw_op_dict[bw_name]['output_dict'][out_grad][
                            'drop_empty_grad'
                        ] = False
467 468


469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
def parse_get_expected_kerneltype(
    op_fluid_list: list, fw_op_dict: dict, bw_op_dict: dict
):
    for op_comp_map in op_fluid_list:
        if 'get_expected_kernel_type' in op_comp_map:
            fw_name = op_comp_map['op'].split('(')[0].strip()
            if fw_name in op_comp_map['get_expected_kernel_type']:
                # static_ops.yaml and ops.yaml use the common op_compat.yaml
                if fw_name in fw_op_dict:
                    fw_op_dict[fw_name][
                        "get_expected_kernel_type"
                    ] = op_comp_map['get_expected_kernel_type'][fw_name]
            bw_names = [
                bw_name.split('(')[0].strip()
                for bw_name in op_comp_map['backward'].split(',')
            ]
            for bw_name in bw_names:
                # static_ops.yaml and ops.yaml use the common op_compat.yaml
                if (
                    bw_name in bw_op_dict
                    and bw_name in op_comp_map['get_expected_kernel_type']
                ):
                    bw_op_dict[bw_name][
                        "get_expected_kernel_type"
                    ] = op_comp_map['get_expected_kernel_type'][bw_name]


def parse_keep_signature(
    op_fluid_list: list, fw_op_dict: dict, bw_op_dict: dict
):
    for op_comp_map in op_fluid_list:
        if 'manual_signature' in op_comp_map:
            for op_name in op_comp_map['manual_signature']:
                if op_name in fw_op_dict:
                    fw_op_dict[op_name]["manual_signature"] = True
                elif op_name in bw_op_dict:
                    bw_op_dict[op_name]["manual_signature"] = True


508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
def split_ops_list(ops, backward_op_dict, split_num):
    new_ops_list = []
    new_bw_ops_list = []
    list_size = math.ceil(len(ops) / split_num)
    tmp_ops_list = []
    tmp_bw_ops_list = []
    for idx, op in enumerate(ops):
        tmp_ops_list.append(op)
        current_op = op
        while (
            'backward' in current_op
            and current_op['backward'] in backward_op_dict
        ):
            tmp_bw_ops_list.append(backward_op_dict[current_op['backward']])
            current_op = backward_op_dict[current_op['backward']]
        if (idx + 1) % list_size == 0 or idx == len(ops) - 1:
            new_ops_list.append(tmp_ops_list)
            new_bw_ops_list.append(tmp_bw_ops_list)
            tmp_ops_list = []
            tmp_bw_ops_list = []
    return new_ops_list, new_bw_ops_list


531 532 533 534 535 536 537 538
def main(
    ops_yaml_path,
    backward_yaml_path,
    op_compat_yaml_path,
    op_version_yaml_path,
    output_op_path,
    output_arg_map_path,
):
539
    with open(ops_yaml_path, "rt") as f:
540 541 542
        ops = yaml.safe_load(f)
        ops = [restruct_io(op) for op in ops]
    forward_op_dict = to_named_dict(ops)
543
    with open(backward_yaml_path, "rt") as f:
544 545 546
        backward_ops = yaml.safe_load(f)
        backward_ops = [restruct_io(op) for op in backward_ops]
    backward_op_dict = to_named_dict(backward_ops)
547
    with open(op_version_yaml_path, "rt") as f:
548 549 550
        op_versions = yaml.safe_load(f)
    # add op version info into op
    for op_version in op_versions:
HappyHeavyRain's avatar
HappyHeavyRain 已提交
551 552
        if op_version['op'] in forward_op_dict:
            forward_op_dict[op_version['op']]['version'] = op_version['version']
553 554

    with open(op_compat_yaml_path, "rt") as f:
555
        op_fluid_map_list = yaml.safe_load(f)
556

557 558
    for op in ops:
        op['op_name'] = op['name']
559 560 561
        add_fluid_name(op['inputs'])
        add_fluid_name(op['attrs'])
        add_fluid_name(op['outputs'])
562 563
    for bw_op in backward_ops:
        bw_op['op_name'] = bw_op['name']
564 565 566 567 568 569
        add_fluid_name(bw_op['inputs'])
        add_fluid_name(bw_op['attrs'])
        add_fluid_name(bw_op['outputs'])
        add_fluid_name(bw_op['forward']['inputs'])
        add_fluid_name(bw_op['forward']['attrs'])
        add_fluid_name(bw_op['forward']['outputs'])
570 571 572 573 574
        for bw_output in bw_op['outputs']:
            bw_output['drop_empty_grad'] = True

    # deal the drop_empty_grad of bw_op by op_compat.yaml
    parse_drop_empty_grad(op_fluid_map_list, backward_op_dict)
575

576 577 578 579 580 581
    parse_get_expected_kerneltype(
        op_fluid_map_list, forward_op_dict, backward_op_dict
    )

    parse_keep_signature(op_fluid_map_list, forward_op_dict, backward_op_dict)

582
    add_composite_info(ops, backward_ops, backward_op_dict)
J
Jiabin Yang 已提交
583

584
    add_compat_name(op_fluid_map_list, forward_op_dict, backward_op_dict)
585 586

    # prepare for invoke case
587
    process_invoke_op(forward_op_dict, backward_op_dict)
588

589 590 591 592 593 594 595
    # fill backward field for an op if another op claims it as forward
    for name, backward_op in backward_op_dict.items():
        forward_name = backward_op["forward"]["name"]
        if forward_name in backward_op_dict:
            forward_op = backward_op_dict[forward_name]
            if forward_op["backward"] is None:
                forward_op["backward"] = name
596

597 598 599 600
    op_dict = {}
    op_dict.update(forward_op_dict)
    op_dict.update(backward_op_dict)
    if len(ops) == 0 and len(backward_ops) == 0:
601 602 603 604 605 606
        if os.path.isfile(output_op_path):
            os.remove(output_op_path)
        if os.path.isfile(output_arg_map_path):
            os.remove(output_arg_map_path)
        return
    op_template = env.get_template('op.c.j2')
607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623

    backward_fluid_op_dict = {}
    for bw_op in backward_ops:
        backward_fluid_op_dict[bw_op['op_name']] = bw_op
    output_op_files_num = len(output_op_path)
    new_ops_list, new_bw_ops_list = split_ops_list(
        ops, backward_fluid_op_dict, output_op_files_num
    )
    for idx, output_op_file in enumerate(output_op_path):
        with open(output_op_file, "wt") as f:
            msg = op_template.render(
                ops=new_ops_list[idx],
                backward_ops=new_bw_ops_list[idx],
                op_dict=op_dict,
            )
            f.write(msg)

624 625
    ks_template = env.get_template('ks.c.j2')
    with open(output_arg_map_path, 'wt') as f:
626
        msg = ks_template.render(ops=ops, backward_ops=backward_ops)
627 628 629 630 631
        f.write(msg)


if __name__ == "__main__":
    parser = argparse.ArgumentParser(
632
        description="Generate operator file from op yaml."
633 634 635 636 637 638 639 640 641 642 643 644 645 646
    )
    parser.add_argument(
        '--ops_yaml_path', type=str, help="parsed ops yaml file."
    )
    parser.add_argument(
        '--backward_yaml_path', type=str, help="parsed backward ops yaml file."
    )
    parser.add_argument(
        '--op_compat_yaml_path', type=str, help="ops args compat yaml file."
    )
    parser.add_argument(
        '--op_version_yaml_path', type=str, help="ops version yaml file."
    )
    parser.add_argument(
647 648 649 650
        "--output_op_path",
        type=str,
        nargs='+',
        help="path to save generated operators.",
651
    )
652 653 654
    parser.add_argument(
        "--output_arg_map_path",
        type=str,
655 656
        help="path to save generated argument mapping functions.",
    )
657 658

    args = parser.parse_args()
659 660 661 662 663 664 665 666
    main(
        args.ops_yaml_path,
        args.backward_yaml_path,
        args.op_compat_yaml_path,
        args.op_version_yaml_path,
        args.output_op_path,
        args.output_arg_map_path,
    )